Skip to main content
Log in

Portraying the selectivity of GSK-3 inhibitors towards CDK-2 by 3D similarity and molecular docking

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The striking structural resemblance between adenosine triphosphate (ATP) binding sites of glycogen synthase kinase-3 (GSK-3) and cyclin-dependent kinase-2 (CDK-2) raises numerous off-target selectivity problems in lead-identification processes that may jeopardize their progress into safe and effective drugs. The structural disparities between GSK-3 and CDK-2 in terms of inhibitors chemical space and binding site characteristics were investigated computationally by ligand-based (3D-similarity search) and structure-based (molecular docking) methods to reproduce the selectivity trend of indirubin derivatives. We attempted to assess distinctive key selectivity features of GSK-3 over CDK-2 with focus on indirubins and to provide a cascade virtual screening approach capable to identify suitable de novo GSK-3 selective scaffolds. Seven inhibitors with higher predicted interaction energies against GSK-3 compared to the highly active reference inhibitor were proposed. Concerted effects between 3D similarity search and docking afforded an exhaustive characterization of the binding site interactions. In spite of inherent challenges and limitations, the workflow developed hereby can be applied to other GSK-3 inhibitors, which display similar inhibitory profile against CDK-2, to rationally design potentially selective scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

GSK-3:

Glycogen synthase kinase-3

CDK-2:

Cyclin-dependent kinases-2

MAPK:

Mitogen-activated protein kinase

CLK:

CDC-like kinase

ATP:

Adenosine triphosphate

CDK-2 WII:

CDK-2 weak inhibitors and inactive dataset

CDK-2 decoys:

DUD-E CDK-2 decoys dataset

IXM:

Indirubin-3′-monoxime; (Z)-1H,1’H-[2,3′]bisindolylidene-3,2′-dione-3-oxime

INR:

Indirubin-5-sulphonic acid; (2Z)-2′,3-dioxo-1,1′,2′,3-tetrahydro-2,3′-bisindole-5′-sulfonic acid

TC:

Tanimoto combo

ST:

Shape Tanimoto

SC:

Scaled color

CS:

Combo score

CG4:

Chemgauss4

References

  1. Woodgett JR (1990). EMBO J 9:2431–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee HC, Tsai JN, Liao PY, Tsai WY, Lin KY, Chuang CC, Sun CK, Chang WC, Tsai HJ (2007). BMC Dev Biol 7:93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nikoulina SE, Ciaraldi TP, Mudaliar S, Carter L, Johnson K, Henry RR (2002). Diabetes 51:2190–2198

    Article  CAS  PubMed  Google Scholar 

  4. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995). Nature 378:785–789

    Article  CAS  PubMed  Google Scholar 

  5. Hart MJ, de los Santos R, Albert IN, Rubinfeld B, Polakis P (1998). Curr Biol 8:573–581

    Article  CAS  PubMed  Google Scholar 

  6. Ougolkov AV, Billadeau DD (2006). Future Oncol 2:91–100

    Article  CAS  PubMed  Google Scholar 

  7. Soos TJ, Meijer L, Nelson PJ (2006). Drug News Perspect 19:325–328

    Article  CAS  PubMed  Google Scholar 

  8. Ko HW, Kim EY, Chiu J, Vanselow JT, Kramer A, Edery I (2010). J Neurosci 30:12664–12675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Leclerc S, Garnier M, Hoessel R, Marko D, Bibb JA, Snyder GL, Greengard P, Biernat J, Wu YZ, Mandelkow EM, Eisenbrand G, Meijer L (2001). J Biol Chem 276:251–260

    Article  CAS  PubMed  Google Scholar 

  10. Bhat R, Xue Y, Berg S, Hellberg S, Ormö M, Nilsson Y, Radesäter A-C, Jerning E, Markgren P-O, Borgegård T, Nylöf M, Giménez-Cassina A, Hernández F, Lucas JJ, Díaz-Nido J, Avila J (2003). J Biol Chem 278:45937–45945

    Article  CAS  PubMed  Google Scholar 

  11. Rayasam GV, Tulasi VK, Sodhi R, Davis JA, Ray A (2009). J Pharmacol 156:885–898

    CAS  Google Scholar 

  12. Coghlan MP, Culbert AA, Cross DAE, Corcoran SL, Yates JW, Pearce NJ, Rausch OL, Murphy GJ, Carter PS, Roxbee Cox L, Mills D, Brown MJ, Haigh D, Ward RW, Smith DG, Murray KJ, Reith AD, Holder JC (2000). Chem Biol 7:793–803

    Article  CAS  PubMed  Google Scholar 

  13. Serenó L, Coma M, Rodríguez M, Sánchez-Ferrer P, Sánchez MB, Gich I, Agulló JM, Pérez M, Avila J, Guardia-Laguarta C, Clarimón J, Lleó A, Gómez-Isla T (2009). Neurobiol Dis 35:359–367

    Article  CAS  PubMed  Google Scholar 

  14. Takashima A (2009). J Pharmacol Sci 109:174–178

    Article  CAS  PubMed  Google Scholar 

  15. Mazanetz MP, Fischer PM (2007). Nat Rev Drug Discov 6:464–479

    Article  CAS  PubMed  Google Scholar 

  16. Spittaels K, van den Haute C, van Dorpe J, Geerts H, Mercken M, Bruynseels K, Lasrado R, Vandezande K, Laenen I, Boon T, van Lint J, Vandenheede J, Moechars D, Loos R, van Leuven F (2000). J Biol Chem 275:41340–41349

    Article  CAS  PubMed  Google Scholar 

  17. Caballero J, Zilocchi S, Tiznado W, Collina S, Rossi D (2011). Chem Biol Drug Des 78:631–641

    Article  CAS  PubMed  Google Scholar 

  18. Bertrand JA, Thieffine S, Vulpetti A, Cristiani C, Valsasina B, Knapp S, Kalisz HM, Flocco M (2003). J Mol Biol 333:393–407

    Article  CAS  PubMed  Google Scholar 

  19. Berg S, Bergh M, Hellberg S, Hogdin K, Lo-Alfredsson Y, Soderman P, Von Berg S, Weigelt T, Ormo M, Xue Y, Tucker J, Neelissen J, Jerning E, Nilsson Y, Bhat R (2012). J Med Chem 55:9107–9119

    Article  CAS  PubMed  Google Scholar 

  20. Georgievska B, Sandin J, Doherty J, Mörtberg A, Neelissen J, Andersson A, Gruber S, Nilsson Y, Schött P, Arvidsson PI, Hellberg S, Osswald G, Berg S, Fälting J, Bhat RV (2013). J Neurochem 125:446–456

    Article  CAS  PubMed  Google Scholar 

  21. Pradeep H, Rajanikant GK (2012). Mol Divers 16:553–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Quesada-Romero L, Mena-Ulecia K, Tiznado W, Caballero J (2014). PLoS One 9:e102212

    Article  PubMed  PubMed Central  Google Scholar 

  23. Meijer L, Greengard P, Knockaert M, Skaltsounis A (2007) Patent US 2007/0276025 A1

  24. Polychronopoulos P, Magiatis P, Skaltsounis AL, Myrianthopoulos V, Mikros E, Tarricone A, Musacchio A, Roe SM, Pearl L, Leost M, Greengard P, Meijer L (2004). J Med Chem 47:935–946

    Article  CAS  PubMed  Google Scholar 

  25. Vougogiannopoulou K, Skaltsounis AL (2012). Planta Med 78:1515–1528

    Article  CAS  PubMed  Google Scholar 

  26. Vougogiannopoulou K, Ferandin Y, Bettayeb K, Myrianthopoulos V, Lozach O, Fan Y, Johnson CH, Magiatis P, Skaltsounis A-L, Mikros E, Meijer L (2008). J Med Chem 51:6421–6431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Choi S-J, Lee J-E, Jeong S-Y, Im I, Lee S-D, Lee E-L, Lee SK, Kwon SM, Ahn S-G, Yoon J-H, Han S-Y, Kim J-I, Kim Y-C (2010). J Med Chem 53:3696–3706

    Article  CAS  PubMed  Google Scholar 

  28. Suzuki K, Adachi R, Hirayama A, Watanabe H, Otani S, Watanabe Y, Kasahara T (2005). Br J Haematol 130:681–690

    Article  CAS  PubMed  Google Scholar 

  29. Ferandin Y, Bettayeb K, Kritsanida M, Lozach O, Polychronopoulos P, Magiatis P, Skaltsounis AL, Meijer L (2006). J Med Chem 49:4638–4649

    Article  CAS  PubMed  Google Scholar 

  30. Hoessel R, Leclerc S, Endicott JA, Nobel ME, Lawrie A, Tunnah P, Leost M, Damiens E, Marie D, Marko D, Niederberger E, Tang W, Eisenbrand G, Meijer L (1999) Nature. Cell Biol 1:60–67

    CAS  Google Scholar 

  31. Davies TG, Tunnah P, Meijer L, Marko D, Eisenbrand G, Endicott JA, Noble ME (2001). Structure 9:389–397

    Article  CAS  PubMed  Google Scholar 

  32. RCSB Protein Data Bank, RCSB PDB, https://www.rcsb.org/structure/1Q41 (accessed on January 2018)

  33. RCSB Protein Data Bank, RCSB PDB, https://www.rcsb.org/structure/1E9H (accessed on January 2018)

  34. Crisan L, Avram S, Pacureanu L (2017). Mol Divers 21:385–405

    Article  CAS  PubMed  Google Scholar 

  35. Aouidate A, Ghaleb A, Ghamali M, Chtita S, Ousaa A, M’b C, Sbai A, Bouachrine M, Lakhlifi T (2018). Struct Chem. https://doi.org/10.1007/s11224-018-1134-0

  36. Crisan L, Pacureanu L, Bora A, Avram S, Kurunczi L, Simon Z (2013). Cent Eur J Chem 1:63–77

    Article  CAS  Google Scholar 

  37. Katritzky AR, Pacureanu LM, Dobchev DA, Fara DC, Duchowicz PR, Karelson M (2006). Bioorg Med Chem 14:4987–5002

    Article  CAS  PubMed  Google Scholar 

  38. Pacureanu L, Crisan L, Bora A, Avram S, Kurunczi L (2012). Monatsh Chem 143:1559–1573

    Article  CAS  Google Scholar 

  39. Crisan L, Pacureanu L, Bora A, Avram S, Kurunczi L (2013). Cent Eur J Chem 11:1644–1656

    Article  CAS  Google Scholar 

  40. Crisan L, Pacureanu L, Avram S, Bora A, Avram S, Kurunczi L (2014) J Enz Inhib. Med Chem 29:599–610

    CAS  Google Scholar 

  41. Quesada-Romero L, Caballero J (2014). Mol Divers 18:149–159

    Article  CAS  PubMed  Google Scholar 

  42. Li X, Wang X, Tian Z, Zhao H, Liang D, Li W, Qiu Y, Lu S (2014). J Mol Model 20:2407

    Article  CAS  PubMed  Google Scholar 

  43. Kirchmair J, Distinto S, Schuster D, Spitzer G, Langer T, Wolber G (2008). Curr Med Chem 15:2040–2053

    Article  CAS  PubMed  Google Scholar 

  44. Kim S, Bolton EE, Bryant SH (2011). J Cheminform 3:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Grant JA, Gallardo MA, Pickup B (1996). J Comp Chem 17:1653–1666

    Article  CAS  Google Scholar 

  46. Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D, Mutowo P, Atkinson F, Bellis LJ, Cibrián-Uhalte E, Davies M, Dedman N, Karlsson A, Magariños MP, Overington JP, Papadatos G, Smit I, Leach AR (2017) The ChEMBL database in 2017. Nucleic Acids Res. 45(D1):D945–D954

    Article  CAS  PubMed  Google Scholar 

  47. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012). J Med Chem 55:6582–6594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dean PM (1990) In: Maggiora GM, Johnson MA (eds) Concepts and applications of molecular similarity. Wiley&Sons, New York

    Google Scholar 

  49. Akabli T, Toufik H, Yasri A, Bih H, Lamchouri F (2018). Struct Chem. https://doi.org/10.1007/s11224-018-1141-1

  50. OMEGA v.2.5.1.4 OpenEye Scientific Software Inc. Santa Fe NM, USA www.eyesopen.com

  51. Hawkins PCD, Skillman AG, Warren GL, Ellingson BA, Stahl MT (2010). J Chem Inf Model 50:572–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hawkins PCD, Nicholls A (2012). J Chem Inf Model 52:2919–2936

    Article  CAS  PubMed  Google Scholar 

  53. Boström J, Greenwood JR, Gottfries J (2003). J Mol Graph Model 21:449–462

    Article  PubMed  Google Scholar 

  54. ROCS v.3.2.1.4 OpenEye Scientific Software Inc. Santa Fe NM, USA www.eyesopen.com

  55. Hawkins PCD, Skillman AG, Nicholls A (2007). J Med Chem 50:74–82

    Article  CAS  PubMed  Google Scholar 

  56. Venhorst J, Nunez S, Terpstra JW, Kruse CG (2008). J Med Chem 51:3222–3229

    Article  CAS  PubMed  Google Scholar 

  57. Sheridan RP, McGaughey GB, Cornell WD (2008). J Comput Aided Mol Des 22:257–265

    Article  CAS  PubMed  Google Scholar 

  58. Rush TS, Grant JA, Mosyak L, Nicholls A (2005). J Med Chem 48:1489–1495

    Article  CAS  PubMed  Google Scholar 

  59. FRED v.3.2.0.2 OpenEye Scientific Software Inc. Santa Fe NM, USA www.eyesopen.com

  60. McGann M (2011). J Chem Inf Model 51:578–596

    Article  CAS  PubMed  Google Scholar 

  61. Sotriffer C, Stahl M (2003) In: Abraham DJ (ed) Docking and scoring functions/virtual screening. Wiley & Sons, New York, p 1

    Google Scholar 

  62. Henrich S, Feierberg I, Wang T, Blomberg N, Wade RC (2010). Proteins 78:135–153

    Article  CAS  PubMed  Google Scholar 

  63. Meijer L, Skaltsounis AL, Magiatis P, Polychronopoulos P, Knockaert M, Leost M, Ryan XP, Vonica CA, Brivanlou A, Dajani R, Crovace C, Tarricone C, Musacchio A, Roe SM, Pearl L, Greengard P (2003). Chem Biol 10:1255–1266

    Article  CAS  PubMed  Google Scholar 

  64. Ribas J, Bettayeb K, Ferandin Y, Knockaert M, Garrofé-Ochoa X, Totzke F, Schächtele C, Mester J, Polychronopoulos P, Magiatis P, Skaltsounis AL, Boix J, Meijer L (2006). Oncogene 25:6304–6318

    Article  CAS  PubMed  Google Scholar 

  65. Olesen PH, Sørensen AR, Ursø B, Kurtzhals P, Bowler AN, Ehrbar U, Hansen BF (2003). J Med Chem 46:3333–3341

    Article  CAS  PubMed  Google Scholar 

  66. Kaidanovich-Beilin O, Woodgett JR (2011). Front Mol Neurosci 4:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Meijer L, Flajolet M, Greengard P (2004). Trends Pharmacol Sci 25:471–480

    Article  CAS  PubMed  Google Scholar 

  68. Bain J, McLauchlan H, Elliot M, Cohen P (2003). Biochem J 371:199–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. FILTER v.2.5.1.4 OpenEye Scientific Software Inc. Santa Fe, NM USA www.eyesopen.com

  70. Egan WJ, Merz KM, Baldwin JJ (2000). J Med Chem 43:3867–3877

    Article  CAS  PubMed  Google Scholar 

  71. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kipple KD (2002). J Med Chem 45:2615–2623

    Article  CAS  PubMed  Google Scholar 

  72. Martin YC (2005). J Med Chem 48:3164–3170

    Article  CAS  PubMed  Google Scholar 

  73. Schrödinger Release 2016–1: LigPrep v.3.1 (2016) Schrödinger, LLC, New York, NY

  74. Schrödinger Release 2016–1: Maestro v.10.5 (2016) Schrödinger, LLC, New York, NY

  75. Make Receptor v.3.2.0.2 OpenEye Scientific Software Inc., Santa Fe NM, USA www.eyesopen.com

  76. Nicholls A, McGaughey GB, Sheridan RP, Good AC, Warren G, Mathieu M, Muchmore SW, Brown SP, Grant JA, Haigh JA, Nevins N, Jain AN, Kelley B (2010). J Med Chem 53:3862–3886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yan X, Li J, Liu Z, Zheng M, Ge H, Xu J (2013). J Chem Inf Model 53:1967–1978

    Article  CAS  PubMed  Google Scholar 

  78. Fontaine F, Bolton E, Borodina Y, Bryant SH (2007). Chem Cent J 6:1–12

    Google Scholar 

  79. Muchmore SW, Debe DA, Metz JT, Brown SP, Martin YC, Hajduk PJ (2008). J Chem Inf Model 48:941–948

    Article  CAS  PubMed  Google Scholar 

  80. Bortolato A, Perruccio F, Moro S (2011) In: Miteva MA (ed) Successful applications of in silico Approaches for lead/drug discovery, Bentham Science Publishers

  81. Sutherland JJ, Nandigam RK, Erickson JA, Vieth M (2007). J Chem Inf Model 47:2293–2302

    Article  CAS  PubMed  Google Scholar 

  82. Kelley BP, Brown SP, Warren GL, Muchmore SW (2015). J Chem Inf Model 55:1771–1780

    Article  CAS  PubMed  Google Scholar 

  83. Bemis GW, Murcko MA (1996). J Med Chem 39:2887–2893

    Article  CAS  PubMed  Google Scholar 

  84. Dassault Systèmes BIOVIA (2015) Discovery Studio Visualizer. v4.5.0, vol 15071. Dassault Systèmes, San Diego. www.3dsbiovia.com

    Google Scholar 

  85. Lu SY, Jiang YJ, Lv J, Zou JW, Wu TX (2011). J Comput Chem 32:1907–1918

    Article  CAS  PubMed  Google Scholar 

  86. Zhang B, Tan VBC, Lim KM, Tay TE (2007). J Chem Inf Model 47:1877–1885

    Article  CAS  PubMed  Google Scholar 

  87. Tirado-Rives J, Jorgensen WL (2006). J Med Chem 49:5880–5884

    Article  CAS  PubMed  Google Scholar 

  88. Chang CA, Chen W, Gilson MK (2007). Proc Natl Acad Sci USA 104:1534–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Duca JS, Madison VS, Voigt JH (2008). J Chem Inf Model 48:659–668

    Article  CAS  PubMed  Google Scholar 

  90. Sadowski J, Gasteiger J, Klebe G (1994). J Chem Inf Comput Sci 34:1000–1008

    Article  CAS  Google Scholar 

  91. Boström J, Hogner A, Schmitt S (2006). J Med Chem 49:6716–6725

    Article  CAS  PubMed  Google Scholar 

  92. Kramer T, Schmidt B, Lo Monte F (2012). Int J Alzheimers Dis 2012:381029

  93. Chohan TA, Qian H-Y, Pan Y-L, Chen J-Z (2015). Mol BioSyst 12:145–161

    Article  CAS  Google Scholar 

  94. ChemSpider http://www.chemspider.com/ (accessed on July 2018)

  95. SureChem http://www.surechem.com/ (accessed on July 2018)

  96. Segraves NL, Robinson SJ, Garcia D, Said SA, Fu X, Schmitz FJ, Pietraszkiewicz H, Valeriote FA, Crews P (2004). J Nat Prod 67:783–792

    Article  CAS  PubMed  Google Scholar 

  97. Kim HM, Kim C-S, Lee J-H, Jang SJ, Hwang JJ, Ro S, Choi J (2013). PLoS ONE 8:e60383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gustin JP, Karakas B, Weiss MB, Abukhdeir AM, Lauring J, Garay JP, Cosgrove D, Tamaki A, Konishi H, Konishi Y, Mohseni M, Wang G, Rosena DM, Denmeade SR, Higgins MJ, Vitolo MI, Bachman KE, Park BH (2009). Proc Natl Acad Sci U S A 106:2835–2840

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kunnimalaiyaan S, Schwartz VK, Alao Jackson I, Gamblin TC, Kunnimalaiyaan M (2018). BMC Cancer 18:560–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank OpenEye Scientific Software, Chemaxon, for providing us an academic license, to Dr. Ramona Curpan, Institute of Chemistry Timisoara, for providing access to Schrodinger software acquired through the project PN–II–RU PD_502 funded by UEFISCDI–CNCSIS Romania, to BIOVIA Discovery Studio for the free license and SureChem for the free trial license.

Funding

This project was financially supported by the Institute of Chemistry Timisoara of the Romanian Academy, Project 1.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luminita Crisan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Electronic supplementary material

ESM 1

(PDF 891 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacureanu, L., Avram, S., Bora, A. et al. Portraying the selectivity of GSK-3 inhibitors towards CDK-2 by 3D similarity and molecular docking. Struct Chem 30, 911–923 (2019). https://doi.org/10.1007/s11224-018-1224-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1224-z

Keywords

Navigation