Skip to main content
Log in

Ultrastructural and biochemical alterations during browning of pigeon orchid (Dendrobium crumenatum Swartz) callus

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The phenomenon of browning can be a major limitation for orchid callus culture, causing a loss of regenerative capacity and subsequent cell death. This research was conducted to determine the effect of in vitro culture period (1–3 months) on the appearance of tissue browning. Biological alterations at the cellular and subcellular levels, as well as biochemical aspects, were examined. Callus derived from bisected pigeon orchid (Dendrobium crumenatum Swartz) protocorms were cultured on modified Vacin and Went solid medium supplemented with 0.5 mg L−1 1-naphthaleneacetic acid and 1 mg L−1 6-benzyladenine. Callus that was not subcultured was collected at 1-month intervals and examined for structural (using scanning electron microscopy and transmission electron microscopy) and biochemical alterations associated with browning. Three-month-old unsubcultured callus cells were loosely arranged and major organelles were deformed, exhibiting nuclear envelope breakage, dysfunctional mitochondria, tannin-filled vesicles and swollen chloroplasts, relative to 1-month-old green callus, which served as the control. Ultrastructural disorganization involving the nucleus, mitochondria and chloroplasts typified enzymatic oxidative browning. Browning 3-month-old callus had significantly higher polyphenol oxidase (PPO) activity and total phenolic content than control callus. The levels of PPO and total phenolics may serve as useful biochemical markers when selecting suitable callus for subsequent regeneration trials or for particle bombardment in genetic transformation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BA:

6-Benzyladenine

Chl:

Chlorophyll

CIM:

Callus induction medium

NAA:

1-Naphthaleneacetic acid

PAL:

Phenylanine ammonia lyase

PAS:

Periodic acid-Schiff

PCD:

Programmed cell death

POD:

Peroxidase

PPO:

Polyphenol oxidase

RER:

Rough endoplasmic reticulum (ER)

ROS:

Reactive oxygen species

SER:

Smooth ER

SDS:

Sodium dodecyl sulfate

TBO:

Toluidine blue O

VW:

Vacin and Went medium

References

  • Adelberg JW, Desamero NV, Hale SA, Young RE (1997) Long-term nutrient and water utilization during micropropagation of Cattleya on a liquid/membrane system. Plant Cell Tissue Org Cult 48:1–7

    CAS  Google Scholar 

  • Ahmad I, Hussain T, Ashraf I, Nafees M, Maryam RM, Iqbal M (2013) Lethal effects of secondary metabolites on plant tissue culture. Am-Eurasian J Agric Environ Sci 13:539–547

    CAS  Google Scholar 

  • Amirjani MR (2010) Effect of NaCl on some physiological parameters of rice. Eur J Biol Sci 3(1):6–16

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  PubMed  Google Scholar 

  • Appezzato-da-Glória B, Machado SR (2004) Ultrastructural analysis of in vitro direct and indirect organogenesis. Revista Brasil Bot 27(3):429–437

    Google Scholar 

  • Arnaldos TL, Muñoz R, Ferrer MA, Calderón AA (2001) Changes in phenol content during strawberry (Fragaria × ananassa, cv. Chandler) callus culture. Physiol Plant 113:315–322

    CAS  Google Scholar 

  • Bairu MW, Aremu AO, Van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173

    CAS  Google Scholar 

  • Begum AA, Tamaki M, Tahara M, Kako S (1994) Somatic embryogenesis in Cymbidium through in vitro culture of inner tissue of protocorm-like bodies. J Jpn Soc Hortic Sci 63(2):419–427

    CAS  Google Scholar 

  • Belarmino MM, Mii M (2000) Agrobacterium-mediated genetic transformation of a Phalaenopsis orchid. Plant Cell Rep 19:435–442

    CAS  Google Scholar 

  • Bennici A, Tani C (2009) Ultrastructural effects of salinity in Nicotiana bigelovii var. bigelovii callus cells and Allium cepa roots. Caryologia 62(2):124–133

    Google Scholar 

  • Benson EE (2000) In vitro plant recalcitrance: an introduction. In Vitro Cell Dev Biol Plant 36:141–148

    Google Scholar 

  • Bewick V, Cheek L, Ball J (2004) Statistics review 9: one-way analysis of variance. Crit Care 8(2):130–136

    PubMed Central  PubMed  Google Scholar 

  • Bi YH, Chen WL, Zhang WN, Zhou Q, Yun LJ, Xing D (2009) Production of reactive oxygen species, impairment of photosynthetic function and dynamic changes in mitochondria are early events in cadmium-induced cell death in Arabidopsis thaliana. Biol Cell 101:629–643

    CAS  PubMed  Google Scholar 

  • Bian W, Barsan C, Egea I, Purgatto E, Chervin C, Zouine M, Latché A, Bouzayen M, Pech JC (2011) Metabolic and molecular events occurring during chromoplast biogenesis. J Bot. Article ID 289859, 13 pp

  • Bobák M, Šamaj J, Pretová A, Blehová A, Hlinková E, Ovecka M, Hlavacka A, Kutarnová Z (2004) The histological analysis of indirect somatic embryogenesis on Drosera spathulata Labill. Acta Physiol Plant 26(3):353–361

    Google Scholar 

  • Boguszewska D, Zagdańska B (2012) ROS as signaling molecules and enzymes of plant response to unfavorable environmental conditions. In: Lushchak W, Semchyshyn HM (eds) Oxidative stress-molecular mechanisms and biological effects. InTech, Rijeka, pp 341–362

    Google Scholar 

  • Bréhélin C, Kessler F, van Wijk KJ (2007) Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant Sci 12:260–266

    PubMed  Google Scholar 

  • Brillouet JM, Romieu C, Schoefs B, Solymosi K, Cheynier V, Fulcrand H, Verdeil JL, Conéjéro G (2013) The tannosome is an organelle forming condensed tannins in the chlorophyllous organs of Tracheophyta. Ann Bot 112:1003–1014

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cassells AC, Curry RF (2001) Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers. Plant Cell Tissue Org Cult 64:145–157

    CAS  Google Scholar 

  • Chang C, Chang WC (1998) Plant regeneration from callus culture of Cymbidium ensifolium var. misericors. Plant Cell Rep 17:251–255

    CAS  Google Scholar 

  • Chapman KD, Dyer JM, Mullen RT (2012) Biogenesis and functions of lipid droplets in plants. J Lipid Res 53(2):215–226

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chugh S, Guha S, Rao IU (2009) Micropropagation of orchids: a review on the potential of different explants. Sci Hortic 122:507–520

    CAS  Google Scholar 

  • Dai J (1993) Postharvest leaf blackening in Protea neriifolia R. Br. Ph.D. Dissertation, University of Hawaii

  • de Oliveira Ribeiro L, Paiva LV, Pádua MS, Santos BR, Alves E, Stein VC (2012) Morphological and ultrastructural analysis of various types of banana callus, cv. Prata anã. Acta Sci Agron 34:423–429

    Google Scholar 

  • de Pinto MC, de Gara L (2004) Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation. J Exp Bot 55(408):2559–2569

    PubMed  Google Scholar 

  • Debnath M, Malik CP, Bisen PS (2006) Micropropagation: a tool for the production of high quality plant-based medicines. Curr Pharm Biotechnol 7:33–49

    CAS  PubMed  Google Scholar 

  • Dubravina GA, Zaytseva SM, Zagoskina NV (2005) Changes in formation and localization of phenolic compounds in the tissues of European and Canadian yew during dedifferentiation in vitro. Russ J Plant Physiol 52(5):672–678

    CAS  Google Scholar 

  • El-Tayeb MA (2005) Response of barley gains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 45:215–225

    CAS  Google Scholar 

  • Feder N, O’Brien TP (1968) Plant microtechnique: some principles and new methods. Am J Bot 55:123–142

    Google Scholar 

  • Forters AM, Pais MS (2000) Organogenesis from internode-derived nodules of Humulus lupulus var. Nugget (Cannabinaceae): histological studies and changes in the starch content. Am J Bot 87(7):971–979

    Google Scholar 

  • Fu Z, Xu P, He S, Teixeira da Silva JA, Tanaka M (2011) Dynamic changes in enzyme activities and phenolic content during in vitro rooting of tree peony (Paeonia suffruticosa Andr) plantlets. Maejo Int J Sci Technol 5(2):252–265

    CAS  Google Scholar 

  • Gacche RN, Shete AM, Dhole NA, Ghole VS (2006) Reversible inhibition of polyphenol oxidase from apple using L-cysteine. Indian J Chem Technol 13:459–463

    CAS  Google Scholar 

  • George EF (2008) Plant tissue culture procedure - background. In: George EF, Hall MA, De Klerk GJ (eds) Plant propagation by tissue culture, vol 1, 3rd edn., The BackgroundSpringer, Dordrecht, pp 1–28

    Google Scholar 

  • Ghozlène I, Mohammed-Réda D, Nedjoud G, Houria B, Ali C (2013) Oxidative stress, chlorophyll content and ROS production and localization in Triticum durum seed. Ann Biol Res 4(5):11–15

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  PubMed  Google Scholar 

  • Gunawardena AHLAN, Sault K, Donnelly P, Greenwood JS, Dengler NG (2005) Programmed cell death and leaf morphogenesis in Monstera obliqua (Araceae). Planta 221:607–618

    CAS  PubMed  Google Scholar 

  • Gunawardena AHLAN, Greenwood JS, Dengler NG (2007) Cell wall degradation and modification during programmed cell death in lace plant, Aponogeton madagascariensis (Aponogetonaceae). Am J Bot 94(7):1116–1128

    CAS  PubMed  Google Scholar 

  • Hazubska-Przybył T, Bojarczuk K, Guzicka M (2008) Structure of embryogenic tissues and accumulation of storage materials in somatic embryos of Picea abies and P. omorika. Dendrobiology 60:19–28

    Google Scholar 

  • He Y, Guo X, Lu R, Niu B, Pasapula V, Hou P, Cai F, Xu Y, Chen F (2009) Changes in morphology and biochemical indices in browning callus from Jatropha curcas hypocotyls. Plant Cell Tissue Org Cult 98:11–17

    CAS  Google Scholar 

  • Hofius D, Schultz-Larsen T, Joensen J, Tsitsigiannis DI, Petersen NHT, Mattsson O, Jørgensen LB, Jones JDG, Mundy J, Petersen M (2009) Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 137:773–783

    CAS  PubMed  Google Scholar 

  • Hossain MM, Kant R, Van PT, Winarto B, Zeng S, Teixeira da Silva JA (2013) The application of biotechnology to orchids. Crit Rev Plant Sci 32(2):69–139

    CAS  Google Scholar 

  • Hu J, Baker A, Bartel B, Linka N, Mullen RT, Reumann S, Zolman BK (2012) Plant peroxisomes: biogenesis and function. Plant Cell 24:2279–2303

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang LC, Lee YL, Huang BL, Kuo CI, Shaw JF (2002) High polyphenol oxidase activity and low titratable acidity in browning bamboo tissue culture. In Vitro Cell Dev Biol Plant 38:358–365

    CAS  Google Scholar 

  • Jones AMP, Saxena PK (2013) Inhibition of phenylpropanoid biosynthesis in Artemisia annua L.: a novel approach to reduce oxidative browning in plant tissue culture. PLoS ONE 8(10):e76802

    PubMed Central  CAS  PubMed  Google Scholar 

  • Khosravi AR, Kadir MA, Kazemin SB, Zaman FQ, de Silva AE (2008) Establishment of a plant regeneration system from callus of Dendrobium cv. Serdang beauty. Afr J Biotechnol 7(22):4093–4099

    CAS  Google Scholar 

  • Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant, Cell Environ 23:337–350

    CAS  Google Scholar 

  • Laukkanen H, Rautiainen L, Taulavuori E, Hohtola A (2000) Changes in cellular structures and enzymatic activities during browning of Scots pine callus derived from mature buds. Tree Physiol 20:467–475

    CAS  PubMed  Google Scholar 

  • Lee SH, Singh AP, Chung GC, Kim YS, Kong IB (2002) Chilling root temperature causes rapid ultrastructural changes in cortical cells of cucumber (Cucumis sativus L.) root tips. J Exp Bot 53:2225–2237

    CAS  PubMed  Google Scholar 

  • Leng P, Su S, Wei F, Yu F, Duan Y (2009) Correlation between browning, total phenolic content, polyphenol oxidase and several antioxidation enzymes during pistachio tissue culture. Acta Hort 829:127–132

    CAS  Google Scholar 

  • Leong TM, Wee YC (2013) Observations of pollination in the pigeon orchid, Dendrobium crumenatum Swartz (Orchidaceae) in Singapore. Nat Singap 6:91–96

    Google Scholar 

  • Ling ACK, Yap CP, Shaib JM, Vilasini P (2007) Induction and morphogenesis of Phalaenopsis callus. J Trop Agric Food Sci 35(1):147–152

    Google Scholar 

  • Liu FP, Chen LX (2010) Redox dynamics during embryogenic callus induction of Phalaenopsis spp. J Wuhan Bot Res 28(6):737–743

    Google Scholar 

  • Marín-Méndez W, Sanchéz-Chacón E, Gatica-Arias AM, Ramírez-Fonseca P, Freer-Bustamante E, Valdez-Melara M (2009) Ultrastructure and histology of organogenesis induced from shoot tips of maize (Zea mays, Poaceae). Rev Biol Trop 57(1):129–139

    Google Scholar 

  • Matile PH, Moor H (1968) Vacuolation: origin and development of the lysosomal apparatus in root-tip cells. Planta 80:159–175

    Google Scholar 

  • Mauseth JD (2014) Botany: an introduction to plant biology, 5th edn. Jones & Bartlett Learning, Burlington

    Google Scholar 

  • Mayer AM (2006) Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry 67:2318–2331

    CAS  PubMed  Google Scholar 

  • Meesawat U, Kanchanapoom K (2002) In vitro plant regeneration through embryogenesis and organogenesis from callus culture of pigeon orchid (Dendrobium crumenatum Sw.). Thammasart Int J Sci Tech 7(2):9–17

    Google Scholar 

  • Meesawat U, Kanchanapoom K (2007) Understanding the flowering behavior of pigeon orchid (Dendrobium crumenatum Swartz). Orchid Sci Biotech 1:6–14

    Google Scholar 

  • Misra P, Toppo DD, Gupta N, Chakrabarty D, Tuli R (2010) Effect of antioxidants and associate changes in antioxidant enzymes in controlling browning and necrosis of proliferating shoots of elite Jatropha curcas L. Biomass Bioenerg 34:1861–1869

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    CAS  PubMed  Google Scholar 

  • Mondal T, Aditya S, Banerjee N (2013) In vitro axillary shoot regeneration and direct protocorm-like body induction from axenic shoot tips of Doritis pulcherrima Lindl. Plant Tissue Cult Biotechnol 23(2):251–261

    Google Scholar 

  • Mueller WC, Greenwood AD (1978) The ultrastructure of phenolic-storing cells fixed with caffeine. J Exp Bot 29(110):757–764

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Najafi S, Jamei R (2014) Effect of silver nanoparticles and Pb(NO3)2 on the yield and chemical composition of mung bean (Vigna radiata). J Stress Physiol Biochem 10(1):316–325

    Google Scholar 

  • Naz S, Ali A, Iqbal J (2008) Phenolic content in vitro cultures of chickpea (Cicer arietinum L) during callogenesis and organogenesis. Pak J Bot 40(6):2525–2539

    CAS  Google Scholar 

  • North JJ, Ndakidemi PA, Laubscher CP (2012) Effects of antioxidants, plant growth regulators and wounding on phenolic compound excretion during micropropagation of Strelitzia reginae. Int J Phys Sci 7(4):638–646

    CAS  Google Scholar 

  • Oren-Shamir M (2009) Does anthocyanin degradation play a significant role in determining pigment concentration in plants? Plant Sci 177:310–316

    CAS  Google Scholar 

  • Palama TL, Menard P, Fock I, Choi YH, Bourdon E, Govinden-Soulange J, Bahut M, Payet B, Verpoorte R, Kodja H (2010) Shoot differentiation from protocorm callus cultures of Vanilla planifolia (Orchidaceae): proteomic and metabolic responses at early stage. BMC Plant Biol 10(82):1–18

    Google Scholar 

  • Park SY, Shin KS, Paek KY (2006) Increased ethylene and decreased phenolic compound stimulate somatic embryo regeneration in leaf thin section cultures of Doritaenopsis hybrid. J Plant Biol 49(5):358–363

    CAS  Google Scholar 

  • Peng H, Zhang J (2009) Plant genomic DNA methylation in response to stresses: potential applications and challenges in plant breeding. Prog Nat Sci 19:1037–1045

    CAS  Google Scholar 

  • Pihakaski-Maunsbach K, Brauner Nygaard K, Jensen KH, Rasmussen O (1993) Cellular changes in early development of regenerating thin cell layer-explants of rapeseed analyzed by light and electron microscopy. Physiol Plant 87:167–176

    CAS  Google Scholar 

  • Pitzschke A, Djamei A, Bitton F, Hirt H (2009) A major role of the MEKK1–MKK1/2–MPK4 pathway in ROS signalling. Mol Plant 2(1):120–137

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ramel F, Birtic S, Cuiné S, Triantaphylidès C, Ravanat JL, Havaux M (2012) Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol 158:1267–1278

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reynolds S (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ruzin S (1999) Plant microtechnique and microscopy. Oxford University Press, New York

    Google Scholar 

  • Sandalio LM, Rodríguez-Serrano M, Romero-Puertas MC, del Río LA (2013) Role of peroxisomes as a source of reactive oxygen species (ROS) signaling molecules. In: del Río LA (ed) Peroxisomes and their key role in cellular signaling and metabolism. Springer, Dordrecht, pp 231–255

    Google Scholar 

  • Santiago LJM, Louro RP, de Oliveira DE (2000) Compartmentation of phenolic compounds and phenylalanine ammonia-lyase in leaves of Phyllanthus tenellus Roxb. and their induction by copper sulphate. Ann Bot 86:1023–1032

    CAS  Google Scholar 

  • Sapers GM, Hicks KB, Miller RL (2002) Antibrowning agents. In: Brane AL, Davidson PM, Salminen S, Thorngate JH III (eds) Food additives, 2nd edn. Marcel Dekker, New York, pp 543–561

    Google Scholar 

  • Sevengor S, Yasar F, Kusvuran S, Ellialtioglu S (2011) The effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidative enzymes of pumpkin seedling. Afr J Agric Res 6(21):4920–4924

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. Article ID 217037, 26 pp

  • Shi Q (2011) Studies on preventive technique and browning mechanism in the tissue culture of Cymbidium longibracteatum ‘Cui-xian’ flower stalks. M.Sc. Dissertation, Sichuan Agricultural University

  • Singh A, Prasad R (2009) Salt stress effects growth and cell wall bound enzymes in Arachis hypogaea L. seedlings. Int J Integr. Biol 7(2):117–123

    CAS  Google Scholar 

  • Speranza A, Ferri P, Battistelli M, Falcieri E, Crinelli R, Scoccianti V (2007) Both trivalent and hexavalent chromium strongly alter in vitro germination and ultrastructure of kiwifruit pollen. Chemosphere 66(7):1165–1174

    CAS  PubMed  Google Scholar 

  • Stefanowska M, Kuraś M, Kacperska A (2002) Low temperature-induced modifications in cell ultrastructure and localization of phenolics in water oilseed rape (Brassica napus L. var. oleifera L.) leaves. Ann Bot 90:637–645

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stein VC, Paiva R, Vargas DP, Soares FP, Alves E, Nogueira GF (2010) Ultrastructural calli analysis of Inga vera Willd. subsp. Affinis (DC.) T.D. Penn Rev Árvore 34:789–796

    Google Scholar 

  • Steinmacher DA, Guerra MP, Saare-Surminski K, Lieberei R (2011) A temporary immersion system improves in vitro regeneration of peach palm through secondary somatic embryogenesis. Ann Bot 108:1463–1475

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stewart SL, Zettler LW (2002) Symbiotic germination of three semi-aquatic rein orchids (Habenaria repens, H. quinquiseta, H. macroceratitis) from Florida. Aquat Bot 72:25–35

    Google Scholar 

  • Sunkar R (2010) Plant stress tolerance methods and protocols. Humana Press, New York

    Google Scholar 

  • Tang W, Newton RJ (2004) Increase of polyphenol oxidase and decrease of polyamines correlate with tissue browning in Virginia pine (Pinus virginiana Mill.). Plant Sci 167:621–628

    CAS  Google Scholar 

  • Teixeira da Silva JA (2012) Callus, calluses or calli: multiple plurals? Asian Australasian J Plant Sci Biotechnol 6(Special issue 1):125–126

    Google Scholar 

  • Teixeira da Silva JA, Tanaka M (2006) Multiple regeneration pathways via thin cell layers in hybrid Cymbidium (Orchidaceae). J Plant Growth Reg 25(3):203–210

    CAS  Google Scholar 

  • Teixeira da Silva JA, Dobránszki J (2013) How timing of sampling can affect the outcome of the quantitative assessment of plant organogenesis. Sci Hortic 159:59–66

    Google Scholar 

  • Terzi R, Saruhan Güler N, Kutlu Çalişkan N, Kadioğlu A (2013) Lignification response for rolled leaves of Ctenanthe setosa under long-term drought stress. Turk J Biol 37:614–619

    CAS  Google Scholar 

  • Toivonen PMA, Brummell DA (2008) Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biol Technol 48:1–14

    CAS  Google Scholar 

  • Tokuhara K, Mill M (2001) Induction of embryogenic callus and cell suspension culture from shoot tips excised from flower stalk buds of Phalaenopsis (Orchidaceae). In Vitro Cell Dev Biol Plant 37:457–461

    CAS  Google Scholar 

  • Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7(12):1621–1633

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vacin E, Went F (1949) Some pH changes in nutrient solution. Bot Gaz 110:605–613

    CAS  Google Scholar 

  • Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12(6):245–252

    CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Google Scholar 

  • Wang W, Messing J (2012) Analysis of ADP-glucose pyrophosphorylase expression during turion formation induced by abscisic acid in Spirodela polyrhiza (greater duckweed). BMC Plant Biol 12(5):1–14

    CAS  Google Scholar 

  • Wang JB, Wang XS, Jin ZQ (2010) Enzymatic browning of postharvest litchi: a review. Acta Hortic 863:613–618

    CAS  Google Scholar 

  • Wang XD, Nolan KE, Irwanto RR, Sheahan MB, Rose RJ (2011) Ontogeny of embryogenic callus in Medicago truncatula: the fate of the pluripotent and totipotent stem cells. Ann Bot 107:599–609

    PubMed Central  PubMed  Google Scholar 

  • Weisany W, Sohrabi Y, Heidari G, Siosemardeh A, Ghassemi-Golezani K (2012) Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics J 5(2):60–67

    CAS  Google Scholar 

  • Wi SG, Chung BY, Kim JH, Baek MH, Yan DH, Lee JW, Kim JS (2005) Ultrastructural changes of cell organelles in Arabidopsis stems after gamma irradiation. J Plant Biol 48(2):195–200

    Google Scholar 

  • Wu Z, Chen LJ, Long YJ (2009) Analysis of ultrastructure and reactive oxygen species of hyperhydric garlic (Allium sativum L.) shoots. In Vitro Cell Dev Biol Plant 45:483–490

    Google Scholar 

  • Xu CJ, Li L (2006) Changes of total phenol content and the activities of PPO, POD and PAL during the browning in Phalaenopsis explant in vitro. Acta Hortic Sin 33(3):671–674 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Xu CJ, Li L, Li H, Zhang MG (2005) Preliminary studies on the elements of browning and the changes in cellular texture of leaf explant browning in Phalaenopsis. Acta Hortic Sin 32(6):1111–1113 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Xu CJ, Tan RF, Chen DY, Lai YY, Li L (2010) Ultrastructure and distribution of phenol in Phalaenopsis browning leaf explants. North Hortic 21:90–92 (in Chinese with English abstract)

    Google Scholar 

  • Yamauchi N, Funamoto Y, Shigyo M (2004) Peroxidase-mediated chlorophyll degradation in horticultural crops. Phytochem Rev 3:221–228

    CAS  Google Scholar 

  • Yang L, Han R, Sun Y (2013) Effects of exogenous nitric oxide on wheat exposed to enhanced ultraviolet-B radiation. Am J Plant Sci 4:1285–1290

    CAS  Google Scholar 

  • Yin F, Ge H, Peng K, Zhao L, Zhou Y, Li Q (2006) The influence of phenols on tissue browning of Phalaenopsis. Acta Hortic Sin 33(5):1137–1140 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Yingsanga P, Srilaonga V, Kanlayanarat S, Noichindab S, McGlassonc WB (2008) Relationship between browning and related enzymes (PAL, PPO and POD) in rambutan fruit (Nephelium lappaceum Linn.) cvs. Rongrien and See-Chompoo. Postharvest Biol Technol 50:164–168

    CAS  Google Scholar 

  • Yoruk R, Marshall MR (2003) Physicochemical properties and function of polyphenol oxidase: a review. J Food Biochem 27:361–422

    CAS  Google Scholar 

  • Yoshinaga K, Arimura SI, Niwa Y, Tsutsumi N, Uchimiya H, Kawai-Yamada M (2005) Mitochondrial behaviour in the early stages of ROS stress leading to cell death in Arabidopsis thaliana. Ann Bot 96:337–342

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zenkteler E, Kwaśna H (2007) Pre-treatment of Dryopteris cristata (L.). A Gray rhizome as a method of elimination of contaminants and explant browning micropropagation. Biodivers Res Conserv 5(8):81–86

    Google Scholar 

  • Zhang X, Ervin EH, Schmidt RE (2005) The role of leaf pigment and antioxidant levels in UV-B resistance of dark- and light-green Kentucky bluegrass cultivars. J Am Soc Hortic Sci 130(6):836–841

    CAS  Google Scholar 

  • Zhao P, Wu F, Feng FS, Wang WJ (2008) Protocorm-like body (PLB) formation and plant regeneration from the callus culture of Dendrobium candidum Wall ex Lindl. In Vitro Cell Dev Biol Plant 44:178–185

    CAS  Google Scholar 

  • Zhao Y, Yang SH, Ge WY, Li QX, Chen HX, Ge H (2010) The metabolism of phenolics and reactive oxygen species in relation to the explant browning differences among the varieties of Phalaenopsis during the tissue culture. Acta Hortic Sin 37:963–970 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Zhou W, Tan R, Xu C, Lai Y, Chen D, Li L (2009) Gibberellic acid inhibits browning, enzyme activity and gene expression of phenylalanine ammonia-lyase in Phalaenopsis leaf explants. Genes Genom Genomics 3:68–71

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Biology at Faculty of Science, Graduate School of Prince of Songkla University and by a grant from Science Achievement Scholarship of Thailand (SAST) (28/2554). We thank Dr. Brian Hodgson from the Faculty of Pharmaceutical Science, Prince of Songkla University, for assistance with the English of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upatham Meesawat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaewubon, P., Hutadilok-Towatana, N., Teixeira da Silva, J.A. et al. Ultrastructural and biochemical alterations during browning of pigeon orchid (Dendrobium crumenatum Swartz) callus. Plant Cell Tiss Organ Cult 121, 53–69 (2015). https://doi.org/10.1007/s11240-014-0678-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0678-y

Keywords

Navigation