Skip to main content
Log in

Cotton TCTP1 gene encoding a translationally controlled tumor protein participates in plant response and tolerance to aphids

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Cotton aphid (Aphis gossypii Glover) is one of the most important economic pests in the world. Long-term unreasonable usage of insecticides has made cotton aphid developing insecticide-resistance, which frequently leads to serious occurrences of cotton aphid in many regions. It is regarded effective and environmentally friendly to control aphids through utilizing plant resistance. In this study, a translationally controlled tumor protein gene, GhTCTP1, was isolated in cotton. It belongs to TCTP subfamily and encodes a protein of 168 amino acids. GhTCTP1 expression was suppressed in cotton plants under cotton aphid attack, but its expression level was up-regulated in the wounded cotton leaves. The choice test and no-choice test demonstrated that overexpression of GhTCTP1 in Arabidopsis enhanced plant resistance to green peach aphid (Myzus persicae). Quantitative RT-PCR analysis revealed that the defense response genes related to salicylic acid signaling pathway were activated in the GhTCTP1 overexpressing transgenic plants. Content of total amino acids was decreased, and phenylalanine ammonialyase activity was altered in leaves of the transgenic Arabidopsis plants, compared with those in wild type. Furthermore, the callose amount in transgenic Arabidopsis leaves was more than that of wild type. These data suggested that GhTCTP1 might be involved in regulation of plant tolerance to aphids, and can be potentially applied in improving aphid-resistance of crops by genetic manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

TCTP:

Translationally controlled tumour protein

GFP:

Green fluorescent protein

GPA:

Green peach aphid

POD:

Peroxidase

SOD:

Superoxide dismutase

PAL:

Phenylalanine ammonialyase

RT-PCR:

Reverse-transcriptase polymerase chain reaction

SA:

Salicylic acid

JA:

Jasmonic acid

References

  • Abe H, Ohnishi J, Narusaka M, Seo S, Narusaka Y, Tsuda S, Kobayashi M (2008) Function of jasmonate in response and tolerance of Arabidopsis to thrip feeding. Plant Cell Physiol 49:68–80

    Article  PubMed  CAS  Google Scholar 

  • Alkhedir H, Karlovsky P, Vidal S (2013) Relationship between water soluble carbohydrate content, aphid endosymbionts and clonal performance of Sitobion avenaeon cocksfoot cultivars. PLoS ONE 8:1–9

    Article  CAS  Google Scholar 

  • Auclair JL, Maltais JB, Carter JL (1957) Factors in resistance of peas to the pea aphid, Acyrthosiphum pisum II. Amino acids. Can Entomol 89:457–464

    Article  CAS  Google Scholar 

  • Baumann L, Baumann P (1995) Soluble salivary proteins secreted by Schizaphis graminum. Entomol Exp Appl 77:56–60

    Article  Google Scholar 

  • Berkowitz O, Jost R, Pollmann S, Masle J (2008) Characterization of TCTP, the transcriptionally control tumor protein, from Arabidopsis thaliana. Plant Cell 20:3430–3447

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bommer U, Thiele B (2004) The translationally controlled tumor protein (TCTP). Int J Biochem Cell Biol 36:379–385

    Article  PubMed  CAS  Google Scholar 

  • Boyko EV, Smith CM, Thara VK, Bruno JM, Deng Y, Starkey SR, Klaahsen DL (2006) The molecular basis of plant gene expression during aphid invasion: wheat Pto- and Pti-like sequences are involved in interactions between wheat and Russian wheat aphid (Homoptera: Aphididae). J Econ Entomol 99:1430–1445

    Article  PubMed  CAS  Google Scholar 

  • Brioudes F, Thierry AM, Chambrier P, Mollereau B, Bendahmane M (2010) Translationally controlled tumor protein is a conserved mitotic growth integrator in animals and plants. PNAS 107:16384–16389

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown JK, Czosnek H (2002) Whitefly transmission of plant viruses. In: Callow JA (ed) Advances in botanical research, vol 36. Academic Press, New York, pp. 65–100

  • Carolan JC, Fitzroy CIJ, Ashton PD, Douglas AE, Wilkinson TL (2009) The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry. Proteomics 9:2457–2467

    Article  PubMed  CAS  Google Scholar 

  • Chen YQ, Wang ZZ (2008) An analysis of molecular structural character and function prediction on plant translationally controlled tumor protein. Biotechnol Bull 2:105–112

    Google Scholar 

  • Chen YC, Cao CX, Huang ZJ, Wang T, Ji CM, Lei GH (2011) Study on the nutrients materials and the resistance of cucumber aphid. Chin Agric Sci Bull 16:283–286

    Google Scholar 

  • Cherqui A, Tjallingii WF (2000) Salivary proteins of aphids, a pilot study on identification, separation and immunolocalisation. J Insect Physiol 46:1177–1186

    Article  PubMed  CAS  Google Scholar 

  • Dogimonta C, Bendahmaneb A, Chovelona V, Boissothost N (2010) Plant resistance to aphids in cultivated crops: genetic and molecular bases, and interactions with aphid populations. C R Bio 333:566–573

    Article  CAS  Google Scholar 

  • Douglas AE (2003) Nutritional physiology of aphid. Adv Insect Physiol 31:73–140

    Article  CAS  Google Scholar 

  • Douglas AE (2006) Phloem-sap feeding by animals: problems and solutions. J Exp Bot 57:747–754

    Article  PubMed  CAS  Google Scholar 

  • Du B, Zhang W, Liu B, Hu J, Wei Z, Shi Z, He R, Zhu L, Chen R, Han B, He G (2009) Identification and characterization of Bph14, a gene conferring resistance to brown plant hopper in rice. PNAS 106:22163–22168

    Article  PubMed Central  PubMed  Google Scholar 

  • Ellinger D, Naumann M, Falter C, Zwikowics CL, Jamrow T, Manisseri C, Somerville SC, Voigt CA (2013) Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis. Plant Physiol 161:1433–1444

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ermolayev V, Weschke W, Manteuffel R (2003) Comparison of Al-induced gene expression in sensitive and tolerant soybean cultivars. J Exp Bot 54:2745–2756

    Article  PubMed  CAS  Google Scholar 

  • Francesca S, Priscilla PB, Edgardo G, Patrizia S, Elvio B, Buiatti M (2008) Identification by suppression subtractive hybridization of genes expressed in pear (Pyrus spp.) upon infestation with Cacopsyll apyri (Homoptera: Psyllidae). J Plant Physiol 165:1808–1816

    Article  CAS  Google Scholar 

  • Gao LL, Anderson JP, Klingler JP, Nai RM, Edwards OR, Singh KB (2007) Involvement of the octadecanoid pathway in bluegreen aphid resistance in Medicago truncatula. Mol Plant Microb Interact 20:82–93

    Article  CAS  Google Scholar 

  • Giordanengo P, Brunissen L, Rusterucci C, Vincent C, van Bel A, Dinantd S, Giroussee C, Faucherf M, Bonnemainf JL (2010) Compatible plant-aphid interactions: how aphids manipulate plant responses. C R Bio 333:516–523

    Article  Google Scholar 

  • Goggin FL (2007) Plant-aphid interactions: molecular and ecological perspectives. Curr Opin Plant Biol 10:399–408

    Article  PubMed  CAS  Google Scholar 

  • Harmel N, Letocart E, Cherqui A, Giordanengo P, Mazzucchelli G, Guillonneau F, De Pauw E, Haubruge E, Francis F (2008) Identification of aphid salivary proteins: a proteomic investigation of Myzus persicae. Insect Mol Biol 17:165–174

    Article  PubMed  CAS  Google Scholar 

  • Hogenhout SA, Bos JIB (2011) Effector proteins that modulate plant-insect interactions. Curr Opin Plant Biol 14:422–428

    Article  PubMed  CAS  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Ann Rev Plant Biol 59:41–66

    Article  CAS  Google Scholar 

  • Jacobs AK, Lipka V, Burton RA, Panstruga R, Nicolai S, Schulze-Lefert P, Fincher GB (2003) An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. Plant Cell 15:2503–2513

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jones AM, Thomas V, Bennett MH, Mansfield J, Grant M (2006) Modifications to the Arabidopsis defense proteome occur prior to significant transcriptional change in response to inoculation with Pseudomonas syringae. Plant Physiol 142:1603–1620

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kaloshian I, Kinser MG, Ullman DE, Willamson VM (1997) The impact of Meu1-mediated resistance in tomato on longevity, fecundity, and behavior of the potato aphid, Macrosiphum euphorbiae. Entomol Exp Appl 83:181–187

    Article  Google Scholar 

  • Kim YM, Han YJ, Hwang O, Lee SS, Shin AY, Kim SY, Kim JI (2012) Overexpression of Arabidopsis translationally controlled tumor protein gene AtTCTP enhances drought tolerance with rapid ABA-induced stomatal closure. Mol Cells 33:617–626

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Klingler J, Powell G, Thompson GA, Isaacs R (1998) Phloem specific aphid resistance in Cucumis melo line AR 5: effects on feeding behaviour and performance of Aphis gossypii. Entomol Exp Appl 86:79–88

    Article  Google Scholar 

  • Lagudah ES, Moullet O, Appels R (1997) Map-based cloning of a gene sequence encoding a nucleotide binding domain and a leucine-rich region at the Cre3 nematode resistance locus of wheat. Genome 40:659–665

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Nam J, Park HC, Na G, Miura K, Jin JB, Yoo CY, Baek D, Kim DH, Jeong JC, Kim D, Lee S, Salt DE, Mengiste T, Gong Q, Ma S, Bohnert HJ, Kwak SS, Bressan RA, Hasegawa PM, Yun DJ (2006) Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant J 49:79–90

    Article  PubMed  CAS  Google Scholar 

  • Li HS, Sun Q, Zhao SJ, Zhang WL (2000) The experiment principle and technique on plant physiology and biochemistry. Higher Education Press, Beijing

    Google Scholar 

  • Li Q, Xie QG, Smith-Becker J, Navarre DA, Kaloshian I (2006) Mi-1-mediated aphid resistance involves salicylic acid and mitogen-activated protein kinase signaling cascades. Mol Plant Microb Interact 19:655–664

    Article  CAS  Google Scholar 

  • Li JB, Fang LP, Lü ZZ, Zhang Z (2008) Relationships between the cotton resistance to the cotton aphid (Aphis gossypii) and the content of soluble sugars. Plant Prot 34:26–30

    Google Scholar 

  • Li G, Liu XY, Li XP, Wang ZY (2010) Cloning of a TCTP Gene in Wheat and Its Expression Induced by Erysiphe graminis. Bull Bot Res 30:441–447

    CAS  Google Scholar 

  • Lu YH, Yang YZ, Yin Y, Yu YS (2004) Advances of studies on the resistance and relevant genetic mechanism of coton to Aphis gossypii Glover. Ento Knowl 41:291–2941

    Google Scholar 

  • Lu Y, Wang PL, Liu B, Zhang J, Zhou ZY (2009) Resistance and relevant mechanism to Aphis gossypii glover of main cotton varieties in Xinjiang. Cotton Sci 21:57–63

    Google Scholar 

  • Lu YF, Shi LM, Yan SC (2012) Effects of different light intensities on activities of the primary defense proteins in needles of Larix gmelinii. Acta Ecologica Sin 32:3621–3627

    Article  CAS  Google Scholar 

  • Ma R, Reese JC, Black WC, Bramel-Cox P (1990) Detection of pectinesterase and polygalacturonase from salivary secretions of living greenbugs, Schizaphis graminum (Homoptera: Aphididae). J Insect Physiol 36:507–512

    Article  CAS  Google Scholar 

  • Madhusudhan VV, Miles PW (1993) Detection of enzymes secreted in the saliva of the spotted alfalfa aphid Therioaphis trifolii (Monell) f.maculata (Hemiptera: Aphididae). In: Corey SA, Dall DJ, Milne W (eds) Pest control and sustainable agriculture. CSIRO, Australia, pp 333–334

    Google Scholar 

  • Miles PW (1999) Aphid saliva. Biol Rev Camb Philos Soc 74:41–85

    Article  Google Scholar 

  • Montllor CB (1991) The influence of plant chemistry on aphid feeding behavior. In: Bernays EA (ed) Insect-plant interactions. CRC, Boca Raton, pp 125–174

    Google Scholar 

  • Muthukrishnan S, Liang GH, Trick HN, Gill BS (2001) Pathogenesis-relatedproteins and their genes in cereals. Plant Cell, Tissue Organ Cult 64:93–114

    Article  CAS  Google Scholar 

  • Nowak H, Komor E (2010) How aphids decide what is good for them: experiments to test aphid feeding behaviour on Tanacetum vulgare (L.) using divergent nitrogen regimes. Oecologia 163:973–984

    Article  PubMed  Google Scholar 

  • Ogbonnaya FC, Seah S, Delibes A, Jahier J, Lopez-Brana I, Eastwood RF, Lagudah ES (2001) Molecular-genetic characterization of a new nematode resistance gene in wheat. Theor Appl Genet 102:623–629

    Article  CAS  Google Scholar 

  • Pegadaraju V, Knepper C, Reese J, Shah J (2005) Premature leaf senescence modulated by the Arabidopsis PHYTOALEXIN DEFICIENT4 gene is associated with defense against the phloem feeding green peach aphid. Plant Physiol 139:1927–1934

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pitrat M, Lecoq H (1980) Inheritance of resistance to cucumber mosaic virus transmission by Aphis gossypii in Cucumis melo. Phytopathology 70:958–961

    Article  Google Scholar 

  • Price PW, Denno RF, Eubanks MD, Finke DL, Kaplan I (2011) Insect ecology: behavior, Populations and communities. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rawat N, Himabindu K, Neeraja CN, Nair S, Bentur JS (2013) Suppressive subtraction hybridization reveals that rice gall midge attack elicits plant-pathogen-like responses in rice. Plant Physiol Biochem 63:122–130

    Article  PubMed  CAS  Google Scholar 

  • Schobert C, Komor E (1989) The differential transport of amino acids into the phloem of Ricinus communis L. seedlings as shown by the analysis of sieve-tube sap. Planta 177:342–349

    Article  PubMed  CAS  Google Scholar 

  • Seah S, Sivasithamparam K, Karalousis A, Lagudah ES (1998) Cloning and characterization of a family of disease resistance gene analogs from wheat and barley. Theor Appl Genet 97:937–945

    Article  CAS  Google Scholar 

  • Stone BA, Evans NA, Bonig I, Clarke AE (1985) The application of Sirofluor, a chemically defined fluorochrome from aniline blue for the histochemical detection of callose. Protoplasma 122:191–195

    Article  Google Scholar 

  • Thaw P, Baxter NJ, Hounslow AM, Price C, Waltho JP, Craven CJ (2001) Structure of TCTP reveals unexpected relationship with guanine nucleotide-free chaperones. Nat Struct Biol 8:701–704

    Article  PubMed  CAS  Google Scholar 

  • Thompson GA, Goggin FL (2006) Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. J Exp Bot 57:755–766

    Article  PubMed  CAS  Google Scholar 

  • Tjallingii WF (2006) Salivary secretions by aphids interacting with proteins of phloem wound responses. J Exp Bot 57:739–745

    Article  PubMed  CAS  Google Scholar 

  • Urbanska A, Tjallingii WF, Dixon AFG, Leszczynski B (1998) Phenoloxidising enzymes in the grain aphid’s saliva. Entomol Exp Appl 86:197–203

    Article  CAS  Google Scholar 

  • vander Westhuizen AJ, Qian XM, Botha AM (1998) β-1,3-glucanase in wheat and resistance to Russian wheat aphid. Physiol Plant 103:125–131

    Article  Google Scholar 

  • Vincent D, Ergul A, Bohlman MC, Tattersall EA, Tillett RL, Wheatley MD, Woolsey R, Quilici DR, Joets J, Schlauch K, Schooley DA, Cushman JC, Cramer GR (2007) Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity. J Exp Bot 58:1873–1892

    Article  PubMed  CAS  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    PubMed  CAS  Google Scholar 

  • Walling LL (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol 146:859–866

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang XL, Li XB (2009) The GhACS1 gene encodes an acyl-CoA synthetase which is essential for normal microsporogenesis in early anther development of cotton. Plant J 57:473–486

    Article  PubMed  CAS  Google Scholar 

  • Will T, Kornemann SR, Furch ACU, Tjallingii WF, van Bel AJE (2009) Aphid watery saliva counteracts sieve-tube occlusion: a universal phenomenon? J Exp Biol 212:3305–3312

    Article  PubMed  CAS  Google Scholar 

  • Wu ZT, Zhao HL, Wu CF (1990) Effect of nutritional changes in cotton seedling on the survival of Aphis gossypii (Glover). J Plant Protect 17:95–96

    Google Scholar 

  • Yu Y, Wei Z (2008) Increased oriental armyworm and aphid resistance in transgenic wheat stably expressing Bacillus thuringiensis (Bt) endotoxin and Pinellia ternate agglutinin (PTA). Plant Cell, Tissue Organ Cult 94:33–44

    Article  CAS  Google Scholar 

  • Zhang L, Chang JH, Luo YW (2005) Activity changes of POD, PPO, PAL of different Sorghum genotypes invaded by aphis sacchari Zehntner. Chin Agric Sci Bull 21:40–198

    Google Scholar 

  • Zhang SP, Zhang CL, Wang QX, Dong HS (2009) The regulative role of Ein factor in Arabidopsis Aphid-resistant mechanism under HrpNEa induction. Jiangsu Agric Sci 5:30–33

    Google Scholar 

  • Zhou FC, Lu ZQ, Chen LF, Zhu SD, Chen GQ, Xu YH, Li X, Xiao WX (1999) The correlativity between soluble sugars of wheat and resistance to the bird cherry-oat aphid Rhopalosiphum padi. Jiangsu Agric Res 20:60–63

    Google Scholar 

  • Zhu-Salzman K, Salzman RA, Ahn JE, Koiwa H (2004) Transcriptional regulation of Sorghum defense determinants against a phloem-feeding aphid. Plant Physiol 134:420–431

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the projects from the Ministry of Agriculture of China (Grant No. 2014ZX08009-027B, 2014ZX08009003-004), Hubei Key Laboratory of Genetic Regulation and Integrative Biology (Grant No. 201008) and Scientific Research Foundation of Hubei Province (Grant No. 2013CFA119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Bao Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, JM., Ma, LF., Li, W. et al. Cotton TCTP1 gene encoding a translationally controlled tumor protein participates in plant response and tolerance to aphids. Plant Cell Tiss Organ Cult 117, 145–156 (2014). https://doi.org/10.1007/s11240-014-0426-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0426-3

Keywords

Navigation