Skip to main content
Log in

Modified Graphenes Prepared by the Interaction of Mechanochemically Nanostructured Graphite with Water and Aliphatic Alcohols

  • Published:
Theoretical and Experimental Chemistry Aims and scope

This is the first demonstration of the feasibility of using the interaction of paramagnetic sites of mechanochemically nanostructured graphite particles with aliphatic alcohols (ethanol and octanol) to change the properties of graphenes formed in the liquid-phase exfoliation of thus modified samples of nanostructured graphite. The presence of various functional groups was confirmed spectroscopically. Raman spectroscopy was used to show that treatment of mechanochemically nanostructured graphite with alcohols may lead to graphenes with fewer defects. The graphene nanoparticles from the resultant dispersions have a tendency to agglomerate upon the removal of the solvent, which increases due to the presence of functional groups on their surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Scheme 1.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. P. M. Beaujuge and J. R. Reynolds, Chem. Rev., 110, No. 1, 268-320 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. A. C. Grimsdale, K. L. Chan, R. E. Martin, et al., Chem. Rev., 109, No. 3, 897-1091 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. X.-F. Zhang and Q. Xi, Carbon, 49, No. 12, 3842-3850 (2011).

    Article  CAS  Google Scholar 

  4. Z. Liu, Q. Liu, Y. Huang, et al., Adv. Mater., 20, No. 20, 3924-3930 (2008).

    Article  CAS  Google Scholar 

  5. E. Kymakis, I. Alexandrou, and G. A. J. Amaratunga, J. Appl. Phys., 93, No. 3, 1764-1768 (2003).

    Article  CAS  Google Scholar 

  6. V. Georgakilas, M. Otyepka, A. B. Bourlinos, et al., Chem. Rev., 112, 6156-6214 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. K. S. Subrahmanyam, A. Ghosh, A. Gomathi, et al., Nanosci. Nanotechnol. Lett., 1, No. 1, 28-31 (2009).

    Article  CAS  Google Scholar 

  8. Y. Liu, J. Zhou, X. Zhang, et al., Carbon, 47, No. 13, 3113-3121 (2009).

    Article  CAS  Google Scholar 

  9. A. Hirsch, J. M. Englert, and F. Hauke, Accounts Chem. Res., 46, No. 1, 87-96 (2013).

    Article  CAS  Google Scholar 

  10. Ch. K. Chua and M. Pumera, Chem. Soc. Rev., 42, No. 8, 3222-3233 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. V. Georgakilas, J. N. Tiwari, K. C. Kemp, et al., Chem. Rev., 116, No. 9, 5464-5519 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. S. P. Lonkar, Y. S. Deshmukh, and A. A. Abdala, Nano Res., 8, No. 4, 1039-1074 (2015).

    Article  CAS  Google Scholar 

  13. O. Yu. Posudievsky, O. A. Khazieieva, V. V. Cherepanov, et al., J. Nanopart. Res., 15, No. 11, 2046 (2013).

    Article  CAS  Google Scholar 

  14. J. Kausteklis, P. Cevc, C. Arčon, et al., Phys. Rev. B, 84, No. 12, 125406 (2011).

    Article  CAS  Google Scholar 

  15. O. Yu. Posudievsky, O. A. Khazieieva, O. A. Kozarenko, et al., Teor. Éksp. Khim., 52, No. 1, 3-8 (2016). [Theor. Exp. Chem., 52, No. 1, 2-9 (2016) (English translation).]

  16. X. Chen, H. Chen, J. Guan, et al., Nanoscale, 9, 5615-5623 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. S. Chen, R. Xu, J. Liu, et al., Adv. Mater., 1804810 (2019).

  18. U. Khan, A. O’Neill, M. Lotya, et al., Small, 6, No. 7, 864-871 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. U. Khan, H. Porwal, A. O’Neill, et al., Langmuir, 27, 9077-9082 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Y. Si and E. T. Samulski, Nano Lett., 8, No. 6, 1679-1682 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. M. Fan, C. Zhu, J. Yang, et al., Electrochim. Acta, 216, 102-109 (2016).

    Article  CAS  Google Scholar 

  22. L. Niu, J. N. Coleman, H. Zhang, et al., Small, 12, No. 3, 272-293 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. D. Bischoff, J. Güttinger, S. Dröscher, et al., J. Appl. Phys., 109, No. 7, 073710 (2011).

    Article  CAS  Google Scholar 

  24. L. Cançado, M. Pimenta, B. Neves, et al., Phys. Rev. Lett., 93, No. 24, 247401 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. D. Yoon, H. Moon, H. Cheong, et al., J. Korean Phys. Soc., 55, No. 3, 1299-1303 (2009).

    Article  CAS  Google Scholar 

Download references

This work was carried out with the support of the Targeted Scientific Research Initiative of the Ukrainian Science and Technology Center (USTC) and National Academy of Sciences of Ukraine as well as the Targeted Joint Basic Research Program of the National Academy of Sciences of Ukraine on Basic Problems in the Creation of New Nanomaterials and Nanotechnologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Posudievsky.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 55, No. 2, pp. 88-94, March-April, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Posudievsky, O.Y., Kondratyuk, A.S., Cherepanov, V.V. et al. Modified Graphenes Prepared by the Interaction of Mechanochemically Nanostructured Graphite with Water and Aliphatic Alcohols. Theor Exp Chem 55, 96–102 (2019). https://doi.org/10.1007/s11237-019-09599-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-019-09599-1

Key words

Navigation