Skip to main content
Log in

An efficient transient mesophyll protoplast system for investigation of the innate immunity responses in the rubber tree (Hevea brasiliensis)

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The transient mesophyll protoplast expression system has become a powerful tool for rapid gene functional analysis, and it has been used successfully in several plant species, including model plants Arabidopsis and rice, but not in rubber tree. In this study, we describe an improved method to isolate high quality rubber tree mesophyll protoplasts. The transient expression of exogenous DNA constructs in this mesophyll protoplast system was observed by using green fluorescent protein, and was detected by immunoblot. Furthermore, we used two typical pathogen-associated molecular patterns flg22 and chitin from bacteria and fungi, respectively, as inducers of plant innate immunity responses to detect the immunity response of rubber tree. Our data showed that flg22 and chitin induced activation of mitogen-activated protein kinases, generation and accumulation of reactive oxygen species, and transcription of defense genes. Our study demonstrated that the rubber tree mesophyll protoplast system can be used for functional analysis of immune responses of rubber tree and the dissection of cell signaling pathways. This transient mesophyll protoplast system may be applied to analyse gene function of rubber tree, a perennial plant for which the applicable transformation system was limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arokiaraj P, Jones H, Jaafar H, Coomber S, Charlwood BV (1996) Agrobacterium-mediated transformation of Hevea anther calli and their regeneration into plantlets. J Nat Rubber Res 11:77–87

    CAS  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gómez-Gómez I, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signaling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  CAS  PubMed  Google Scholar 

  • Boudsocq M, Willmann RM, McCormack M, Lee H, Shan L, He P, Bush J, Cheng S, Sheen J (2010) Differential innate immune signalling via Ca2+ sensor protein kinases. Nature 464:418–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Tao L, Zeng L, Vega-Sanchez EM, Umemura K, Wang GL (2006) A highly efficient transient protoplast system for analyzing defence gene expression and protein–protein interactions in rice. Mol Plant Pathol 7:417–427

    Article  CAS  PubMed  Google Scholar 

  • Denoux C, Galletti R, Mammarella N, Gopalan S, Werck D, De Lorenzo G, Ferrari S, Ausubel FM, Dewdney J (2008) Activation of defense response pathways by OGs and Flg22 elicitors in Arabidopsis seedlings. Mol Plant 1:423–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Gómez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    Article  PubMed  Google Scholar 

  • Jeworutzki E, Roeflsema MR, Anschütz U, Krol E, Elzenga JT et al (2010) Early signalling through the Arabidopsis pattern recognition receptor FLS2 and EFR involves Ca2+-associated opening of plasma membrane anion channels. Plant J 62:367–378

    Article  CAS  PubMed  Google Scholar 

  • Jones DGJ, Dangl LJ (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kao KN, Michayluk MR (1980) Plant regeneration from mesophyll protoplasts of alfalfa. Z Pflanzenphysiol 96:135–141

    Article  Google Scholar 

  • Klauser D, Flury P, Boller T, Bartels S (2013) Several MAMPs, including chitin fragments, enhance AtPep-triggered oxidative burst independently of wounding. Plant Signal Behav 8:e25346

    Article  PubMed  PubMed Central  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97:2940–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leclercq J, Lardet L, Martin F, Chapuset T, Oliver G, Montoro P (2010) The green fluorescent protein as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation in Hevea brasiliensis (Müll. Arg). Plant Cell Rep 29:513–522

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Klüsener B, Tsiamis G, Stevens C, Neyt C et al (2001) HrpZ(Psph) from the plant pathogen Pseudomonas syringae pv. phaseolicola binds to lipid bilayers and forms an ion-conducting pore in vitro. Proc Natl Acad Sci USA 98:289–294

    CAS  PubMed  Google Scholar 

  • Libault M, Wan J, Czechowski T, Udvardi M, Stacey G (2007) Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor. MPMI 20:900–911

    Article  CAS  PubMed  Google Scholar 

  • Lieberei R (2007) South American leaf blight of the rubber tree (Hevea spp.): new steps in plant domestication using physiological features and molecular markers. Ann Bot 100:1125–1142

    Article  PubMed  PubMed Central  Google Scholar 

  • Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J (2011) Callose deposition: amultifaceted plant defense response. MPMI 24:183–193

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Qin Y, Yan Z, Xiang P (2011) Cloning and expression analysis of gene encoding pathogenesis-related protein 1 in Hevea brasiliensis. Chin J Trop Crops 32:1–4 (in Chinese)

    Google Scholar 

  • Mersmann S, Bourdais G, Rietz S, Robatzek S (2010) Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity. Plant Physiol 154:391–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mészáros T, Helfer A, Hatzimasoura E, Magyar Z, Serazetdinova L, Rios G, Bardóczy V, Teige M, Koncz C, Peck S, Bögre L (2006) The Arabidopsis MAP kinase kinase MKK1 participates indefence responses to the bacterial elicitor flagellin. Plant J 48:485–498

    Article  PubMed  Google Scholar 

  • Navarro L, Zipfel C, Rowland O, Keller I, Robatzek S, Boller T, Jones DGJ (2004) The transcriptional innate immune response to flg22: interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol 135:1113–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman MA, Sundelin T, Nielsen TJ, Erbs G (2013) MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front Plant Sci 4:1–14

    Article  Google Scholar 

  • Nürnberger T (1999) Signal perception in plant pathogen defense. Cell Mol Life Sci 55:167–182

    Article  PubMed  Google Scholar 

  • Petutschnig KE, Jones MEA, Serazetdinova L, Lipka U, Lipka V (2010) The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J Biol Chem 285:28902–28911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman AYA, Usharraj OA, Misra BB, Thottathil PG, Jayasekaran K, Feng Y, Hou S, Ong SY, Ng FL, Lee LS, Tan HS, Sakaff MKLM, Teh BS, Khoo BF, Badai SS, Aziz NA, Yuryev A, Knudsen B, Dionne-Laporte A, Mchunu PN, Yu Q, Langston JB, Freitas KTA, Young GA, Chen R, Wang L, Najimudin N, Saito AJ, Alam M (2013) Draft genome sequence of the rubber tree Hevea brasiliensis. BMC Genom 14:75–89

    Article  Google Scholar 

  • Ramonell MK, Zhang B, Ewing MR, Chen Y, Xu D, Stacey G, Somerville S (2002) Microarray analysis of chitin elicitation in Arabidopsis thaliana. Mol Plant Pathol 3:301–311

    Article  CAS  PubMed  Google Scholar 

  • Schweswinger B, Zipfel C (2008) News from the frontline: recent insights into PAMP-triggered immunity in plants. Curr Opin Plant Biol 11:389–395

    Article  Google Scholar 

  • Sheen J (1995) Methods for mesophyll and bundle sheath cell separation. Methods Cell Biol 49:305–314

    Article  CAS  PubMed  Google Scholar 

  • Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127:1466–1475

  • Shibuya N, Minami E (2001) Oligosaccharide signalling for defence responses in plant. Physiol Mol Plant Pathol 59:223–233

    Article  CAS  Google Scholar 

  • Smith MJ, Heese A (2014) Rapid bioassay to measure early reactive oxygen species production in Arabidopsis leave tissue in response to living Pseudomonas syringae. Plant Methods 10:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Stael S, Kmiecik P, Willems P, Kelen VDK, Coll SN, Teige M, Breusegem VF (2015) Plant innate immunity—sunny side up? Trends Plant Sci 20:3–11

    Article  CAS  PubMed  Google Scholar 

  • Steiner-Lange S, Fischer A, Boettcher A, Rouhara I, Liedgens H, Schmelzer E, Knogge W (2003) Differential defense reactions in leaf tissues of barley in response to infection by Rhynchosporium secalis and to treatment with a fungal avirulence gene product. Mol Plant Microbe Interact 16:893–902

    Article  CAS  PubMed  Google Scholar 

  • Tao L, Cheung A, Wu H (2002) Plant rac-like GTPases are activated by auxin and mediate auxin-responsive gene expression. Plant Cell 14:2745–2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tena G, Boudsocq M, Sheen J (2011) Protein kinase signaling networks in plant innate immunity. Curr Opin Plant Biol 14:519–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomma PHJB, Nurnberger T, Joostena HAJM (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan J, Zhang S, Stacey G (2004) Activation of a mitogen-activated protein kinase pathway in Arabidopsis by chitin. Mol Plant Pathol 5:125–135

    Article  CAS  PubMed  Google Scholar 

  • Wei CF, Hsu ST, Deng WL, Wen YD, Huang HC (2012) Plant innate immunity induced by flagellin suppresses the hypersensitive response in non-host plants elicited by Pseudomonas syringae pv. averrhoi. PLoS ONE 7:e41056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu FH, Shen SC, Lee LY, Lee SH, Chan MT, Lin CS (2009) Tape-Arabidopsis sandwich—a simpler Arabidopsis protoplast isolation method. Plant Methods 5:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia Z, Xu H, Zhai J, Li D, Luo H, He C, Huang X (2011) RNA-Seq analysis and de novo transcriptome assembly of Hevea brasiliensis. Plant Mol Biol 77:299–308

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Qin Y, Luo H (2013) Cloning and expression analysis of gene encoding thaumatin-like protein l in Hevea brasiliensis (in Chinese). Chin J Trop Crops 34:860–865

    Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zipfel C (2008) Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 20:10–16

    Article  CAS  PubMed  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG et al (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation (Project No. 31160151), Hainan Science and Technology Project (Project No. ZDZX2013023).

Authors’ contribution

HLL and CZH designed the experiments. XDZ, HLL and CZH wrote the paper. XDZ and LJW performed the experiments. XDZ and HLL analyzed the data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaozu He or Hongli Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Sequence comparison between HbMAPK3 and MAPK3 proteins from other plants. The black shaded residues are identical in all the proteins compared, and gray shading indicates residues identical to the HbMAPK3 protein. Dashes denote gaps introduced to maximize alignment. The red box showed the conserved TRW motif. Sequences used in the alignments are HbMAPK3 (Hevea brasiliensis, unpublished), CsMAPK3 (Citrus sinensis, ABM67698.1), VvMAPK3 (Vitis vinifera, XP_002284807.1), GmMAPK3 (Glycine max, XP_003539740.1) and AtMAPK3 (Arabidopsis thaliana, XP_002875737.1) (TIFF 869 kb)

Figure S2

Sequence comparison between HbMAPK6 and MAPK6 proteins from other plants. The black shaded residues are identical in all the proteins compared, and gray shading indicates residues identical to the HbMAPK6 protein. Dashes denote gaps introduced to maximize alignment. The red box showed the conserved TRW motif. Sequences used in the alignments are HbMAPK6 (Hevea brasiliensis, unpublished), AtMAPK6 (Arabidopsis thaliana, NP_181907.1), PcMAPK6 (Petroselinum crispum, AAN65179.1), OsMAPK6 (Oryza sativa, ACD76439.1) and PtMAPK6 (Pinus taeda, ACT63866.1) (TIFF 948 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, L., He, C. et al. An efficient transient mesophyll protoplast system for investigation of the innate immunity responses in the rubber tree (Hevea brasiliensis). Plant Cell Tiss Organ Cult 126, 281–290 (2016). https://doi.org/10.1007/s11240-016-0997-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-0997-2

Keywords

Navigation