Skip to main content
Log in

The role of abscisic acid in plant tissue culture: a review of recent progress

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Abscisic acid (ABA) plays a significant role in the regulation of many physiological processes of plants. It is often used in tissue culture systems to promote somatic embryogenesis and enhance somatic embryo quality by increasing desiccation tolerance and preventing precocious germination. ABA is also employed to induce somatic embryos to enter a quiescent state in plant tissue culture systems and during synthetic seed research. Application of exogenous ABA improves in vitro conservation and the adaptive response of plant cell and tissues to various environmental stresses. ABA can act as anti-transpirant during the acclimatization of tissue culture-raised plantlets and reduces relative water loss of leaves during the ex vitro transfer of plantlets even when non-functional stomata are present. This review focuses on the possible roles of ABA in plant tissue culture and recent developments in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Addicott FT, Lyon JL, Ohkuma K, Thiessen WE, Carns HR, Smith OE, Cornforth JW, Milborrow BV, Ryback G, Wareing PF (1968) Abscisic acid: a new name for abscisin II (dormin). Science 159:1493

    Article  PubMed  CAS  Google Scholar 

  • Aguilar ML, Espadas FL, Coello J, Maust BE, Trejo C, Robert ML, Santamaria JM (2000) The role of abscisic acid in controlling leaf water loss, survival and growth of micropropagated Tagetes erecta plants when transferred directly to the field. J Exp Bot 51:1861–1866

    Article  PubMed  CAS  Google Scholar 

  • Alabadi D, Blazquez MA (2009) Molecular interactions between light and hormone signaling to control plant growth. Plant Mol Biol 69:409–417

    Article  PubMed  CAS  Google Scholar 

  • Ammirato PV (1977) Hormonal control of somatic embryo development from cultured cells of caraway: Interactions of abscisic acid, zeatin and gibberellic acid. Plant Physiol 59:579–586

    Article  PubMed  CAS  Google Scholar 

  • Ammirato PV (1987) Organizational events during somatic embryogenesis. In: Green CE, Somers DA, Hackett WP, Biesboer DD (eds) Plant biology, plant tissue and cell culture, vol 3. Alan R Liss, New York, pp 57–81

    Google Scholar 

  • Ara H, Jaiswal U, Jaiswal VS (1999) Germination and plantlet regeneration from encapsulated somatic embryos of mango (Mangifera indica L.). Plant Cell Rep 19:166–170

    Article  CAS  Google Scholar 

  • Ara H, Jaiswal U, Jaiswal VS (2000) Synthetic seed: prospects and limitations. Curr Sci 78:1438–1444

    Google Scholar 

  • Arora R, Wisniewski ME (1995) Ultrastructural and protein changes in cell suspension cultures of peach associated with low temperature-induced cold acclimation and abscisic acid treatment. Plant Cell Tissue Organ Cult 40:17–24

    Article  CAS  Google Scholar 

  • Attree SM, Tautorus TE, Dunstan DI, Fowke LC (1990) Somatic embryo maturation, germination, and soil establishment of plants of black and white spruce (Picea mariana and Picea glauca). Can J Bot 68:2583–2589

    Article  Google Scholar 

  • Barreto R, Nieto-Sotelo J, Cassab GI (2010) Influence of plant growth regulators and water stress on ramet induction, rosette engrossment, and fructan accumulation in Agave tequilana Weber var. Azul. Plant Cell Tissue Organ Cult 103:93–101

    Article  CAS  Google Scholar 

  • Bartels D, Schneider K, Terstappen G, Piatkowski D, Salamini F (1990) Molecular cloning of abscisic acid-modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181:27–34

    Article  CAS  Google Scholar 

  • Baskaran P, Jayabalan N (2009) In vitro propagation of Psoralea corylifolia L. by somatic embryogenesis in cell suspension culture. Acta Physiol Plant 31:1119–1127

    Article  CAS  Google Scholar 

  • Beardmore T, Whittle CA (2005) Induction of tolerance to desiccation and cryopreservation in silver maple (Acer saccharinum) embryonic axes. Tree Physiol 25:965–972

    PubMed  CAS  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  PubMed  CAS  Google Scholar 

  • Bhojwani SS, Razdan MK (1996) Plant tissue culture: theory and practice. Elsevier, Amsterdam

    Google Scholar 

  • Blochl A, Grenier-de March G, Sourdioux M, Peterbauer T, Richter A (2005) Induction of raffinose oligosaccharide biosynthesis by abscisic acid in somatic embryos of alfalfa (Medicago sativa L.). Plant Sci 168:1075–1082

    Article  CAS  Google Scholar 

  • Burritt DJ (2008) Efficient cryopreservation of adventitious shoots of Begonia x erythrophylla using encapsulation–dehydration requires pretreatment with both ABA and proline. Plant Cell Tissue Organ Cult 95:209–215

    Article  CAS  Google Scholar 

  • Capuana M, Debergh PC (1997) Improvement of the maturation and germination of horse chestnut somatic embryos. Plant Cell Tissue Organ Cult 48:23–29

    Article  CAS  Google Scholar 

  • Carimi F, Zottini M, Formentin E, Terzi M, Schiavo FL (2003) Cytokinins: new apoptotic inducers in plants. Planta 216:413–421

    PubMed  CAS  Google Scholar 

  • Chang Y, Reed BM (2001) Preculture conditions influence cold hardiness and regrowth of Pyrus cordata shoot tips after cryopreservation. Hortic Sci 36:1329–1333

    CAS  Google Scholar 

  • Charriere F, Sotta B, Miginiac E, Hahne G (1999) Induction of adventitious shoots or somatic embryos on in vitro cultured zygotic embryos of Helianthus annuus: Variation of endogenous hormone levels. Plant Physiol Biochem 37:751–757

    Article  CAS  Google Scholar 

  • Chen THH, Gusta LV (1983) Abscisic acid induced freezing resistance in cultured plant cells. Plant Physiol 73:71–75

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Gong Z, Zhu JK (2008) ABA-mediated epigenetic processes in plant development and stress responses. J Integr Plant Biol 50:1187–1195

    Article  PubMed  CAS  Google Scholar 

  • Choi YE, Jeong JH (2002) Dormancy induction of somatic embryos of Siberian ginseng by high sucrose concentrations enhances the conservation of hydrated artificial seeds and dehydration resistance. Plant Cell Rep 20:1112–1116

    Article  CAS  Google Scholar 

  • Choudhary K, Singh M, Rathore MS, Shekhawat NS (2009) Somatic embryogenesis and in vitro plant regeneration in moth bean [Vigna aconitifolia (Jacq.) Marechal]: a recalcitrant grain legume. Plant Biotech Rep 3:205–211

    Article  Google Scholar 

  • Chugh A, Khurana P (2002) Gene expression during somatic embryogenesis—recent advances. Curr Sci 83:715–730

    CAS  Google Scholar 

  • Churchill GC, Ewen B, Reaney MJT, Abrams SR, Gusta LV (1992) Structure-activity relationships of abscisic acid analogs based on the induction of freezing tolerance in bromegrass (Bromus inermis Leyss) cell cultures. Plant Physiol 100:2024–2029

    Article  PubMed  CAS  Google Scholar 

  • Cornforth JW, Milborrow BV, Ryback PF, Wareing PF (1965) Chemistry and physiology of ‘dormins’ in sycamore: Identity of sycamore ‘dormin’ with abscisin II. Nature 205:1269–1270

    Article  CAS  Google Scholar 

  • Ding W, Song L, Wang X, Bi Y (2010) Effect of abscisic acid on heat stress tolerance in the calli from two ecotypes of Phragmites communis. Biol Plant 54:607–613

    Article  CAS  Google Scholar 

  • Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48:1493–1509

    CAS  Google Scholar 

  • Dong JZ, Dunstan DI (1997) Characterization of cDNAs representing five abscisic acid-responsive genes associated with somatic embryogenesis in Picea glauca, and their responses to abscisic acid stereostructure. Planta 203:448–453

    Article  PubMed  CAS  Google Scholar 

  • Dudits D, Gyorgyey J, Bogre L, Bako L (1995) Molecular biology of somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer, Dordrecht, pp 267–308

    Google Scholar 

  • Dunstan DI, Bock CA, Abrams GD, Abrams SR (1992) Metabolism of (+)- and (−)-abscisic acid by somatic embryo suspension cultures of white spruce. Phytochemistry 31:1451–1454

    Article  CAS  Google Scholar 

  • Eberhardt HJ, Wegmann K (1989) Effects of abscisic acid and proline on adaptation of tobacco callus cultures to salinity and osmotic shock. Physiol Plant 76:283–288

    CAS  Google Scholar 

  • Engelmann F (1991) In vitro conservation of tropical plant germplasm—a review. Euphytica 57:227–243

    Article  Google Scholar 

  • Engelmann F, Engles J, Dullo E (2003) The development of complementary strategies for the conservation of plant genetic resources using in vitro and cryopreservation methods. In: Chaudhury R, Pandey R, Malik SK, Mal Bhag (eds) In vitro conservation and cryopreservation of tropical fruit species. IPGRI Office for South Asia and NBPGR, New Delhi, pp 37–48

    Google Scholar 

  • Fan J, Hill L, Crooks C, Doerner P, Lamb C (2009) Abscisic acid has a key role in modulating diverse plant–pathogen interactions. Plant Physiol 150:1750–1761

    Article  PubMed  CAS  Google Scholar 

  • Fang JY, Wetten A, Hadley P (2004) Cryopreservation of cocoa (Theobroma cacao L.) somatic embryos for long-term germplasm storage. Plant Sci 166:669–675

    Article  CAS  Google Scholar 

  • Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228

    Article  CAS  Google Scholar 

  • Ficcadenti N, Rotino GL (1995) Genotype and medium affect shoot regeneration of melon. Plant Cell Tissue Organ Cult 40:293–295

    Article  CAS  Google Scholar 

  • Finkelstein R, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45

    PubMed  CAS  Google Scholar 

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415

    Article  PubMed  CAS  Google Scholar 

  • Fischerova L, Fischer L, Vondrakova Z, Vagner M (2008) Expression of the gene encoding transcription factor PaVP1 differs in Picea abies embryogenic lines depending on their ability to develop somatic embryos. Plant Cell Rep 27:435–441

    Article  PubMed  CAS  Google Scholar 

  • Gagliardi RF, Pacheco GP, Carneiro LA, Valls JFM, Vieira MLC, Mansur E (2003) Cryopreservation of Arachis species by vitrification of in vitro-grown shoot apices and genetic stability of recovered plants. Cryoletters 24:103–110

    PubMed  CAS  Google Scholar 

  • Garcia-Martin G, Manzanera JA, Gonzalez-Benito ME (2005) Effect of exogenous ABA on embryo maturation and quantification of endogenous levels of ABA and IAA in Quercus suber somatic embryos. Plant Cell Tissue Organ Cult 80:171–177

    Article  CAS  Google Scholar 

  • Gaspar T, Kevers C, Penel C, Greppin H, Reid DM, Thorpe TA (1996) Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cell Dev Biol Plant 32:272–289

    Article  CAS  Google Scholar 

  • Gilchrist DG (1998) Programmed cell death in plant disease: the purpose and promise of cellular suicide. Annu Rev Phytopathol 36:393–414

    Article  PubMed  CAS  Google Scholar 

  • Gopal J, Chamail A, Sarkar D (2004) In vitro production of microtubers for conservation of potato germplasm: effect of genotype, abscisic acid, and sucrose. In Vitro Cell Dev Biol Plant 40:485–490

    Google Scholar 

  • Gupta S, Mandal BB (2003) In vitro methods for PGR conservation: principles and prospects. In: Chaudhury R, Pandey R, Malik SK, Mal Bhag (eds) In vitro conservation and cryopreservation of tropical fruit species. IPGRI Office for South Asia and NBPGR, New Delhi, pp 71–80

    Google Scholar 

  • Hannah MA, Zuther E, Buchel K, Heyer AG (2006) Transport and metabolism of raffinose family oligosaccharides in transgenic potato. J Exp Bot 57:3801–3811

    Article  PubMed  CAS  Google Scholar 

  • Hatzopoulos P, Fong F, Sung ZR (1990) Abscisic acid regulation of DC8, a carrot embryonic gene. Plant Physiol 94:690–695

    Article  PubMed  CAS  Google Scholar 

  • Hazarika BN (2003) Acclimatization of tissue-cultured plants. Curr Sci 85:1704–1712

    CAS  Google Scholar 

  • Hronkova M, Zahradnickova H, Šimkova M, Šimek P, Heydova A (2003) The role of abscisic acid in acclimation of plants cultivated in vitro to ex vitro conditions. Biol Plant 46:535–541

    Article  CAS  Google Scholar 

  • Ikeda-Iwai M, Satoh S, Kamada H (2002) Establishment of a reproducible tissue culture system for the induction of Arabidopsis somatic embryos. J Exp Bot 53:1575–1580

    Article  PubMed  CAS  Google Scholar 

  • Ikeda-Iwai M, Umehara M, Satoh S, Kamada H (2003) Stress-induced somatic embryogenesis in tissues of Arabdiopsis thaliana. Plant J 34:107–114

    Article  PubMed  CAS  Google Scholar 

  • Ikeda-Iwai M, Umehara M, Kamada H (2006) Embryogenesis-related genes; its expression and roles during somatic and zygotic embryogenesis in carrot and Arabidopsis. Plant Biotechnol 23:153–161

    Article  Google Scholar 

  • Jimenez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110

    Article  CAS  Google Scholar 

  • Karami O, Aghavaisi B, Pour AM (2009) Molecular aspects of somatic-to-embryogenic transition in plants. J Chem Biol 2:177–190

    Article  Google Scholar 

  • Kępczynska E, Rudus I, Kępczynski J (2009) Abscisic acid and methyl jasmonate as regulators of ethylene biosynthesis during somatic embryogenesis of Medicago sativa L. Acta Physiol Plant 31:1263–1270

    Article  CAS  Google Scholar 

  • Kharenko OA, Zaharia LI, Giblin M, Cekic V, Taylor DC, Palmer CD, Abrams SR, Loewen MC (2011) Abscisic acid metabolism and lipid accumulation of a cell suspension culture of Lesquerella fendleri. Plant Cell Tissue Organ Cult. doi:10.1007/s11240-010-9881-7

  • Kikuchi A, Sanuki N, Higashi K, Koshiba T, Kamada H (2006) Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells. Planta 223:637–645

    Article  PubMed  CAS  Google Scholar 

  • Kim YW, Moon HK (2007) Enhancement of somatic embryogenesis and plant regeneration in Japanese larch (Larix leptolepis). Plant Cell Tissue Organ Cult 88:241–245

    Article  CAS  Google Scholar 

  • Kim HJ, Ryu H, Hong SH, Woo HR, Lim PO, Lee IC, Sheen J, Nam HG, Hwang I (2006) Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc Natl Acad Sci USA 103:814–819

    Article  PubMed  CAS  Google Scholar 

  • Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K, Higashi K, Satoh S, Kamada H, Harada H (1992) Isolation and characterization of a cDNA that encodes ECP31, an embryogenic-cell protein from carrot. Plant Mol Biol 19:239–249

    Article  PubMed  CAS  Google Scholar 

  • Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K, Kamada H, Harada H (1993) cDNA cloning of ECP40, an embryogenic-cell protein in carrot, and its expression during somatic and zygotic embryogenesis. Plant Mol Biol 21:1053–1068

    Article  PubMed  CAS  Google Scholar 

  • Kong L, von Aderkas P (2007) Genotype effects on ABA consumption and somatic embryo maturation in interior spruce (Picea glauca × engelmanni). J Exp Bot 58:1525–1531

    Article  PubMed  CAS  Google Scholar 

  • Kong L, von Aderkas P (2011) A novel method of cryopreservation without a cryoprotectant for immature somatic embryos of conifer. Plant Cell Tissue Organ Cult. doi:10.1007/s11240-010-9899-x

  • Kovalchuk I, Lyudvikova Y, Volgina M, Reed BM (2009) Medium, container and genotype all influence in vitro cold storage of apple germplasm. Plant Cell Tissue Organ Cult 96:127–136

    Article  Google Scholar 

  • Langhansova L, Konradova H, Vanek T (2004) Polyethylene glycol and abscisic acid improve maturation and regeneration of Panax ginseng somatic embryos. Plant Cell Rep 22:725–730

    Article  PubMed  CAS  Google Scholar 

  • LaRosa PC, Handa AK, Hasegawa PM, Bressan RA (1985) Abscisic acid accelerates adaptation of cultured cells to salt. Plant Physiol 79:138–142

    Article  PubMed  CAS  Google Scholar 

  • LaRosa PC, Hasegawa PM, Rhodes D, Clithero JM, Watad AEA, Bressan RA (1987) Abscisic acid stimulated osmotic adjustment and its involvement in adaptation of tobacco cells to NaCI. Plant Physiol 85:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lecouteux CG, Lai FM, McKersie BD (1993) Maturation of alfalfa (Medicago sativa L.) somatic embryos by abscisic acid, sucrose and chilling stress. Plant Sci 94:207–213

    Article  CAS  Google Scholar 

  • Lee SP, Zhu B, Chen THH, Li PH (1992) Induction of freezing tolerance in potato (Solanum commersonü) suspension cultured cells. Physiol Plant 84:41–48

    Article  CAS  Google Scholar 

  • Lelu-Walter MA, Bernier-Cardou M, Klimaszewska K (2008) Clonal plant production from self- and cross-pollinated seed families of Pinus sylvestris (L.) through somatic embryogenesis. Plant Cell Tissue Organ Cult 92:31–45

    Article  Google Scholar 

  • Li XY, Huang FH, Edward E, Gbur J (1997) Polyethylene glycol promoted development of somatic embryos in loblolly pine (Pinus taeda L.). In Vitro Cell Dev Biol Plant 33:184–189

  • Linossier L, Veisseire P, Cailloux F, Coudret A (1997) Effects of abscisic acid and high concentrations of PEG on Hevea brasiliensis somatic embryos development. Plant Sci 124:183–191

    Article  CAS  Google Scholar 

  • Liotenberg S, North H, Marion-Poll A (1999) Molecular biology and regulation of abscisic acid biosynthesis in plants. Plant Physiol Biochem 37:341–350

    Article  CAS  Google Scholar 

  • Liu Y, Liang Z, Liu J (2010) Use of protocorm-like bodies for studying alkaloid metabolism in Pinellia ternata. Plant Cell Tissue Organ Cult 100:83–89

    Article  CAS  Google Scholar 

  • Maggon R, Singh BD (1995) Promotion of adventitious bud regeneration by ABA in combination with BAP in epicotyl and hypocotyl explants of sweet orange (Citrus sinensis L. Osbeck). Sci Hortic 63:123–128

    Article  CAS  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8:409–414

    Article  PubMed  CAS  Google Scholar 

  • Milborrow BV (2001) The pathway of biosynthesis of abscisic acid in vascular plants: a review of the present state of knowledge of ABA biosynthesis. J Exp Bot 52:1145–1164

    Article  PubMed  CAS  Google Scholar 

  • Mills D, Zhang G, Benzioni A (2001) Effect of different salts and of ABA on growth and mineral uptake in jojoba shoots grown in vitro. J Plant Physiol 158:1031–1039

    Article  CAS  Google Scholar 

  • Mittelheuser CJ, van Steveninck RFM (1969) Stomatal closure and inhibition of transpiration induced by (RS)—abscisic acid. Nature 221:281–282

    Article  CAS  Google Scholar 

  • Mongrand S, Hare PD, Chua NH (2003) Abscisic acid. Encyclopedia of hormones. Elsevier, London, pp 1–10

    Book  Google Scholar 

  • Morata BR, Arrillaga A, Segura J (2006) In vitro storage of cedar shoot cultures under minimal growth conditions. Plant Cell Rep 25:636–642

    Article  CAS  Google Scholar 

  • Na H, Kondo K (1996) Cryopreservation of tissue-cultured shoot primordia from shoot apices of cultured protocorms in Vanda pumila following ABA preculture and desiccation. Plant Sci 118:195–201

    Article  CAS  Google Scholar 

  • Nishiwaki M, Fujino K, Koda Y, Masuda K, Kikuta Y (2000) Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta 211:756–759

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma K, Lyon JL, Addicott FT, Smith OE (1963) Abscisin II, an abscission accelerating substance from young cotton fruit. Science 142:1592–1593

    Article  PubMed  CAS  Google Scholar 

  • Parmentier-Line CM, Panta GR, Rowland LJ (2002) Changes in dehydrin expression associated with cold, ABA and PEG treatments in blueberry cell cultures. Plant Sci 162:273–282

    Article  CAS  Google Scholar 

  • Pennell RI, Lamb C (1997) Programmed cell death in plants. Plant Cell 9:1157–1168

    Article  PubMed  CAS  Google Scholar 

  • Popova EV, Lee EJ, Wu CH, Hahn EJ, Paek KY (2009) A simple method for cryopreservation of Ginkgo biloba callus. Plant Cell Tissue Organ Cult 97:337–343

    Article  CAS  Google Scholar 

  • Pospisilova J, Ticha I, Kadlecek P, Haisel D, Plzakova S (1999) Acclimatization of micropropagated plants to ex vitro conditions. Biol Plant 42:481–497

    Article  Google Scholar 

  • Pospisilova J, Synkova H, Haisel D, Semoradova S (2007) Acclimation of plantlets to ex vitro conditions: effects of air humidity, irradiance, CO2 concentration and abscisic acid. Acta Hortic 748:29–38

    CAS  Google Scholar 

  • Pospisilova J, Haisel D, Synkova H, Batkova-Spoustova P (2009) Improvement of ex vitro transfer of tobacco plantlets by addition of abscisic acid to the last subculture. Biol Plant 53:617–624

    Article  CAS  Google Scholar 

  • Prakash MG, Gurumurthi K (2010) Effects of type of explant and age, plant growth regulators and medium strength on somatic embryogenesis and plant regeneration in Eucalyptus camaldulensis. Plant Cell Tissue Organ Cult 100:13–20

    Article  CAS  Google Scholar 

  • Purohit M, Srivastava S, Srivastava PS (1998) Stress tolerant plants through tissue culture. In: Srivastava PS (ed) Plant tissue culture and molecular biology: application and prospects. Narosa Publishing House, New Delhi, pp 554–578

    Google Scholar 

  • Quiroz-Figueroa FR, Rojas-Herrera R, Galaz-Avalos RM, Loyola-Vargas VM (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tissue Organ Cult 86:285–301

    Article  Google Scholar 

  • Rai MK, Akhtar N, Jaiswal VS (2007) Somatic embryogenesis and plant regeneration in Psidium guajava L. cv. Banarasi local. Sci Hortic 113:129–133

    Article  CAS  Google Scholar 

  • Rai MK, Jaiswal VS, Jaiswal U (2008a) Effect of ABA and sucrose on germination of encapsulated somatic embryos of guava (Psidium guajava L.). Sci Hortic 117:302–305

    Article  CAS  Google Scholar 

  • Rai MK, Jaiswal VS, Jaiswal U (2008b) Encapsulation of shoot tips of guava (Psidium guajava L.) for short-term storage and germplasm exchange. Sci Hortic 118:33–38

    Article  CAS  Google Scholar 

  • Rai MK, Asthana P, Singh SK, Jaiswal VS, Jaiswal U (2009a) The encapsulation technology in fruit plants—a review. Biotechnol Adv 27:671–679

    Article  PubMed  Google Scholar 

  • Rai MK, Jaiswal VS, Jaiswal U (2009b) Effect of selected amino acids and polyethylene glycol on maturation and germination of somatic embryos of guava (Psidium guajava L.). Sci Hortic 121:233–236

    Article  CAS  Google Scholar 

  • Rai MK, Asthana P, Jaiswal VS, Jaiswal U (2010) Biotechnological advances in guava (Psidium guajava L.): Recent developments and prospects for further research. Tree Struct Funct 24:1–12

    CAS  Google Scholar 

  • Rai MK, Kalia RK, Singh R, Gangola MP, Dhawan AK (2011) Developing stress tolerant plants through in vitro selection—an overview of the recent progress. Environ Exp Bot 71:89–98

    Article  Google Scholar 

  • Rajashekar CB, Lafta A (1996) Cell-wall changes and cell tension in response to cold acclimation and exogenous abscisic acid in leaves and cell cultures. Plant Physiol 111:605–612

    PubMed  CAS  Google Scholar 

  • Reaney MJT, Gusta LV (1987) Factors influencing the induction of freezing tolerance by abscisic acid in cell suspension cultures of Bromus inermis Leyss and Medicago sativa L. Plant Physiol 83:423–427

    Article  PubMed  CAS  Google Scholar 

  • Robichaud RL, Lessard VC, Merkle SA (2004) Treatments affecting maturation and germination of American chestnut somatic embryos. J Plant Physiol 161:957–969

    Article  PubMed  CAS  Google Scholar 

  • Rowntree JK, Duckett JG, Mortimer CL, Ramsay MM, Pressel S (2007) Formation of specialized propagules resistant to desiccation and cryopreservation in the threatened moss Ditrichum plumbicola (Ditrichales, Bryopsida). Ann Bot 100:483–496

    Article  PubMed  CAS  Google Scholar 

  • Rudus I, Kepczynska E, Kepcznski J (2006) Comparative efficacy of abscisic and methyl jasmonate for indirect somatic embryogenesis in Medicago sativa L. Plant Growth Regul 48:1–11

    Article  CAS  Google Scholar 

  • Ryynanen L (1998) Effect of abscisic acid, cold hardening, and photoperiod on recovery of cryopreserved in vitro shoot tips of silver birch. Cryobiology 36:32–39

    Article  PubMed  CAS  Google Scholar 

  • Sagare AP, Lee YL, Lin TC, Chen CC, Tsay HS (2000) Cytokinin induced somatic embryogenesis and plant regeneration in Corydalis yanhusuo (Fumariaceae)—a medicinal plant. Plant Sci 160:139–147

    Article  PubMed  CAS  Google Scholar 

  • Savaldi-Goldstein S, Peto C, Chory J (2007) The epidermis both drives and restricts plant shoot growth. Nature 446:199–202

    Article  PubMed  CAS  Google Scholar 

  • Schwartz SH, Tan BC, Gage DA, Zeevaart JAD, McCarty DR (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276:1872–1874

    Article  PubMed  CAS  Google Scholar 

  • Schwartz SH, Qin X, Zeevaart JAD (2003) Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol 131:1591–1601

    Article  PubMed  CAS  Google Scholar 

  • Sen S, Newton RJ, Fong F, Neuman P (1989) Abscisic acid: a role in shoot enhancement from loblolly pine (Pinus taeda L.) cotyledon explants. Plant Cell Rep 8:191–194

    Article  CAS  Google Scholar 

  • Senaratna T, McKersie BD, Bowley SR (1989) Desiccation tolerance of alfalfa (Medicago sativa L.) somatic embryos: influence of abscisic acid, stress pretreatments and drying rates. Plant Sci 65:253–259

    Article  CAS  Google Scholar 

  • Sghaier B, Kriaa W, Bahloul M, Novo JVJ, Drira N (2009) Effect of ABA, arginine and sucrose on protein content of date palm somatic embryo. Sci Hortic 120:379–385

    Article  CAS  Google Scholar 

  • Sharma P, Pandey S, Bhattacharya A, Nagar PK, Ahuja PS (2004) ABA associated biochemical changes during somatic embryo development in Camellia sinensis (L.) O. Kuntze. J Plant Physiol 161:1269–1276

    Article  PubMed  CAS  Google Scholar 

  • Sharp RE, LeNoble ME, Else MA, Thorne ET, Gherardi F (2000) Endogenous ABA maintains shoot growth in tomato independently of effects on plant water balance: evidence for an interaction with ethylene. J Exp Bot 51:1575–1584

    Article  PubMed  CAS  Google Scholar 

  • Shiota H, Kamada H (2000) Acquisition of desiccation tolerance by cultured carrot cells upon ectopic expression of C-ABI3, a carrot homolog of ABI3. J Plant Physiol 156:510–515

    CAS  Google Scholar 

  • Shiota H, Kamada H (2008) Optical isomers of abscisic acid in carrot somatic embryos have the same effect on induction of dormancy and desiccation tolerance. Plant Biotechnol 25:457–463

    Article  CAS  Google Scholar 

  • Shiota H, Satoh R, Watabe K, Harada H, Kamada H (1998) CABI3, the carrot homologue of the Arabidopsis ABI3, is expressed during both zygotic and somatic embryogenesis and functions in the regulation of embryo-specific ABA-inducible genes. Plant Cell Physiol 39:1184–1193

    PubMed  CAS  Google Scholar 

  • Sholi NJY, Chaurasia A, Agrawal A, Sarin NB (2009) ABA enhances plant regeneration of somatic embryos derived from cell suspension cultures of plantain cv. Spambia (Musa sp.). Plant Cell Tissue Organ Cult 99:133–140

    Article  CAS  Google Scholar 

  • Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Organ Cult 74:15–35

    Article  CAS  Google Scholar 

  • Stasolla C, Kong L, Yeung EC, Thorpe TA (2002) Maturation of somatic embryos in conifers: morphogenesis, physiology, biochemistry, and molecular biology. In Vitro Cell Dev Biol Plant 38:93–105

    Google Scholar 

  • Stewart CR, Voetberg G (1985) Relationship between stress-induced ABA and proline accumulations and ABA-induced proline accumulation excised barley leaves. Plant Physiol 79:24–27

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Ishikawa M, Okuda H, Noda K, Kishimoto T, Nakamura T, Ogiwara I, Shimura I, Akihama T (2006) Physiological changes in gentian axillary buds during two-step preculturing with sucrose that conferred high levels of tolerance to desiccation and cryopreservation. Ann Bot 97:1073–1081

    Article  PubMed  CAS  Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signalling. Plant Signal Behav 2:135–138

    Article  PubMed  Google Scholar 

  • Tuteja N, Sopory SK (2008) Chemical signaling under abiotic stress environment in plants. Plant Signal Behav 3:525–536

    Article  PubMed  Google Scholar 

  • Ubeda-Tomas S, Swarup R, Coates J, Swarup K, Laplaze L, Beemster GT, Hedden P, Bhalerao R, Bennett MJ (2008) Root growth in Arabidopsis requires gibberellin/DELLA signalling in the endodermis. Nat Cell Biol 10:625–628

    Article  PubMed  CAS  Google Scholar 

  • Vahdati K, Jariteh M, Niknam V, Mirmasoumi M, Ebrahimzadeh H (2006) Somatic embryogenesis and embryo maturation in Persian walnut. Acta Hortic 705:199–205

    Google Scholar 

  • Vahdati K, Bayat S, Ebrahimzadeh H, Jariteh M, Mirmasoumi M (2008) Effect of exogenous ABA on somatic embryo maturation and germination in Persian walnut (Juglans regia L.). Plant Cell Tissue Organ Cult 93:163–171

    Article  CAS  Google Scholar 

  • Vales T, Feng X, Ge L, Xu N, Cairney J, Pullman GS, Peter GF (2007) Improved somatic embryo maturation in loblolly pine by monitoring ABA-responsive gene expression. Plant Cell Rep 26:133–143

    Article  PubMed  CAS  Google Scholar 

  • Vandenbussche B, De Proft MP (1998) Cryopreservation of in vitro sugar beet shoot tips using the encapsulation-dehydration technique: influence of abscisic acid and cold acclimation. Plant Cell Rep 17:791–793

    Article  CAS  Google Scholar 

  • Vibha JB, Choudhary K, Singh M, Rathore MS, Shekhawat NS (2009) An efficient somatic embryogenesis system for velvet bean [Mucuna pruriens (L.) DC.]: a source of anti Parkinson’s drug. Plant Cell Tissue Organ Cult 99:319–325

    Article  CAS  Google Scholar 

  • von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult 69:233–249

    Article  Google Scholar 

  • Wang M, Hoekstra S, van Bergen S, Lamers GEM, Berry Oppedijk J, van der Heijden MW, de Priester W, Schilperoort RA (1999) Apoptosis in developing anthers and the role of ABA in this process during androgenesis in Hordeum vulgare L. Plant Mol Biol 39:489–501

    Article  PubMed  CAS  Google Scholar 

  • Watt MP, Thokoane NL, Mycock D, Blakeway F (2000) In vitro storage of Eucalyptus grandis germplasm under minimal growth conditions. Plant Cell Tissue Organ Cult 61:161–164

    Article  Google Scholar 

  • Wright STC, Hiron RWP (1969) (+)-Abscisic acid, the growth inhibitor induced in detached wheat leaves by a period of wilting. Nature 224:719–720

    Article  CAS  Google Scholar 

  • Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Saitou T, Komeda Y, Harada H, Kamada H (1996) Late embryogenesis abundant protein in Arabidopsis thaliana homologous to carrot ECP31. Physiol Plant 98:661–666

    Article  CAS  Google Scholar 

  • Yang H, Saitou T, Komeda Y, Harada H, Kamada H (1997) Arabidopsis thaliana ECP63 encoding a LEA protein is located in chromosome 4. Gene 184:83–88

    PubMed  CAS  Google Scholar 

  • Yildirim T, Kaya Z, Isik K (2006) Induction of embryogenic tissue and maturation of somatic embryos in Pinus brutia TEN. Plant Cell Tissue Organ Cult 87:67–76

    Article  CAS  Google Scholar 

  • Zhang S, Han S, Yang W, Wei H, Zhang M, Qi L (2010) Changes in H2O2 content and antioxidant enzyme gene expression during the somatic embryogenesis of Larix leptolepis. Plant Cell Tissue Organ Cult 100:21–29

    Article  CAS  Google Scholar 

  • Zhu C, Kamada H, Harada H, He M, Hao S (1997) Isolation and characterization of a cDNA encoded an embryogenic cell protein 63 related to embryogenesis from carrot. Acta Bot Sin 39:1091–1098

    Google Scholar 

  • Zimmermann JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    Article  Google Scholar 

Download references

Acknowledgments

The authors (M.K. Rai and Harish) wish to acknowledge to University Grants Commission (UGC), New Delhi for the award of the Dr. D.S. Kothari Post Doctoral Fellowship. We are also grateful to the Department of Biotechnology (DBT), Department of Science and Technology (DST), Council of Scientific and Industrial Research (CSIR) and University Grants Commission (UGC), New Delhi for financial support. Valuable suggestions by the anonymous reviewers for improving the manuscript are also very much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj K. Rai.

Additional information

The work is dedicated to the first author’s late supervisor Prof. V.S. Jaiswal (1945–2007).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rai, M.K., Shekhawat, N.S., Harish et al. The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell Tiss Organ Cult 106, 179–190 (2011). https://doi.org/10.1007/s11240-011-9923-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-9923-9

Keywords

Navigation