Skip to main content
Log in

On total least squares for quadratic form estimation

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The mathematical approximation of scanned data by continuous functions like quadratic forms is a common task for monitoring the deformations of artificial and natural objects in geodesy. We model the quadratic form by using a high power structured errors-in-variables homogeneous equation. In terms of Euler-Lagrange theorem, a total least squares algorithm is designed for iteratively adjusting the quadratic form model. This algorithm is proven as a universal formula for the quadratic form determination in 2D and 3D space, in contrast to the existing methods. Finally, we show the applicability of the algorithm in a deformation monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amiri-Simkooei A.R., 2007. Least-Squares Variance Component Estimation: Theory and GPS Applications. Ph.D. Thesis, Delft University of Technology. Publication on Geodesy, 64, Netherlands Geodetic Commission, Delft, The Netherlands.

  • Amiri-Simkooei A.R. and Jazaeri S., 2012. Weighted total least squares formulated by standard least squares theory. J. Geod. Sci., 2(2), 113–124.

    Google Scholar 

  • Amiri-Simkooei A.R., 2013. Application of least squares variance component estimation to errorsin-variables models. J. Geodesy, 87, 935–944.

    Article  Google Scholar 

  • Amiri-Simkooei A.R. and Jazaeri S., 2013. Data-snooping procedure applied to errors-in-variables models. Stud. Geophys. Geod., 57, 426–441.

    Article  Google Scholar 

  • Bookstein F.L., 1979. Fitting conic sections to scattered data. Comput. Graph. Image Process., 9, 59–71.

    Article  Google Scholar 

  • Coope D., 1993. Circle fitting by linear and nonlinear least-squares. J. Optim. Theory Appl., 76, 381–388.

    Article  Google Scholar 

  • Davis T.G., 1999. Total least-squares spiral curve fitting. J. Surv. Eng.-ASCE, 125, 159–176.

    Article  Google Scholar 

  • Drixler E., 1993. Analyse der Lage und Form von Objekten im Raum. Dissertation. Deutsche Geodätische Kommission, Reihe C, Heft Nr. 409, München, Germany (in German).

    Google Scholar 

  • Eling D., 2009. Terrestrisches Laserscanning für die Bauwerksüberwachung. Dissertation. Deutsche Geodätische Kommission, Reihe C, Nr. 641, München, Germany (in German, http://www.dgk.badw.de/fileadmin/docs /c-641.pdf).

    Google Scholar 

  • Fang X., 2011. Weighted Total Least Squares Solution for Application in Geodesy. PhD Thesis, No. 294, Leibniz University, Hannover, Germany.

    Google Scholar 

  • Fang X., 2013. Weighted total least squares: necessary and sufficient conditions, fixed and random parameters. J. Geodesy, 87, 733–749. DOI: 10.1007/s00190-013-0643-2.

    Article  Google Scholar 

  • Fang X., 2014a. A structured and constrained total least-squares solution with cross-covariances. Stud. Geophys. Geod., 58, 1–16, DOI: 10.1007/s11200-012-0671-z.

    Article  Google Scholar 

  • Fang X., 2014b. On non-combinatorial weighted total least squares with inequality constraints. J. Geodesy, 88, 805–816.

    Article  Google Scholar 

  • Fang X., 2014c. A total least squares solution for geodetic datum transformations. Acta Geod. Geophys., 49, 189–207.

    Article  Google Scholar 

  • Fang X., 2015. Weighted total least-squares with constraints: a universal formula for geodetic symmetrical transformations. J. Geodesy, DOI: 10.1007/s00190-015-0790-8 (in print).

    Google Scholar 

  • Fitzgibbon A., Pilu M. and Fisher R., 1999. Direct least-squares fitting of ellipses. IEEE Trans. Pattern Anal. Machine Intell., 21, 476–480.

    Article  Google Scholar 

  • Gander W., Golub G.H. and Strebel R., 1994. Least-squares fitting of circles and ellipses. BIT, 34, 558–578.

    Article  Google Scholar 

  • Golub G. and Van Loan C., 1980. An analysis of the total least-squares problem. SIAM J. Numer. Anal., 17, 883–893, DOI: 10.1137/0717073.

    Article  Google Scholar 

  • Grafarend E. and Awange J.L., 2012. Applications of Linear and Nonlinear Models. Fixed Effects, Random Effects, and Total Least Squares. Springer-Verlag, Berlin, Germany.

    Book  Google Scholar 

  • Hesse C., 2007. Hochauflösende kinematische Objekterfassung mit terrestrischen Laserscannern. Dissertation. Deutsche Geodätische Kommission, Reihe C, Nr. 608, München, Germany (in German).

    Google Scholar 

  • Hesse C. and Kutterer H., 2006. Automated form recognition of laser scanned deformable objects. In: ei]Sansò F. and Gil A. (Eds), Geodetic Deformation Monitoring: From Geophysical to Engineering Roles. International Association of Geodesy Symposia, 131, Springer-Verlag, Heidelberg, Germany.

    Google Scholar 

  • Kanatani K., 1994. Statistical bias of conic fitting and renormalization. IEEE Trans. Pattern Anal. Machine Intell., 16, 320–326.

    Article  Google Scholar 

  • Kupferer S., 2005. Application of the TLS Technique to Geodetic Problems. PhD Thesis. Geodetic Institute, University of Karlsruhe, Karlsruhe, Germany.

    Google Scholar 

  • Kutterer H. and Schön S., 1999. Statistische Analyse quadratischer Formen-der Determinantenansatz. AVN, 10/1999, 322-330 (in German, http://www.wichmannverlag. de/images/stories/avn/artikelarchiv/1999/10/5f134c46d35.pdf).

    Google Scholar 

  • Li B., Shen Y. and Lou L., 2013. Seamless multivariate affine error-in-variables transformation and its application to map rectification. Int. J. GIS, 27, 1572–1592.

    Google Scholar 

  • Markovsky I., Kukush A. and Van Huffel S., 2004. Consistent least-squares fitting of ellipsoids. Numer. Math., 98, 177–194.

    Article  Google Scholar 

  • Nievergelt Y., 2001. Hyperspheres and hyperplanes fitting seamlessly by algebraic constrained total least-squares. Linear Alg. Appl., 331, 145–155.

    Article  Google Scholar 

  • Paffenholz J.A., 2012. Direct Geo-Referencing of 3D Point Clouds with 3D Positioning Sensors. Dissertation. Deutsche Geodätische Kommission, Reihe C, Nr. 689, München, Germany (in German)

    Google Scholar 

  • Pope A.J., 1972. Some pitfalls to be avoided in the iterative adjustment of nonlinear problems. In: Proceedings of the 38th Annual Meeting, American Society of Photogrammetry, Washington, D.C., Mar. 12-17, 1972. American Society of Photogrammetry, Bethesda, MD, 449–477.

    Google Scholar 

  • Schaffrin B. and Wieser A., 2008. On weighted total least-squares adjustment for linear regression. J. Geodesy, 82, 415–421, DOI: 10.1007/s00190-007-0190-9.

    Article  Google Scholar 

  • Schaffrin B. and Snow K., 2010. Total Least-Squares regularization of Tykhonov type and an ancient racetrack in Corinth. Linear Alg. Appl., 432, 2061–2076.

    Article  Google Scholar 

  • Shen Y., Li B. and Chen Y., 2011. An iterative solution of weighted total least-squares adjustment. J. Geodesy, 85, 229–238, DOI: 10.1007/s00190-010-0431-1.

    Article  Google Scholar 

  • Späth H., 1996. Orthogonal squared distance fitting with parabolas. In: ei]Alefeld G. and Herzberger J. (Eds),Proceedings of the IMACS-GAMM International Symposium on Numerical Methods and Error-Bounds. Akademie-Verlag, Berlin, Germany, 261–269.

    Google Scholar 

  • Späth H., 1997a. Least-squares fitting of ellipses and hyperbolas. Comput. Stat., 12, 329–341.

    Google Scholar 

  • Späth H., 1997b. Orthogonal distance fitting by circles and ellipses with given area. Comput. Stat., 12, 343–354.

    Google Scholar 

  • Teunissen P.J.G., 1985. The Geometry of Geodetic Inverse Linear Mapping and Nonlinear Adjustment. Netherlands Geodetic Commission, Publications on Geodesy, New Series, 8(1), 186 pp.

    Google Scholar 

  • Teunissen PJG (1988) The non-linear 2D symmetric Helmert transformation: an exact non-linear least-squares solution. Journal of Geodesy, 62 (1):1–15

    Google Scholar 

  • Teunissen P.J.G., 1989a. A note on the bias in the symmetric Helmert transformation, Festschrift Krarup, 1–8.

    Google Scholar 

  • Teunissen P.J.G., 1989b. First and second moments of nonlinear least-squares estimators. J. Geodesy, 63, 253–262.

    Google Scholar 

  • Teunissen P.J.G., 1990. Nonlinear least squares. Manuscripta Geodaetica, 15, 137–150.

    Google Scholar 

  • Teunissen P.J.G. and Amiri-Simkooei A.R., 2008. Least-squares variance component estimation. J. Geodesy, 82, 65–82.

    Article  Google Scholar 

  • Wang J., Kutterer H. and Fang X., 2012. On the detection of systematic errors in terrestrial laser scanning data. J. Appl. Geod., 6, 187–192.

    Google Scholar 

  • Wang J., 2013a. Block-to-point fine registration in terrestrial laser scanning. Remote Sens., 5, 6921–6937, DOI: 10.3390/rs5126921.

    Article  Google Scholar 

  • Wang J., 2013b. Towards Deformation Monitoring with Terrestrial Laser Scanning Based on External Calibration and Feature Matching Methods. PhD Thesis, No. 308, Leibniz University, Hannover, Germany.

    Google Scholar 

  • Xu P.L., Liu J.N. and Shi C., 2012. Total least squares adjustment in partial errors-in-variables models: algorithm and statistical analysis. J. Geodesy, 86, 661–675, DOI: 10.1007/s00190-012-0552-9.

    Article  Google Scholar 

  • Xu P.L. and Liu J.N., 2014. Variance components in errors-in-variables models: estimability, stability and bias analysis. J. Geodesy, 88, 719–734, DOI: 10.1007/s00190-014-0717-9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Wang, J., Li, B. et al. On total least squares for quadratic form estimation. Stud Geophys Geod 59, 366–379 (2015). https://doi.org/10.1007/s11200-014-0267-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-014-0267-x

Keywords

Navigation