Skip to main content
Log in

Isothermal DNA amplification facilitates the identification of a broad spectrum of bacteria, fungi and protozoa in Eleutherococcus sp. plant tissue cultures

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

In vitro cultures of Eleutherococcus sieboldianus originating from surface sterilized leaf explants were found to be associated with several microorganisms. The associations included bacteria, fungi and protozoa within the rhizosphere and inside root hairs. To determine if this phenomenon is unique to this species, plant tissue cultures of E. gracilistylus and E. senticosus were included in our studies for comparison. A methodology consisting of isothermal amplification, cloning and sequencing was established for analysing 16S ribosomal DNA of cultivated and non-cultivated bacteria from different tissue types. The same methodology was used to obtain internal transcribed spacer regions and 18S regions of fungal and protozoan rDNA. Comparative analyses of sequencing data resulted in the identification of various genera within the Firmicutes and γ-proteobacteria kingdoms and a broad spectrum of fungal genera related to several uncultured fungi. In addition, amoebal and chrysophyte species were detected. Most of the species were identified in different plant organs and in in vitro culture cell types indicating the microorganisms are systemically distributed. The presence of identical microorganisms in different plant species argues for an evolutionary long-lasting and stable association between the plant genus and the microinhabitants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahn SD (1993) Study on the propagation of Acanthopanax plants II. Characteristics of seed and growth of embryo in stratifying treatment. Korean. J Med Crop Sci 1:16–23

    Google Scholar 

  • Aicher B, Gund HJ, Schutz A (2001) Therapie bei akuten grippalen Infekten. Pharmaz Zeitung 41:1–3

    Google Scholar 

  • Ardourel M, Demont N, Debellé F, Maillet F, de Billy F, Promé J-C, Dénarié J, Truchet G (1994) Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell 6:1357–1374

    Article  PubMed  CAS  Google Scholar 

  • Aspiroz C, Moreno L-A, Rezusta A, Rubio C (1999) Differentiation of three biotypes of Malassezia species on human normal skin. Correspondence with M. globosa, M. sympodialis and M. restricta. Mycopathologia 145:69–74. doi:10.1023/A:1007017917230

    Article  PubMed  CAS  Google Scholar 

  • Atsatt PR (2003) Fungus propagules in plastids: the mycosome hypothesis. Int Microbiol 6:17–26. doi: 10.1007/s10123-003-0103-6

    PubMed  Google Scholar 

  • Barr DJS (1979) Morphology and host range of Polymyxa graminis, Polymyxa betae, and Ligniera pilorum from Ontario and some other areas. Can J Plant Pathol 1:85–94

    Google Scholar 

  • Barrow JR, Osuna-Avila P, Reyes-Vera P (2004) Fungal endophytes intrinsically associated with micropropagated plants regenerated from native Bouteloua eriopoda Torr. and Atriplex canescens (Pursh) Nutt. In Vitro Cell Dev Biol Plant 40:608–612. doi:10.1079/IVP2004584

    Article  Google Scholar 

  • Becker B, Kosch U, Parniske K, Müller P (1998) Exopolysaccharide (EPS) synthesis in Bradyrhizobium japonicum: sequence, operon structure and mutational analysis of an exo gene cluster. Mol Gen Genet 259:161–171. doi:10.1007/s004380050801

    Article  PubMed  CAS  Google Scholar 

  • Bellone CH, de Bellone SC (1995) Morphogenesis of strawberry roots infected by Azospirillum brasilense and V. A. mycorrhiza. In: Fendrik I (ed) Azospirillum VI and related microorganisms. Springer-Verlag, Berlin, Heidelberg, pp 251–255

    Google Scholar 

  • Bergant M, Ambrožič-Dolinšek J, Demšar T, Dreo T, Ravnikar M, Žel J, Camloh M (2005) Effects of antibiotics on contaminated callus cultures of Pyrethrum. Phyton 45:197–206

    CAS  Google Scholar 

  • Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69:2–9. doi:10.2307/1943154

    Article  Google Scholar 

  • Cassells AC, Tahmatsidou V (1996) The influence of local plant growth conditions on non-fastidious bacterial contamination of meristem-tips of Hydrangea cultured in vitro. Plant Cell Tissue Organ Cult 47:15–26. doi:10.1007/BF02318961

    Article  Google Scholar 

  • Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263

    PubMed  CAS  Google Scholar 

  • Chen TA, Hill PB (2005) The biology of Malassezia organisms and their ability to induce immune responses and skin disease. Vet Dermatol 16:4–26. doi:10.1111/j.1365-3164.2005.00424.x

    Article  PubMed  Google Scholar 

  • Cho KM, Hong SY, Lee SM, Kim YH, Kahng GG, Lim YP, Kim H, Yun HD (2007) Endophytic bacterial communities in Ginseng and their antifungal activity against pathogens. Microb Ecol 54:341–351. doi:10.1007/s00248-007-9208-3

    Article  PubMed  CAS  Google Scholar 

  • Chung YR, Kim CH, Hwang I, Chun J (2000) Paenibacillus koreensis sp. nov., a new species that produces an iturin-like antifungal compound. Int J Syst Evol Microbiol 50:1495–1500

    PubMed  CAS  Google Scholar 

  • Cook WRI (1932) On the occurrence of amoebae in plant tissue. Ann Protist 3:197–200

    Google Scholar 

  • Darbyshire JF, Greaves MP (1971) The invasion of pea roots, Pisum sativum L., by soil microorganisms, Acanthamoeba palestinensis (Reich) and Pseudomonas sp. Soil Biol Biochem 3:151–155. doi:10.1016/0038-0717(71)90008-3

    Article  Google Scholar 

  • de Almeida CV, Yara R, de Almeida M (2005) Endophytic fungi in shoot tip of the pejibaye cultivated in vivo and in vitro. Pesqui Agropecu Bras 40:467–470

    Google Scholar 

  • Ervin SE, Hubbell DH (1985) Root hair deformations associated with fractionated extracts from Rhizobium trifolii. Appl Environ Microbiol 49:61–68

    PubMed  CAS  Google Scholar 

  • Ewald D, Naujoks G, Zaspel I, Szczygiel K (1997) Occurrence and influence of endogenous bacteria in embryogenic cultures of Norway spruce. In: Cassells AC (ed) Pathogen and microbial contamination management in micropropagation. Kluwer, The Netherlands, pp 149–154

    Google Scholar 

  • Ewald D, Zaspel I, Naujoks G, Behrendt U (2000) Endogenous bacteria in tissue cultures of conifers—appearance and action. Acta Hortic 530:137–144

    Google Scholar 

  • Fedonenko YP, Egorenkova IV, Konnova SA, Ignatov VV (2001) Involvement of the lipopolysaccharides of Azospirilla in the interaction with wheat seedling roots. Microbiology 70:329–334. doi:10.1023/A:1010411629428

    Article  CAS  Google Scholar 

  • Fellner M, Kneifel W, Gregorits D, Leonhardt W (1996) Identification and antibiotic sensitivity of microbial contaminants from callus cultures of garlic Allium sativum L. and Allium longicuspis Regel. Plant Sci 113:193–201

    Article  CAS  Google Scholar 

  • Fiore SD, Gallo MD (1995) Endophytic bacteria: their possible role in the host plant. In: Fendrik I (ed) Azospirillum VI and related microorganisms. Springer-Verlag, Berlin, Heidelberg, pp 169–187

    Google Scholar 

  • Franchini G (1922) An amoeba of Lettuce (Lactuca sativa). Bull Soc Pathol Exot 15:784–787

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158. doi:10.1016/0014-4827(68)90403-5

    Article  PubMed  CAS  Google Scholar 

  • Garstecki T, Brown S, De Jonckheere JF (2005) Description of Vahlkampfia signyensis n. sp. (Heterolobosea), based on morphological, ultrastructural and molecular characteristics. Eur J Protistol 41:119–127. doi:10.1016/j.ejop.2005.01.003

    Article  Google Scholar 

  • Gordon AM, Brown IR (1988) The occurrence of endogenous bacteria in birch shoot cultures. In: Ahuja MR (ed) Somatic cell genetics of woody plants. Kluwer, Dordrecht, pp 191–193

    Google Scholar 

  • Gunson HE (1992) Endophytes and microbial contaminants of micropropagated plants. Dissertation, Bristol, GB

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hauben L, Vauterin L, Moore ERB, Hoste B, Swings J (1999) Genomic diversity of the genus Stenotrophomonas. Int J Syst Bacteriol 49:1749–1760

    PubMed  CAS  Google Scholar 

  • Heidstra R, Geurts R, Franssen H, Spaink HP, van Kammen A, Bisseling T (1994) Root hair deformation activity of nodulation factors and their fate on Vicia sativa. Plant Physiol 105:787–797

    PubMed  CAS  Google Scholar 

  • Houtman R (2002) Eleutherococcus sieboldianus een weinig gekweekte, bruikbare plant. Tuin Landschap 9:18–19

    Google Scholar 

  • Jan WC, Chen RS, Tsay JS, Tsay JG (2004) Contaminant detection of Dieffenbachia and Phalae-nopsis tissue cultures by polymerase chain reaction (PCR) and restriction enzyme analyses (in Chinese). J Agric Assoc China 5:299–317

    CAS  Google Scholar 

  • Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ (2005) Evolution of genome size in Brassicaceae. Ann Bot (Lond) 95:229–235. doi:10.1093/aob/mci016

    Article  CAS  Google Scholar 

  • Kim CH (1997) Systematics of Eleutherococcus and related genera (Araliaceae) (in Korean). Dissertation, Chonbuk

  • Kolozsvári-Nagy J, Sule S, Sampaio JP (2005) Apple tissue culture contamination by Rhodotorula spp.: identification and prevention. In Vitro Cell Dev Biol Plant 41:520–524. doi:10.1079/IVP2005647

    Article  Google Scholar 

  • Kreisel H, Schauer F (1989) Dimorphism in the system of fungi—a grey zone of taxonomy? (in german). Zentralbl Mikrobiol 144:219–229

    PubMed  CAS  Google Scholar 

  • Lata H, Li XC, Silva B, Moraes RM, Halda-Alija L (2006) Identification of IAA-producing endophytic bacteria from micropropagated Echinacea plants using 16S rRNA sequencing. Plant Cell Tissue Organ Cult 85:353–359. doi:10.1007/s11240-006-9087-1

    Article  CAS  Google Scholar 

  • Leary JV, Nelson N, Tisserat B, Allingham EA (1986) Isolation of pathogenic Bacillus circulans from callus cultures and healthy offshoots of Date Palm (Phoenix dactylifera L.). Appl Environ Microbiol 52:1173–1176

    PubMed  CAS  Google Scholar 

  • Lederberg J (2004) Of men and microbes. New Perspect Q 21:91–96. doi:10.1111/j.1540-5842.2004.00705.x

    Google Scholar 

  • Leifert C, Cassells AC (2001) Microbial hazards in plant tissue and cell cultures. In Vitro Cell Dev Biol Plant 37:133–138. doi:10.1007/s11627-001-0025-y

    Article  Google Scholar 

  • Leifert C, Waites WM (1990) Contaminants of plant tissue cultures. Newsl Int Assoc Plant Tissue Cult 60:2–13

    Google Scholar 

  • Leifert C, Waites WM (1994) Dealing with microbial contaminants in plant tissue and cell culture: hazard analysis and critical control points. In: Lumsden PJ, Nicholas JR, Davies WJ (eds) Physiology, growth and development of plants in culture. Kluwer, Wageningen, pp 363–378

    Google Scholar 

  • Leifert C, Waites WM, Nicholas JR (1989) Bacterial contaminants of micropropagated plant cultures. J Appl Bact 67:353–361

    Google Scholar 

  • Leifert C, Morris C, Waites WM (1994) Ecology of microbial saprophytes and pathogens in tissue culture and field-grown plants: reasons for contamination problems in vitro. Crit Rev Plant Sci 13:139–183. doi:10.1080/713608058

    Article  Google Scholar 

  • Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127. doi:10.1111/j.1399-3054.1965.tb06874.x

    Article  CAS  Google Scholar 

  • Liu THA, Hsu NW, Wu RY (2005) Control of leaf-tip necrosis of micropropagated ornamental statice by elimination of endophytic bacteria. In Vitro Cell Dev Biol Plant 41:546–549. doi:10.1079/IVP2005673

    Article  Google Scholar 

  • Lucero M, Barrow JR, Osuna P, Reyes I (2008) A cryptic microbial community persists within micropropagated Bouteloua eriopoda (Torr.) Torr. cultures. Plant Sci 174:570–575. doi: 10.1016/j.plantsci.2008.02.012

    Article  CAS  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüßmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K-H (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371. doi: 10.1093/nar/gkh293

    Article  PubMed  CAS  Google Scholar 

  • Mantell SH (1997) Microbes intimately associated with tissue and cell cultures of tropical Discorea yams. In: Cassells AC (ed) Pathogen and microbial contamination management in micropropagation. Kluwer, The Netherlands, pp 131–138

    Google Scholar 

  • Mantell SH (1998) Microbes intimately associated with tissue and cell cultures of tropical Discorea yams. Plant Cell Tissue Organ Cult 52:47–52. doi:10.1023/A:1005999925907

    Article  Google Scholar 

  • McInroy JA, Kloepper JW (1995) Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant Soil 173:337–342. doi:10.1007/BF00011472

    Article  CAS  Google Scholar 

  • Müller P, Ahrens K, Keller T, Klaucke A (1995) A TnphoA insertion within the Bradyrhizobium japonicum sipS gene, homologous to prokaryotic signal peptidases, results in extensive changes in the expression of PBM-specific nodulins of infected soybean (Glycine max). Mol Microbiol 18:831–840. doi:10.1111/j.1365-2958.1995.18050831.x

    Article  PubMed  Google Scholar 

  • Naujoks G, Zaspel I, Behrendt U (2000) Micro-organisms acting in tissue culture of black locust (Robinia pseudoacacia L.). Acta Hortic 530:129–135

    Google Scholar 

  • Paul NC, Kim WK, Woo SK, Park MS, Yu SH (2007) Fungal endophytes in roots of Aralia species and their antifungal activity. Plant Pathol J 23:287–294

    Google Scholar 

  • Peńalver R, Durán-Vila N, López MM (1994) Characterisation and pathogenicity of bacteria from shoot tips of the globe artichoke (Cynara scolymus L.). Ann Appl Biol 125:501–513. doi:10.1111/j.1744-7348.1994.tb04987.x

    Article  Google Scholar 

  • Petrini O (1986) Taxonomy of endophytic fungi of aerial plant tissues. In: Fokkema NJ, van den Huevel J (eds) Microbiology of the phyllosphere. Cambridge University Press, Cambridge, pp 175–187

    Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–162

    Article  Google Scholar 

  • Raghavendra NN, Pavgi MS (1979) Germination of resting spores in Synchytrium species parasitic on Cucurbitaceae. Mycopathologia 69:3–10. doi:10.1007/BF00428598

    Article  Google Scholar 

  • Reed BM, Buckley PM, DeWilde TN (1995) Detection and eradication of endophytic bacteria from micropropagated mint plants. In Vitro Cell Dev Biol 31P:53–57

    Google Scholar 

  • Renker C, Alphei J, Buscot F (2003) Soil nematodes associated with the mammal pathogenic fungal genus Malassezia (Basidiomycota: Ustilaginomycetes) in Central European forests. Biol Fertil Soils 37:70–72. doi: 10.1007/s00374-002-0556-3

    CAS  Google Scholar 

  • Rice G (1987) Growing from seed. Thompson and Morgan UK Ltd, Ipswich

    Google Scholar 

  • Rodriguez-Zaragoza S, Garcia S (1997) Species richness and abundance of naked amoebae in the rhizoplane of the desert plant Escontria chiotilla (Cactaceae). J Eukaryot Microbiol 44:122–126. doi:10.1111/j.1550-7408.1997.tb05948.x

    Article  Google Scholar 

  • Rodriguez-Zaragoza S, Mayzlish E, Steinberger Y (2005) Seasonal changes in free-living amoeba species in the root canopy of Zygophyllum dumosum in the Negev Desert, Israel. Microb Ecol 49:134–141. doi:10.1007/s00248-003-1056-1

    Article  PubMed  CAS  Google Scholar 

  • Sapp J (2004) The dynamics of symbiosis: an historical overview. Can J Bot 82:1046–1056. doi:10.1139/b04-055

    Article  Google Scholar 

  • Schreiber L, Krimm U, Knoll D, Sayed M, Auling G, Kroppenstedt RM (2005) Plant–microbe interactions: identification of epiphytic bacteria and their ability to alter leaf surface permeability. New Phytol 166:589–594. doi:10.1111/j.1469-8137.2005.01343.x

    Article  PubMed  CAS  Google Scholar 

  • Shan BE, Zeki K, Sugiura T, Yoshida Y, Yamashita U (2000) Chinese medicinal herb, Acanthopanax gracilistylus, extract induces cell cycle arrest of human tumor cells in vitro. Jpn J Cancer Res 91:383–389

    PubMed  CAS  Google Scholar 

  • Singh SL, Pavgi MS (1979) Johnkarlingia, a new genus of the Synchytriaceae. Mycopathologia 39:43–56. doi:10.1007/BF00428602

    Article  Google Scholar 

  • Smit E, Leeflang P, Glandorf B, van Elsas JD, Wernars K (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65:2614–2621

    PubMed  CAS  Google Scholar 

  • Tabuchi M, Tamura A, Yamada N (2003) Effect of ukogi (Acanthopanax sieboldianus) leaves on glucose tolerance in rats with neonatally induced streptozotocin (type 2) diabetes. J Jpn Soc Nutr Food Sci 56:243–246

    Google Scholar 

  • Thomas P, Prakash GS (2004) Sanitizing long-term micropropagated grapes from covert and endophytic bacteria and preliminary field testing of plants after 8 years in vitro. In Vitro Cell Dev Biol Plant 40:603–607. doi:10.1079/IVP2004583

    Article  Google Scholar 

  • Thomas P, Kumari S, Swarna GK, Gowda TKS (2007a) Papaya shoot tip associated endophytic bacteria isolated from in vitro cultures and host-endophyte interaction in vitro and in vivo. Can J Microbiol 53:380–390. doi:10.1139/W06-141

    Article  PubMed  CAS  Google Scholar 

  • Thomas P, Kumari S, Swarna GK, Prakash DP, Dinesh MR (2007b) Ubiquitous presence of fastidious endophytic bacteria in field shoots and index-negative apparently clean shoot-tip cultures of papaya. Plant Cell Rep 26:1491–1499. doi:10.1007/s00299-007-0363-2

    Article  PubMed  CAS  Google Scholar 

  • Trémouillaux-Guiller J, Rohr T, Rohr R, Huss VAR (2002) Discovery of an endophytic alga in Ginkgo biloba. Am J Bot 89:727–733. doi:10.3732/ajb.89.5.727

    Article  Google Scholar 

  • Troll R (1968) An amoeba isolated from the latex of Euphorbia marginata Pursh. (Euphorbiaceae). Trans III State Acad Sci 61:96–101

    Google Scholar 

  • Ulrich K, Stauber T, Ewald D (2008) Paenibacillus—a predominant endophytic bacterium colonising tissue cultures of woody plants. Plant Cell Tissue Organ Cult 93:347–351. doi:10.1007/s11240-008-9367-z

    Article  Google Scholar 

  • von der Weid I, Alviano DS, Santos ALS, Soares RMA, Alviano CS, Seldin L (2003) Antimicrobial activity of Paenibacillus peoriae strain NRRL BD-62 against a broad spectrum of phytopathogenic bacteria and fungi. J Appl Microbiol 95:1143–1151. doi:10.1046/j.1365-2672.2003.02097.x

    Article  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  • Werner D, Wilcockson J, Zimmermann E (1975) Absorption and selection of rhizobia with ion-exchange papers. Arch Microbiol 105:27–32. doi:10.1007/BF00447108

    Article  PubMed  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Wiersema JH, León B (1999) World economic plants: a standard reference. CRC Press, Boca Raton

    Google Scholar 

  • Yamada N (1998) Polyphenols and vitamin C contents in ukogi leaves and marketed various teas. Bull Yonezawa Women’s College Yamagata Pref 33:131–137

    Google Scholar 

  • Yao TM, Chang CP (1996) A coloured atlas of the Chinese materia medica specified in pharmacopoeia of the People’s Republic of China. Guangdong Science & Technology Press, Guangdong

    Google Scholar 

Download references

Acknowledgments

We like to thank Felix Kirchner and Maritha Lippmann, financially supported by the EU project JCA4-CT-2001-10057, for excellent technical assistance, and Andreas Brune (MPI for Terrestrial Microbiology, Marburg) for fruitful discussion and for the calculation of sequence alignments. We owe many thanks to Dave Westenberg, Missouri University of Science and Technology Rolla, USA, for correcting this manuscript. This work was financially supported by the SFB 395 project to P. Müller.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, P., Döring, M. Isothermal DNA amplification facilitates the identification of a broad spectrum of bacteria, fungi and protozoa in Eleutherococcus sp. plant tissue cultures. Plant Cell Tiss Organ Cult 98, 35–45 (2009). https://doi.org/10.1007/s11240-009-9536-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-009-9536-8

Keywords

Navigation