Skip to main content
Log in

The apoplastic oxidative burst as a key factor of hyperhydricity in garlic plantlet in vitro

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The phenomenon of hyperhydricity, a physiological disorder occurring frequently in tissue culture, causes ultrastructural modification and metabolic alteration of shoots. Reactive oxygen species (ROS) accumulation and oxidative stress induction are common features during the development of hyperhydricity, but the relationship between organelle redox homeostasis and hyperhydricity with ultrastructural abnormalities is unclear. To investigate the origin of oxidative stress-induced hyperhydricity, changes in oxygen metabolism in different subcellular compartments of garlic plantlets in vitro were studied. Under exogenous hydrogen peroxide (H2O2) stress, the chloroplastic and mitochondrial ultrastructure was disrupted, which was concomitant with aggravated frequency and severity of hyperhydricity. The addition of H2O2 to the growth medium enhanced superoxide anion generation and H2O2 content in the subcellular compartments. Accumulation of ROS was the highest in apoplasts. Compared with control shoots, in apoplasts exogenous H2O2 stimulated a sharp increase in superoxide dismutase activity within 4 days and a sharp increase in ascorbate peroxidase and glutathione reductase activities and in ascorbic acid and glutathione contents after 8 days of H2O2 treatment. In the other subcellular compartments, dramatic improvement of the antioxidant system occurred after 12 days. Thus, the apoplast was the most sensitive compartment among those investigated. Apoplastic ROS might play a signaling role to participate in the coordination of stress adaptation. The apoplastic oxidative burst in garlic plantlets in vitro is an early response to the development of hyperhydricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

AsA:

Ascorbic acid

BSA:

Bovine serum albumin

CAT:

Catalase

DTNB:

5′,5′-Dithiobis-2-nitrobenzoic acid

DTT:

dl-Dithiothreitol

EDTA:

Ethylene diamine tetraacetic acid

EGTA:

Ethylene glycol tetraacetic acid

GR:

Glutathione reductase

GSH:

Glutathione

GSSG:

Oxidized glutathione

HEPES:

4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid

H2O2 :

Hydrogen peroxide

IWF:

Infiltrated washing fluid

KI:

Potassium iodide

NADPH:

β-Nicotinamide adenine dinucleotide 2′-phosphate reduced tetrasodium salt

NBT:

Nitro blue tetrazolium

O ∙−2 :

Superoxide anion

1O2 :

Singlet oxygen

OH:

Hydroxyl radical

pH:

Potential of hydrogen

PMSF:

Phenylmethanesulfonyl fluoride

PVP:

Polyvinylpyrrolidone

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TCA:

Trichloroacetic acid

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arakawa N, Tsutsumi K, Sanceda NG, Kurata T, Inagaki C (1981) A rapid and sensitive method for the determination of ascorbic acid using 4,7-diphenyl-1,10-phenanthroline. Agric Biol Chem 45:1289–1290

    Article  CAS  Google Scholar 

  • Ayabe M, Sumi S (1998) Establishment of a novel tissue culture method, stem–disc culture, and its practical application to micropropagation of garlic (Allium sativum L.). Plant Cell Rep 17:773–779

    Article  CAS  Google Scholar 

  • Ayabe M, Sumi S (2001) A novel and efficient tissue culture method—“stem–disc dome culture”—for producing virus-free garlic (Allium sativum L.). Plant Cell Rep 20:503–507

    Article  CAS  Google Scholar 

  • Balen B, Tkalec M, Pavoković D, Pevalek-Kozlina B, Krsnik-Rasol M (2009) Growth conditions in in vitro culture can induce oxidative stress in Mammillaria gracilis tissues. J Plant Growth Regul 28:36–45

    Article  CAS  Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Curr Sci India 89:1113–1121

    CAS  Google Scholar 

  • Blackman LM, Hardham AR (2008) Regulation of catalase activity and gene expression during phytophthroa nicotianae development and infection of tobacco. Mol Plant Pathol 9:495–510

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cassells AC, Curry RF (2001) Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers. Plant Cell Tiss Organ Cult 64:145–157

    Article  CAS  Google Scholar 

  • Chakrabarty D, Park SY, Ali MB, Shin KS, Paek KY (2005) Hyperhydricity in apple: ultrastuctural and physiological aspects. Tree Physiol 26:377–388

    Article  Google Scholar 

  • Chen J, Ziv M (2001) The effect of ancymidol on hyperhydricity, regeneration, starch and antioxidant enzymatic activities in liquid-cultured Narcissus. Plant Cell Rep 20:22–27

    Article  Google Scholar 

  • Dewir YH, Chakrabarty D, Ali MB, Hahn EJ, Paek KY (2006) Lipid peroxidation and antioxidant enzyme activities of Euphorbia millii hyperhydric shoots. Environ Exp Bot 58:93–99

    Article  CAS  Google Scholar 

  • Diaz-Vivancos P, Rubio M, Mesonero V, Periago PM, Ros Barceló A, Martínez-Gómez P, Hernández JA (2006) The apoplastic antioxidant system in Prunus: response to long-term plum pox virus infection. J Exp Bot 57:3813–3824

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-García N, Piqueras A, Olmos E (2008) Sub-cellular location of H2O2, peroxidases and pectin epitopes in control and hyperhydric shoots of carnation. Environ Exp Bot 62:168–175

    Article  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    Article  CAS  PubMed  Google Scholar 

  • Franck T, Kevers C, Gaspar T (1995) Protective enzymatic systems against activated oxygen species compared in normal and vitrified shoots of Prunus avium L. raised in vitro. Plant Growth Regul 16:253–256

    Article  CAS  Google Scholar 

  • Franck T, Kevers C, Gaspar T, Dommes J, Deby C, Greimers R, Serteyn D, Deby-Dupont G (2004) Hyperhydricity of Prunus avium shoots cultured on gelrite: a controlled stress response. Plant Physiol Biochem 42:519–527

    Article  CAS  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension culture of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  CAS  PubMed  Google Scholar 

  • Hassannejad S, Bernard F, Mirzajani F, Gholami M (2012) SA improvement of hyperhydricity reversion in Thymus daenensis shoots culture may be associated with polyamines changes. Plant Physiol Biochem 51:40–46

    Article  CAS  PubMed  Google Scholar 

  • Hu XL, Jiang MY, Zhang A, Lu J (2005) Abscisic acid-induced apoplastic H2O2 accumulation up-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves. Planta 223:57–68

    Article  CAS  PubMed  Google Scholar 

  • Huang YC, Chiang CH, Li CM, Yu TA (2010) Transgenic watermelon lines expressing the nucleocapsid gene of Watermelon silver mottle virus and the role of thiamine in reducing hyperhydricity in regenerated shoots. Plant Cell Tiss Organ Cult 106:21–29

    Article  Google Scholar 

  • Ivanova M, Staden J (2009) Natural ventilation effectively reduces hyperhydricity in shoot cultures of Aloe polyphylla Schönland ex Pillans. Plant Growth Regul 60:143–150

    Article  Google Scholar 

  • Ivanova M, Staden JV (2011) Influence of gelling agent and cytokinins on the control of hyperhydricity in Aloe polyphylla. Plant Cell Tiss Organ Cult 104:13–21

    Article  CAS  Google Scholar 

  • Jaspers P, Kangasjärvi J (2010) Reactive oxygen species in abiotic stress signaling. Physiol Plant 138:405–413

    Article  CAS  PubMed  Google Scholar 

  • Kangasjärvi S, Kangasjärvi J (2014) Towards understanding extracellular ROS sensory and signaling systems in plants. Adv Bot 2014

  • Kevers C, Frank T, Strasser RJ, Dommes J, Gaspar T (2004) Hyperhydricity of micropropagated shoots: a typically stress-induced change of physiological state. Plant Cell Tiss Organ Cult 77:181–191

    Article  Google Scholar 

  • Leadsham JE, Gourlay CW (2010) cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation. BMC Cell Biol 11:92

    Article  PubMed Central  PubMed  Google Scholar 

  • Luciani GF, Mary AK, Pellegrini C, Curvetto NR (2006) Effects of explants and growth regulators in garlic callus formation and plant regeneration. Plant Cell Tiss Organ Cult 87:139–143

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Breusegem FV (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  • Møller IM, Sweetlove LJ (2010) ROS signalling-specificity is required. Trends Plant Sci 15:370–374

    Article  PubMed  Google Scholar 

  • Munné-Bosch S, Alegre L (2003) Drought-induced changes in the redox state of α-tocopherol, ascorbate, and the diterpene carnosic acid in chloroplasts of Labiatae species differing in carnosic acid contents. Plant Physiol 131:1816–1825

    Article  PubMed Central  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Okada Y, Tanaka K, Fujita I, Sato E, Okajima H (2005) Antioxidant activity of thiosulfinates derived from garlic. Redox Rep 10:96–102

    Article  CAS  PubMed  Google Scholar 

  • Olmos E, Hellín E (1998) Ultrastructural differences of hyperhydric and normal leaves from regenerated carnation plants. Sci Hort 75:91–101

    Article  Google Scholar 

  • Park SW, Jeon JH, Kim HS, Park YM, Aswath C, Joung H (2004) Effect of sealed and vented gaseous microenvironments on the hyperhydricity of potato shoots in vitro. Sci Hort 99:199–205

    Article  Google Scholar 

  • Ramírez-Malagón R, Pérez-Moreno L, Borodanenko A, Salinas-González GJ, Ochoa-Alejo N (2006) Differential organ infection studies, potyvirus elimination, and field performance of virus-free garlic plants produced by tissue culture. Plant Cell Tiss Org Cult 86:103–110

    Article  Google Scholar 

  • Rojas-Martinez L, Visser RG, de Klerk GJ (2010) The hyperhydricity syndrome: waterlogging of plant tissues as a major cause. Propag Ornam Plants 10:169–175

    Google Scholar 

  • Saher S, Piqueras A, Hellin E, Olmos E (2005) Prevention of hyperhydricity in micropropagated carnation shoots by bottom cooling: implications of oxidative stress. Plant Cell Tiss Organ Cult 81:149–158

    Article  Google Scholar 

  • Sayyari M, Babalar M, Kalantari S, Serrano M, Valero D (2009) Effect of salicylic acid treatment on reducing chilling injury in stored pomegranates. Postharvest Biol Technol 53(3):152–154

    Article  CAS  Google Scholar 

  • Schaedle M, Bassham JA (1977) Chloroplast glutathione reductase. Plant Physiol 59:1011–1012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwarzländer M, Finkemeier I (2013) Mitochondrial energy and redox signaling in plants. Antioxid Redox Signal 18:2122–2144

    Article  PubMed Central  PubMed  Google Scholar 

  • Song XS, Tiao CL, Shi K, Mao WH, Ogweno JO, Zhou YH, Yu JQ (2006) The response of antioxidant enzymes in cellular organelles in cucumber (Cucumis sativus L.) leaves to methyl viologen-induced photo-oxidative stress. Plant Growth Regul 49:85–93

    Article  CAS  Google Scholar 

  • Sreedhar RV, Venkatachalam L, Neelwarne B (2009) Hyperhydricity-related morphologic and biochemical changes in Vanilla (Vanilla planifolia). J Plant Growth Regul 28:46–57

    Article  CAS  Google Scholar 

  • Tan MP, Lu J, Zhang AY, Hu B, Zhu XW, Li WB (2011) The distribution and cooperation of antioxidant (iso) enzymes and antioxidants in different subcellular compartments in maize leaves during water stress. J Plant Growth Regul 30:255–271

    Article  CAS  Google Scholar 

  • Taşkın H, Baktemur G, Kurul M, Büyükalaca S (2013) Use of tissue culture techniques for producing virus-free plant in garlic and their identification through real-time PCR. Sci World J. doi:10.1155/2013/781282

    Google Scholar 

  • Tattelman E (2005) Health effects of garlic. Am Fam Physician 72:103–106

    PubMed  Google Scholar 

  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163:515–523

    Article  CAS  Google Scholar 

  • van den Dries N, Giannì S, Czerednik A, Krens FA, de Klerk GJ (2013) Flooding of the apoplast is a key factor in the development of hyperhydricity. J Exp Bot 64:5221–5230

    Article  PubMed Central  PubMed  Google Scholar 

  • Veljovic-Jovanovic SD, Pignocchi C, Noctor G, Foyer CH (2001) Low ascorbic acid in the vtc-1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system. Plant Physiol 127:426–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang YL, Wang XD, Zhao B, Wang YC (2007) Reduction of hyperhydricity in the culture of Lepidium meyenii shoots by the addition of rare earth elements. Plant Growth Regul 52:151–159

    Article  CAS  Google Scholar 

  • Wang CQ, Zhang YF, Zhang YB (2008) Scavenger enzyme activities in subcellular fractions of white clover (Trifolium repens L.) under PEG-induced water stress. J Plant Growth Regul 27:387–393

    Article  CAS  Google Scholar 

  • Wrzaczek M, Brosché M, Kollist H, Kangasjärvi J (2009) Arabidopsis GRI is involved in the regulation of cell death induced by extracellular ROS. Proc Natl Acad Sci USA 106:5412–5417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wrzaczek M, Brosché M, Salojärvi J, Kangasjärvi S, Idänheimo N, Mersmann S, Robatzek S, Karpiński S, Karpińska B, Kangasjärvi J (2010) Transcriptional regulation of the CRK/DUF26 group of receptor-like protein kinases by ozone and plant hormones in Arabidopsis. BMC Plant Biol 10:95

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu YX, von Tiedemann A (2002) Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone. Environ Pollut 116:37–47

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Chen LJ, Long YJ (2009) Analysis of ultrastructure and reactive oxygen species of hyperhydric garlic (Allium sativum L.) shoot. In Vitro Cell Dev Biol-Plant 45:483–490

    Article  Google Scholar 

  • Zobayed SMA, Armstrong J, Armstrong W (2001) Micropropagation of potato: evaluation of closed, diffusive and forced ventilation on growth and tuberization. Ann Bot 87:53–59

    Article  CAS  Google Scholar 

  • Zurbriggen MD, Carrillo N, Hajirezaei MR (2010) ROS signaling in the hypersensitive response: when, where and what for? Plant Signal Behav 5:393–396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (31372056) and Doctoral Fund of Ministry of Education of China (200803071012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Jiang, F. & Wu, Z. The apoplastic oxidative burst as a key factor of hyperhydricity in garlic plantlet in vitro. Plant Cell Tiss Organ Cult 120, 571–584 (2015). https://doi.org/10.1007/s11240-014-0623-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0623-0

Keywords

Navigation