Skip to main content
Log in

Gas-sensing properties of armchair silicene nanoribbons towards carbon-based gases with single-molecule resolution

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Using non-equilibrium Green’s function (NEGF) formalism combined with first-principle density functional theory (DFT), we explore the nature of adsorption of carbon-based gases and the resulting structural, electronic (band structure, density of states, Mulliken population, and electron density), and transport properties (current-voltage characteristics and transmission eigenstates) on pure and defected armchair silicene nanoribbons (ASiNRs) for sensing applications. It is observed that CH4 and CO2 are weakly adsorbed on pristine (P-ASiNR) as well as defective (D-ASiNR) nanoribbons owing to their low adsorption energy and charge transfer, thereby exhibiting low sensitivity and high recoverability. On the other hand, CO is chemisorbed on both nanoribbons exhibiting greater adsorption energy and current, thereby having more sensitivity and more recovery time. Mulliken population analysis reports that a significant amount of charge transfer prevails between ASiNR and gas molecules, validating our results for adsorption energies of the systems. CO2 and CO donates charge to the ASiNR, showcasing their electron-donating nature; contrariwise, CH4 behaves as electron-withdrawing gas by accepting electronic charge from ASiNRs. Our calculations reveal that introduction of vacancy defect increases the sensitivity significantly which is promising for future gas-sensing applications as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Watson J, Ihokura K (1999) Gas-sensing materials. MRS Bull 24:14

    Article  CAS  Google Scholar 

  2. Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287:1801

    Article  CAS  PubMed  Google Scholar 

  3. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287:622

    Article  CAS  PubMed  Google Scholar 

  4. Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) Carbon nanotube sensors for gas and organic vapor detection. Nano Lett 3:929

    Article  CAS  Google Scholar 

  5. Novak JP, Snow ES, Houser EJ, Park D, Stepnowski JL, McGill RA (2003) Nerve agent detection using networks of single-walled carbon nanotubes. Appl Phys Lett 83:4026

    Article  CAS  Google Scholar 

  6. Qi P, Vermesh O, Grecu M, Javey A, Wang Q, Dai H (2003) Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett 3:347

    Article  CAS  Google Scholar 

  7. Valentini L, Armentano I, Kenny JM, Cantalini C, Lozzi L, Santuccia S (2003) Sensors for sub-ppm NO2 gas detection based on carbon nanotube thin films. Appl Phys Lett 82:961

    Article  CAS  Google Scholar 

  8. Zhang D, Liu Z, Li C, Tang T, Liu X, Han S, Lei B, Zhou C (2004) Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett 4:1919

    Article  CAS  Google Scholar 

  9. Chopra S, McGuire K, Gothard N, Rao AM (2003) Selective gas detection using a carbon nanotube sensor. Appl Phys Lett 83:2280

    Article  CAS  Google Scholar 

  10. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666

    Article  CAS  PubMed  Google Scholar 

  11. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Ji T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191

    Article  CAS  PubMed  Google Scholar 

  12. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183

    Article  CAS  PubMed  Google Scholar 

  13. Schedin F, Geim AK, Morozov SV, Hill EH, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 8:652–655

    Article  Google Scholar 

  14. He Q, Zeng Z, Yin Z, Li H, Wu S, Huang X, Zhang H (2012) Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 8:2994–2999

    Article  CAS  PubMed  Google Scholar 

  15. Late DJ, Huang Y-K, Liu B, Acharya J, Shirodkar SN, Luo J, Yan A, Charles D, Waghmare UV, Dravid VP (2013) Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7:4879

    Article  CAS  PubMed  Google Scholar 

  16. Huo N, Yang S, Wei Z, Li S-S, Xia J-B, Li J (2014) Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci Rep 4:5209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. O’Brien M, Lee K, Morrish R, Berner NC, McEvoy N, Wolden CA, Duesberg GS (2014) Plasma assisted synthesis of WS2 for gas sensing applications. Chem Phys Lett 615:6

    Article  Google Scholar 

  18. Kou L, Frauenheim T, Chen C (2014) Phosphorene as a superior gas sensor: selective adsorption and distinct I–V response. J Phys Chem Lett 5:2675

    Article  CAS  PubMed  Google Scholar 

  19. Abbas AN, Liu B, Chen L, Ma Y, Cong S, Aroonyadet N, Köpf M, Nilges T, Zhou C (2015) Black phosphorus gas sensors. ACS Nano 9:5618

    Article  CAS  PubMed  Google Scholar 

  20. Peyghan AA, Noei M, Yourdkhani S (2013) Al-doped graphene-like BN nanosheet as a sensor for para-nitrophenol: DFT study. Superlattice Microst 59:115

    Article  CAS  Google Scholar 

  21. Behmagham F, Vessally E, Massoumi B, Hosseinian A, Edjlali L (2016) A computational study on the SO2 adsorption by the pristine, Al, and Si doped BN nanosheets. Superlattice Microst 100:350

    Article  CAS  Google Scholar 

  22. Chandiramouli R, Srivastava A, Nagarajan V (2015) NO adsorption studies on silicene nanosheet: DFT investigation. Appl Surf Sci 351:662–672

    Article  CAS  Google Scholar 

  23. Aghaei SM, Monshi MM, Calizo I (2016) A theoretical study of gas adsorption on silicene nanoribbons and its application in a highly sensitive molecule sensor. RSC Adv 6:94417–94428

    Article  CAS  Google Scholar 

  24. Walia GK, Randhawa DKK (2018) Electronic and transport properties of silicene based ammonia nanosensors: an ab initio study. Struct Chem 29:257. https://doi.org/10.1007/s11224-017-1025-9

    Article  CAS  Google Scholar 

  25. Walia GK, Randhawa DKK (2018) First-principles investigation on defect-induced silicene nanoribbons - a superior media for sensing NH3, NO2 and NO gas molecules. Surf Sci 670:33. https://doi.org/10.1016/j.susc.2017.12.013

    Article  CAS  Google Scholar 

  26. Walia GK, Randhawa DKK (2018) Adsorption and dissociation of sulphur based toxic gas molecules on silicene nanoribbons: a quest for high-performance gas sensors and catalysts. J Mol Model 24:94. https://doi.org/10.1007/s00894-018-3631-x

    Article  CAS  PubMed  Google Scholar 

  27. Nagarajan V, Chandiramouli R (2017) NO2 adsorption behaviour on germanene nanosheet - a first-principles investigation. Superlattice Microst 101:160

    Article  CAS  Google Scholar 

  28. Ding Y, Nia J (2009) Electronic structures of silicon nanoribbons. Appl Phys Lett 95:083115

    Article  Google Scholar 

  29. Drummond ND, Zolyomi V, Fal’ko VI (2012) Electrically tunable band gap in silicene. Phys Rev B Condens Matter 85:075423

    Article  Google Scholar 

  30. Kara A, Enriquez H, Seitsonen AP, Voon LC, Vizzini S, Aufray B, Oughaddou H (2012) A review on silicene-new candidate for electronics. Sci Rep 67:1

    Article  CAS  Google Scholar 

  31. Vogt P, De Padova DP, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, Resta A, Ealet B, Lay GL (2012) Silicene: compelling experimental evidence for graphene like two-dimensional silicon. Phys Rev Lett 108:155501

    Article  PubMed  Google Scholar 

  32. Amorim RG, Scheicher RH (2015) Silicene as a new potential DNA sequencing device. Nanotechnol 26:154002

    Article  Google Scholar 

  33. Zhao J, Liu H, Yu Z, Quhe R, Zhou S, Wang Y, Liu CC, Zhong H, Han N, Lu J, Yao Y, Wu K (2016) Rise of silicene: a competitive 2D material. Prog Mater Sci 83:24

    Article  CAS  Google Scholar 

  34. Spencer MJS, Morishita T (2016) Silicene, vol 235. Springer Series in Materials Science, Switzerland

    Google Scholar 

  35. Ni Z, Liu Q, Tang K, Zheng J, Zhou J, Qin R, Gao Z, Yu D, Lu J (2012) Tunable bandgap in silicene and germanene. Nano Lett 12:113

    Article  CAS  PubMed  Google Scholar 

  36. Tsai WF, Huang C-Y, Chang T-R, Lin H, Jeng H-T, Bansil A (2013) Gated silicene as a tunable source of nearly 100% spin-polarized electrons. Nat Commun 4:1500

    Article  PubMed  Google Scholar 

  37. Sadeghi H, Bailey S, Lambert CJ (2014) Silicene-based DNA nucleobase sensing. Appl Phys Lett 104:103104

    Article  Google Scholar 

  38. Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D (2015) Silicene field-effect transistors operating at room temperature. Nat Nanotechnol 10:227

    Article  CAS  PubMed  Google Scholar 

  39. Feng J-W, Liu Y-J, Wang H-X, Zhao J-X, Cai Q-H, Wang X-Z (2014) Gas adsorption on silicene: a theoretical study. Comput Mater Sci 87:218

    Article  CAS  Google Scholar 

  40. Prasongkit J, Amorim RG, Chakraborty S, Ahuja R, Scheicher RH, Amornkitbamrung V (2015) Highly sensitive and selective gas detection based on silicene. J Phys Chem C 119:16934–16940

    Article  CAS  Google Scholar 

  41. Hu W, Xia N, Wu X, Li Z, Yang J (2014) Silicene as a highly sensitive molecule sensor for NH3, NO and NO2. Phys Chem Chem Phys 16:6957–6962

    Article  CAS  PubMed  Google Scholar 

  42. Osborn TH, Farajian AA (2014) Silicene nanoribbons as carbon monoxide nanosensors with molecular resolution. Nano Res 7:945

    Article  CAS  Google Scholar 

  43. Guzmán-Verri GG, Voon LLY (2007) Electronic structure of silicon-based nanostructures. Phys Rev B 76:075131

    Article  Google Scholar 

  44. Cahangirov S, Topsakal M, Aktürk E, Şahin H, Ciraci S (2009) Two- and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett 102:236804

    Article  CAS  PubMed  Google Scholar 

  45. Brandbyge M, Mozos J-L, Ordejón P, Taylor J, Stokbro K (2002) Density-functional method for nonequilibrium electron transport. Phys Rev B 65:165401

    Article  Google Scholar 

  46. Zhao Q, Nardelli MB, Lu W, Bernholc J (2005) Carbon nanotube-metal cluster composites: a new road to chemical sensors? Nano Lett 5:847–851

    Article  CAS  PubMed  Google Scholar 

  47. Abadir GB, Walus K, Pulfrey DL (2009) Basis set choice for DFT/NEGF simulations of carbon nanotubes. J Comp Electron 8:1–9

    Article  CAS  Google Scholar 

  48. Zhang Y-H, Chen Y-B, Zhou K-G, Liu C-H, Zeng J, Zhang H-L, Peng Y (2009) Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 20:185504

    Article  PubMed  Google Scholar 

  49. Atomistix Toolkit version 2015.0. QuantumWise, Copenhagen. Available from: http://www.quantumwise.com

  50. Li C, Yang S, Li SS, Xia JB, Li JB (2013) Au-decorated silicene: design of a high-activity catalyst toward CO oxidation. J Phys Chem C 117:483

    Article  CAS  Google Scholar 

  51. Chen R, Franklin N, Kong J, Cao J, Tombler T, Zhang Y, Dai H (2001) Molecular photodesorption from single-walled carbon nanotubes. Appl Phys Lett 79:2258–2260

    Article  CAS  Google Scholar 

  52. Hyman MP, Medlin JW (2005) Theoretical study of the adsorption and dissociation of oxygen on Pt(111) in the presence of homogeneous electric fields. J Phys Chem B 109:6304–6310

    Article  CAS  PubMed  Google Scholar 

  53. Poole CP Jr, Owens FJ (2003) Introduction to nanotechnology. John Wiley & Sons, Hoboken

    Google Scholar 

Download references

Funding

We gratefully acknowledge funding support from Department of Science & Technology (DST) of India—Promotion of University Research and Scientific Excellence (PURSE) scheme. The authors would also like to thank Quantumwise for their valuable support. Walia GK wants to acknowledge University Grants Commission, New Delhi, India, for Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurleen Kaur Walia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walia, G.K., Randhawa, D.K.K. Gas-sensing properties of armchair silicene nanoribbons towards carbon-based gases with single-molecule resolution. Struct Chem 29, 1893–1902 (2018). https://doi.org/10.1007/s11224-018-1170-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1170-9

Keywords

Navigation