Skip to main content
Log in

Preparation and Properties of Hydrogel Microparticles Based on Chitosan

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Positively charged (zeta potential 22-31 mV) hydrogel microparticles based on low and high molecular weight chitosan were synthesized. The effect of the crosslinking agent on their physicochemical characteristics was studied. It was established, that among obtained hydrogel particles, the ones based on low molecular weight chitosan crosslinked with citrate anions, followed by additional treatment with glutaraldehyde, are the most promising as carriers of growth regulators or plant protection products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. R. Barkai-Golan, Postharvest Diseases of Fruits and Vegetables., Elsevier Sci. (2001).

  2. F. M. Shakirova, A. M. Avalbaev, M. V. Bezrukova, et al., Phytohormones and Abiotic Stress Tolerance in Plants, N. A. Khan, R. Nazar, N. Iqbal, and N. A. Anjum (eds.), Springer, Berlin, Heidelberg, (2012), pp. 185-228.

  3. A. E. S. Pereira, P. M. Silva, J. L. Oliveira, et al., Colloids Surf. B, 150, 141-152 (2017).

    Article  CAS  Google Scholar 

  4. M. Li, M. A. Tshabalala, and G. Buschle-Diller, J. Mater. Sci., 51, No. 9, 4609-4617 (2016).

    Article  CAS  Google Scholar 

  5. E. A. Elkina, A. A. Shubakov, and Y. S. Ovodov, Khimiya Rastitel'nogo Syr'ya, No. 2., 105-109 (2002).

    Google Scholar 

  6. Y. S. Ovodov, Bioorg. Khim., 24, No. 7, 483-501 (1998).

    CAS  PubMed  Google Scholar 

  7. A. Verlee, S. Mincke, and C. V. Stevens, Carbohydr. Polym., 164, 268-283 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. M. E. I. Badawy and E. I. Rabea, Int. J. Carbohydr. Chem., 2011, Article ID 460381 (2011).

  9. T. A. Evstigneyeva, N. A. Pavlova, and S. L. Tyuterev, Plant Protect. News, No. 2, 27-33 (2012).

    Google Scholar 

  10. N. I. Vasyukova, S. V. Zinovyeva, L. I. Ilinskaya, et al., Appl. Biochem. Microbiol., 37, No.1, 115-122 (2001).

    Article  Google Scholar 

  11. L. A. Hadwiger and J. M. Beckman, Plant Physiol., 66, 205-211 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S. N. Chirkov, Appl. Biochem. Microbiol., 38, Nos. 1, 5-13 (2002).

    Article  CAS  Google Scholar 

  13. P. L. Kashyap, X. Xiang, and P. Heiden, Int. J. Biol. Macromol., 77, 36-51 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. R. Grillo, A. E. S. Pereira, C. S. Nishisaka, et al., J. Hazard. Mater., 278, 163-171 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. L. Y. Ing, N. M. Zin, A. Sarwar, et al., Int. J. Biomater., 2012, Article e632698 (2012).

  16. M. Sathiyabama and R. Parthasarathy, Carbohydr. Polym., 151, 321-325 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. A. E. S. Pereira, H. C. Oliveira, and L. F. Fraceto, Sci. Rep., 9, 7135 (1-10) (2019).

    Google Scholar 

  18. N. R. Kildeeva, P. A. Perminov, L. V. Vladimirov, et al., Russ. J. Bioorg. Chem., 35, N.3, 360-369 (2009).

    Article  CAS  Google Scholar 

  19. J. Y. Lai, T. P. Wang, and Y. T. Li, Int. J. Mol. Sci., 11, N. 12, 5256-5272 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. E. Lozovskaya and V. I. Kulikovskaya, Proc. Nat. Acad. Sci. Belarus, Int. Conf. Youth in Sci. – 2014, Vol. 1, Chem. Sci. Series, Minsk (2015), pp. 28-31.

    Google Scholar 

  21. O. Masalova, V. Kulikouskaya, T. Shutava, et al., Phys. Procedia, 40, 69-75 (2013).

    Article  CAS  Google Scholar 

  22. A. Watthanaphanit, P. Supaphol, and T. Furuike, Biomacromolecules, 10, 320-327 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. N. P. Kuznetsova, R. N. Mishaeva, L. R. Gudkin, et al., Russ. Chem. Bul., 62, 918-927 (2013).

    Article  CAS  Google Scholar 

  24. M. F. Queiroz, K. R. Teodosio Melo, D. Sabry, et al., Marine Drugs, 13, 141-158 (2014).

    Article  PubMed Central  Google Scholar 

  25. M. Pierog, M. Gierszewska-Druzynska, and J. Ostrowska-Czubenko, Progress on Chemistry and Application of Chitin and Its Derivatives, XIV, 75-82 (2009).

    Google Scholar 

  26. M. A. Mayyas and Al-Remawi, Am. J. Appl. Sci., 9, No. 7, 1091-1100 (2012).

    Google Scholar 

  27. C. Lustriane, F. M. Dwivany, V. Suendo, et al., J. Plant Biotechnol., 45, No. 1, 36-14 (2018).

    Article  Google Scholar 

  28. J. Ostrowska-Czubenko and M. Pierog, Progress on Chemistry and Application of Chitin and Its Derivatives, XV, 33-40 (2010).

    Google Scholar 

  29. T. Jozwiak, U. Filipkowska, P. Szymczyk, et al., React. Funct. Polym., 114, 58-74 (2017).

    Article  CAS  Google Scholar 

  30. V. N. Davydova and I. M. Yermak, Biophysics, 63, No. 4, 648-660 (2018).

    Article  Google Scholar 

  31. M. Mucha and A. Pawlak, Polimery, 47, Nos. 7/8, 509-516 (2002).

    Article  CAS  Google Scholar 

  32. P. Burey, B. R. Bhandari, T. Howes, et al., Crit. Rev. Food Sci. Nutr., 48, No. 5, 361-377 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kraskouski.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 56. No. 4. pp. 228-236, July-August, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraskouski, A.N., Nikalaichuk, V.V., Kulikouskaya, V.I. et al. Preparation and Properties of Hydrogel Microparticles Based on Chitosan. Theor Exp Chem 56, 243–251 (2020). https://doi.org/10.1007/s11237-020-09655-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-020-09655-1

Keywords

Navigation