Skip to main content
Log in

Variance component estimation in errors-in-variables models and a rigorous total least-squares approach

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

A method for variance component estimation (VCE) in errors-in-variables (EIV) models is proposed, which leads to a novel rigorous total least-squares (TLS) approach. To achieve a realistic estimation of parameters, knowledge about the stochastic model, in addition to the functional model, is required. For an EIV model, the existing TLS techniques either do not consider the stochastic model at all or assume approximate models such as those with only one variance component. In contrast to such TLS techniques, the proposed method considers an unknown structure for the stochastic model in the adjustment of an EIV model. It simultaneously predicts the stochastic model and estimates the unknown parameters of the functional model. Moreover the method shows how an EIV model can support the Gauss-Helmert model in some cases. To make the VCE theory into EIV model more applicable, two simplified algorithms are also proposed. The proposed methods can be applied to linear regression and datum transformation. We apply these methods to these examples. In particular a 3-D non-linear close to identical similarity transformation is performed. Two simulation studies besides an experimental example give insight into the efficiency of the algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Acar M., Özlüdemir M., Akyilmaz O., Celik R. and Ayan T., 2006. Deformation analysis with Total Least Squares. Nat. Hazards Earth Syst. Sci., 6, 663–669.

    Article  Google Scholar 

  • Akaike H., 1974. A new look at the statistical model identification. IEEE Trans. Autom. Control., 19, 716–723.

    Article  Google Scholar 

  • Baarda W., 1968. A Testing Procedure for Use in Geodetic Networks. Publications on Geodesy, 2, No. 5, Netherlands Geodetic Commission, Delft, The Netherlands.

    Google Scholar 

  • Fang X., 2011. Weighted Total Least Squares Solutions for Applications in Geodesy. PhD Thesis, Leibniz University, Hannover, Germany.

    Google Scholar 

  • Fang X., 2013. Weighted total least squares: necessary and sufficient conditions, fixed and random parameters. J. Geodesy, 87, 733–748, DOI: 10.1007/s00190-013-0643-2.

    Article  Google Scholar 

  • Felus A., 2004. Application of total least squares for spatial point process analysis. J. Surv. Eng., 130(3), 126–133.

    Article  Google Scholar 

  • Felus Y.A. and Felus M., 2009. On Choosing the Right Coordinate Transformation Method. https://www.fig.net/pub/fig2009/papers/ts04c/ts04c_felus_felus_3313.pdf.

    Google Scholar 

  • Golub G. and Van Loan C., 1980. An analysis of the Total Least Squares problem. SIAM J. Num. Anal., 17, 883–893.

    Article  Google Scholar 

  • Grafarend E.W., 1984. Variance-covariance component estimation of Helmert type in the Gauss-Helmert model. Zeitschrift fur Vermessungswesen, 109, 34–44.

    Google Scholar 

  • Grafarend E.W., 1985. Variance-covariance component estimation: theoretical results and geodetic applications. Statistics & Decisions, Suppl. 2, 407–441.

    Google Scholar 

  • Helmert F.R., 1907. Die Ausgleichungsrechnung nach der Methode der kleinsten Quadrate. 2. Auflage. B.G. Teubner, Leipzig/Berlin, Germany (in German).

    Google Scholar 

  • Koch K.R., 1978. Schätzung von Varianzkomponenten. Allgemeine Vermessungs Nachrichten, 85, 264–269 (in German).

    Google Scholar 

  • Koch K.R., 1999. Parameter Estimation and Hypothesis Testing in Linear Models. Springer Verlag, Berlin, Germany.

    Book  Google Scholar 

  • Magnus J.R., 1988. Linear Structures. Griffin’s Statistical Monographs 42, Oxford University Press, New York.

    Google Scholar 

  • Mahboub V., 2012. On weighted total least-squares for geodetic transformations. J. Geodesy, 86, 359–367, DOI: 10.1007/s00190-012-0524-5.

    Article  Google Scholar 

  • Mahboub V., Amiri-Simkooei A.R. and Sharifi M.A., 2012. Iteratively reweighted total leastsquares: A robust estimation in errors-in-variables models. Surv. Rev., 45, 92–99, DOI: 10.1179/1752270612Y.0000000017.

    Google Scholar 

  • Mahboub V. and Sharifi M.A., 2013. On weighted total least-squares with linear and quadratic constraints. J. Geodesy, 87, 279–286, DOI: 10.1007/s00190-012-0598-8.

    Article  Google Scholar 

  • Mallows C.L. 1973., Some comments on Cp. Technometrics, 15, 661–675, DOI: 10.2307/1267380.

    Google Scholar 

  • Markovsky I., Rastello M., Premoli A., Kukush A. and van Huffel S., 2006. The element-wise weighted total least-squares problem. Comput. Statist. Data Anal., 50, 181–209.

    Article  Google Scholar 

  • Neitzel F., 2010. Generalization of total least-squares on example of unweighted and weighted 2D similarity transformation. J. Geodesy, 84, 751–762.

    Article  Google Scholar 

  • Pukelsheim F., 1981. On the existence of unbiased nonnegative estimates of variance covariance components. Annals of Statistics, 9, 293–299 (http://www.math.uni-augsburg.de/stochastik/pukelsheim/1981b.pdf).

    Article  Google Scholar 

  • Rao C.R., 1971. Estimation of variance and covariance components — MINQUE theory. J. Multivar. Anal., 1, 257–275.

    Article  Google Scholar 

  • Schaffrin B., 1981. Best invariant covariance component estimators and its application to the generalized multivariate adjustment of heterogeneous deformation observations. Bull. Geod., 55, 73–85.

    Article  Google Scholar 

  • Schaffrin B., 1983. Varianz-Kovarianz-Komponenten-Schätzung bei der Ausgleichung heterogener Wiederholungsmessungen. Reihe C, 282. Deutsche Geodätische Kommission, Munchen, Germany (in German).

    Google Scholar 

  • Schaffrin B., 1985. Das geodatische Datum mit stochastischer Vorinfformation. Reihe C, 313. Deustche Geodätische Kommission, Munchen, Germany (in German).

    Google Scholar 

  • Schaffrin B., 2006. A note on constraint total least-squares estimation. Linear Alg. Appl., 417, 245–258.

    Article  Google Scholar 

  • Schaffrin B. and Wieser A., 2008. On weighted total least-squares adjustment for linear regression. J. Geodesy, 82, 415–421.

    Article  Google Scholar 

  • Schaffrin B. and Wieser A., 2009. Empirical affine reference frame transformations by weighted multivariate TLS adjustment. In: Drewes H (Ed.), Geodetic Reference Frames. International Association of Geodesy Symposia 134, Springer Verlag, Berlin, Germany, 213–218.

    Chapter  Google Scholar 

  • Snow K., 2012. Topics in Total Least-Squares Adjustment within the Errors-In-Variables Model: Singular Cofactor Matrices and Priori Information. PhD Thesis. Report No 502, Geodetic Science Program, School of Earth Sciences, The Ohio State University, Columbus, OH.

    Google Scholar 

  • Teunissen P.J.G., 1984. Generalized Inverse, Adjustment the Datum Problem and S-Transformations. Department of Geodesy, Delft University of Technology, Delft, The Netherlands (http://saegnss1.curtin.edu.au/Publications/1984/Teunissen1984Generalized.pdf).

    Google Scholar 

  • Teunissen P.J.G., 1988. The nonlinear 2D nymmetric Helmert transformation: An exact nonlinear least-squares solution. J. Geodesy, 62, 1–15.

    Article  Google Scholar 

  • Teunissen P.J.G., 1988. Towards a Least-Squares Framework for Adjusting and Testing of Both Functional and Stochastic Models. Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands (http://www.lr.tudelft.nl/mgp).

    Google Scholar 

  • Teunissen P.J.G., 1989. First and second order moments of nonlinear least-squares estimators. J. Geodesy, 63, 253–262.

    Article  Google Scholar 

  • Teunissen P.J.G., 1990. Nonlinear least-squares. Manuscripta Geodaetica, 15, 137–150.

    Google Scholar 

  • Teunissen P.J.G. and Amiri-Simkooei A.R., 2008. Least-squares variance component estimation. J. Geodesy. 82, 65–82, DOI: 10.1007/s00190-007-0157-x.

    Article  Google Scholar 

  • Teunissen P.J.G., Simons D.G. and Tiberius C.C.J.M., 2005. Probability and Observation Theory. Lecture Notes AE2-E01, Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands.

    Google Scholar 

  • van Huffel S. and Vandewalle J., 1991. The Total Least-Squares Problem: Computational Aspects and Analysis. SIAM, Philadelphia.

    Book  Google Scholar 

  • Zhang J., Bock Y., Johnson H., Fang P., Williams S., Genrich J., Wdowinski S. and Behr J., 1997. Southern California permanent GPS geodetic array: Error analysis of daily position estimates and site velocitties. J. Geophys. Res., 102, 18035–18055.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Mahboub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahboub, V. Variance component estimation in errors-in-variables models and a rigorous total least-squares approach. Stud Geophys Geod 58, 17–40 (2014). https://doi.org/10.1007/s11200-013-1150-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-013-1150-x

Keywords

Navigation