Skip to main content
Log in

Donor-acceptor coordination of anions by chalcogen atoms of 1,2,5-chalcogenadiazoles

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Synthetic, structural, and thermodynamic aspects of the recently discovered new reaction, donor-acceptor coordination of anions (A) by chalcogen atoms (E) of 1,2,5-chalcogenadiazoles, are considered. According to the quantum chemical calculations, the charge transfer from A to the heterocycle via the mechanism of negative hyperconjugation (i.e., from the MO of the lone pair of A to the virtual σ* orbital of the E—N bond of chalcogenadiazole) depends on the nature of E and A, being 0.42—0.52 and 0.30—0.44 e in terms of the Mulliken and NBO methods, respectively. According to the X-ray diffraction data, the E—A coordinate bond is always longer than the sum of the covalent radii but shorter than the sum of the van der Waals radii of the atoms forming the bond. The E—A bond energy varies in a wide range, from ~25 kcal mol–1 comparable to the energy of weak covalent bonds (e.g., internal N—N bond in organic azides) to ~86 kcal mol–1 comparable to the C—C bond energy in organic compounds. The quantum chemical estimations of the thermodynamics of the donor-acceptor coordination of the anions by the chalcogen atoms of 1,2,5-chalcogenadiazoles indicate that for E = Te and Se this reaction may be of general character also covering E = S in some cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Konstantinova, E. A. Knyazeva, O. A. Rakitin, Org. Prep. Proc. Int., 2014, 46, 475.

    Article  CAS  Google Scholar 

  2. B. A. D. Neto, A. A. M. Lapis, E. N. da Silva Junior, J. Dupont, Eur. J. Org. Chem., 2013, 228.

    Google Scholar 

  3. A. V. Lonchakov, O. A. Rakitin, N. P. Gritsan, A. V. Zibarev, Molecules, 2013, 18, 9850.

    Article  CAS  Google Scholar 

  4. Z. V. Todress, Chalcogenadiazoles: Chemistry and Applications, CCR Press—Taylor & Francis, London, 2012.

    Google Scholar 

  5. P. A. Koutentis, in Comprehensive Heterocyclic Chemistry III, Eds A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, and R. J. K. Taylor, Elsevier, Oxford, 2008, 5, 516.

    Google Scholar 

  6. S. Yamazaki, in Comprehensive Heterocyclic Chemistry III, Eds A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, and R. J. K. Taylor, Elsevier, Oxford, 2008, 6, 518.

    Google Scholar 

  7. P. A. Koutentis, in Science of Synthesis, Eds R. C. Storr and T. L. Gilchrist, Thieme, Stuttgart, 2003, 13, 297.

    Google Scholar 

  8. R. A. Aitken, in Science of Synthesis, Eds R. C. Storr and T. L. Gilchrist, Thieme, Stuttgart, 2003, 13, 777.

    Google Scholar 

  9. O. Hinsberg, Ber. Deutsch. Chem. Ges., 1889, 22, 862.

    Article  Google Scholar 

  10. O. Hinsberg, Ber. Deutsch. Chem. Ges., 1889, 22, 2895.

    Article  Google Scholar 

  11. I. D. Sadekov, V. I. Minkin, Adv. Heterocycl. Chem., 2001, 79, 1.

    Article  CAS  Google Scholar 

  12. V. Bertini, F. Lucchesini, A. De Munno, Synthesis, 1982, 681.

    Google Scholar 

  13. V. Bertini, P. Dapporto, F. Lucchesini, A. Sega, A. De Munno, Acta Crystallogr., Sect. C, 1984, 40, 653.

    Article  Google Scholar 

  14. R. Neidlein, D. Knecht, A. Gieren, C. Ruiz-Perez, Z. Naturforsch. B, 1987, 42, 84.

    Article  CAS  Google Scholar 

  15. R. Neidlein, D. Knecht, Helv. Chim. Acta, 1987, 70, 1076.

    Article  CAS  Google Scholar 

  16. T. Chivers, X. Gao, M. Parvez, Inorg. Chem., 1996, 35, 9.

    Article  CAS  Google Scholar 

  17. V. N. Kovtonyuk, A. Yu. Makarov, M. M. Shakirov, A. V. Zibarev, Chem. Commun., 1996, 1991.

    Google Scholar 

  18. N. A. Semenov, N. A. Pushkarevsky, J. Beckmann, P. Finke, E. Lork, R. Mews, I. Yu. Bagryanskaya, Yu. V. Gatilov, S. N. Konchenko, V. G. Vasiliev, A. V. Zibarev, Eur. J. Inorg. Chem., 2012, 3693.

    Google Scholar 

  19. N. A. Pushkarevsky, A. V. Lonchakov, N. A. Semenov, E. Lork, L. I. Buravov, L. S. Konstantinova, T. G. Silber, N. Robertson, N. P. Gritsan, O. A. Rakitin, J. D. Woollins, E. B. Yagubskii, A. V. Zibarev, Synth. Met., 2012, 162, 2267.

    Article  CAS  Google Scholar 

  20. N. A. Semenov, A. V. Lonchakov, N. A. Pushkarevsky, E. A. Suturina, V. V. Korolev, E. Lork, V. G. Vasiliev, S. N. Konchenko, J. Beckmann, N. P. Gritsan, A. V. Zibarev, Organometallics, 2014, 33, 4302.

    Article  CAS  Google Scholar 

  21. A. F. Cozzolino, P. J. W. Elder, I. Vargas-Baca, Coord. Chem. Rev., 2011, 255, 1426.

    Article  CAS  Google Scholar 

  22. A. F. Cozzolino, I. Vargas-Baca, Cryst. Growth Des., 2011, 11, 668.

    Article  CAS  Google Scholar 

  23. A. F. Cozzolino, P. S. Whitfield, I. Vargas-Baca, J. Am. Chem. Soc., 2010, 132, 17265.

    Article  CAS  Google Scholar 

  24. A. F. Cozzolino, Q. Yang, I. Vargas-Baca, Cryst. Growth Des., 2010, 10, 4959.

    Article  CAS  Google Scholar 

  25. A. F. Cozzolino, A. D. Bain, S. Hanhan, I. Vargas-Baca, Chem. Commun., 2009, 4043.

    Google Scholar 

  26. A. F. Cozzolino, J. F. Britten, I. Vargas-Baca, Cryst. Growth Des., 2006, 6, 181.

    Article  CAS  Google Scholar 

  27. A. F. Cozzolino, I. Vargas-Baca, S. Mansour, A. H. Mahmoudkhani, J. Am. Chem. Soc., 2005, 127, 3184.

    Article  CAS  Google Scholar 

  28. P. A. Stuzhin, M. S. Mikhailov, E. S. Yurina, M. I. Bazanov, O. I. Koifman, G. L. Pakhomov, V. V. Travkin, A. A. Sinelshchikova, Chem. Commun., 2012, 48, 10135.

    Article  CAS  Google Scholar 

  29. A. V. Zibarev, R. Mews, in Selenium and Tellurium Chemistry: From Small Molecules to Biomolecules and Materials, Eds J. D. Woollins and R. S. Laitinen, Springer, Berlin, 2011, 123.

  30. N. P. Gritsan, A. V. Zibarev, Russ. Chem. Bull. (Int. Ed.), 2011, 60, 2131 [Izv. Akad. Nauk, Ser. Khim., 2011, 2091].

    Article  CAS  Google Scholar 

  31. S. N. Konchenko, N. P. Gritsan, A. V. Lonchakov, U. Radius, A. V. Zibarev, Mendeleev Commun., 2009, 19, 7.

    Article  CAS  Google Scholar 

  32. S. N. Konchenko, N. P. Gritsan, A. V. Lonchakov, I. G. Irtegova, R. Mews, V. I. Ovcharenko, U. Radius, A. V. Zibarev, Eur. J. Inorg. Chem., 2008, 3833.

    Google Scholar 

  33. N. P. Gritsan, A. V. Lonchakov, E. Lork, R. Mews, E. A. Pritchina, A. V. Zibarev, Eur. J. Inorg. Chem., 2008, 1994.

    Google Scholar 

  34. I. Yu. Bagryanskaya, Yu. V. Gatilov, N. P. Gritsan, V. N. Ikorskii, I. G. Irtegova, A. V. Lonchakov, E. Lork, R. Mews, V. I. Ovcharenko, N. A. Semenov, N. V. Vasilieva, A. V. Zibarev, Eur. J. Inorg. Chem., 2007, 4751.

    Google Scholar 

  35. V. N. Ikorskii, I. G. Irtegova, E. Lork, A. Yu. Makarov, R. Mews, V. I. Ovcharenko, A. V. Zibarev, Eur. J. Inorg. Chem., 2006, 3061.

    Google Scholar 

  36. A. Yu. Makarov, I. G. Irtegova, N. V. Vasilieva, I. Yu. Bagryanskaya, T. Borrmann, Yu. V. Gatilov, E. Lork, R. Mews, W. D. Stohrer, A. V. Zibarev, Inorg. Chem., 2005, 44, 7194.

    Article  CAS  Google Scholar 

  37. N. A. Semenov, N. A. Pushkarevsky, A. V. Lonchakov, A. S. Bogomyakov, E. A. Pritchina, E. A. Suturina, N. P. Gritsan, S. N. Konchenko, R. Mews, V. I. Ovcharenko, A. V. Zibarev, Inorg. Chem., 2010, 49, 7558.

    Article  CAS  Google Scholar 

  38. N. A. Semenov, N. A. Pushkarevsky, E. A. Suturina, E. A. Chulanova, N. V. Kuratieva, A. S. Bogomyakov, I. G. Irtegova, N. V. Vasilieva, L. S. Konstantinova, N. P. Gritsan, O. A. Rakitin, V. I. Ovcharenko, S. N. Konchenko, A. V. Zibarev, Inorg. Chem., 2013, 52, 6654.

    Article  CAS  Google Scholar 

  39. D. A. Bashirov, T. S. Sukhikh, N. V. Kuratieva, E. A. Chulanova, I. V. Yushina, N. P. Gritsan, S. N. Konchenko, A. V. Zibarev, RSC Advances, 2014, 4, 28309.

    Article  CAS  Google Scholar 

  40. E. A. Suturina, N. A. Semenov, A. V. Lonchakov, I. Yu. Bagryanskaya, Yu. V. Gatilov, I. G. Irtegova, N. V. Vasilieva, E. Lork, R. Mews, N. P. Gritsan, A. V. Zibarev, J. Phys. Chem. A, 2011, 115, 4851.

    Article  CAS  Google Scholar 

  41. Z. Rykowski, E. Sczesna, Polish J. Chem., 1989, 63, 307.

    CAS  Google Scholar 

  42. S. Grimme, F. Neese, J. Chem. Phys., 2007, 127, 154116.

    Article  Google Scholar 

  43. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297.

    Article  CAS  Google Scholar 

  44. F. Di Meo, P. Trouillas, C. Adamo, J. C. Sancho-Garcia, J. Chem. Phys., 2013, 139, 164104.

    Article  Google Scholar 

  45. A. Dreuw, M. Head-Gordon, Chem. Rev., 2005, 105, 4009.

    Article  CAS  Google Scholar 

  46. S. Grimme, J. Comput. Chem., 2006, 27, 1787.

    Article  CAS  Google Scholar 

  47. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 15410435.

    Article  Google Scholar 

  48. S. Sinnecker, A. Rajendran, A. Klamt, M. Diedenhofen, F. Neese, J. Phys. Chem. A, 2006, 110, 2235.

    Article  CAS  Google Scholar 

  49. Y. Yamashita, Y. Mikai, T. Miyashi, G. Saito, Bull. Chem. Soc. Jpn, 1988, 61, 483.

    Article  Google Scholar 

  50. R. Bussas, G. Kresze, H. Muensterer, A. Schwoebel, Sulfur Rep., 1983, 2, 215.

    CAS  Google Scholar 

  51. S. Bleisch, R. Mayer, in Methoden der Organischen Chemie (Houben-Weyl), Thieme, Stuttgart, 1985, E11, 584.

    Google Scholar 

  52. A. V. Zibarev, G. G. Yakobson, Russ. Chem. Rev., 1985, 54, 1006.

    Article  Google Scholar 

  53. T. Maaninen, H. M. Tuononen, K. Kosunen, R. Oilunkaniemi, J. Hiitola, R. S. Laitinen, T. Chivers, Z. Anorg. Allg. Chem., 2004, 630, 1947.

    Article  CAS  Google Scholar 

  54. T. Maaninen, R. S. Laitinen, T. Chivers, Chem. Commun., 2002, 1812.

    Google Scholar 

  55. T. Chivers, M. Parvez, G. Schatte, Inorg. Chem., 1996, 35, 4094.

    Article  CAS  Google Scholar 

  56. F. Fockenberg, A. Hass, Z. Naturforsch. B, 1986, 41, 413.

    Article  Google Scholar 

  57. N. Sandblom, T. Ziegler, T. Chivers, Inorg. Chem., 1998, 37, 354.

    Article  CAS  Google Scholar 

  58. T. Chivers, X. Gao, M. Parvez, J. Am. Chem. Soc., 1995, 117, 2359.

    Article  CAS  Google Scholar 

  59. T. Chivers, X. Gao, M. Parvez, Chem. Commun., 1994, 2149.

    Google Scholar 

  60. D. Stalke, Chem. Commun., 2012, 48, 9559.

    Article  CAS  Google Scholar 

  61. J. Kuyper, K. Vrieze, Chem. Commun., 1976, 64.

    Google Scholar 

  62. H. W. Roesky, W. Schmieder, W. Isenberg, W. S. Sheldrick, G. M. Sheldrick, Chem. Ber., 1982, 115, 2714.

    Article  CAS  Google Scholar 

  63. N. E. Petrachenko, V. I. Vovna, A. V. Zibarev, G. G. Furin, Khim. Geterotsikl. Soedin., 1991, 563 [Chem. Heterocycl. Compd. (Engl. Transl.), 1991].

    Google Scholar 

  64. A. V. Zibarev, I. V. Beregovaya, Rev. Heteroatom Chem., 1992, 7, 171.

    CAS  Google Scholar 

  65. A. F. Cozzolino, N. E. Gruhn, D. L. Lichtenberer, I. Vargas-Baca, Inorg. Chem., 2008, 47, 6220.

    Article  CAS  Google Scholar 

  66. N. E. Petrachenko, V. I. Vovna, A. V. Zibarev, G. G. Furin, Zh. Obshch. Khim., 1993, 63, 1318 [Russ. J. Gen. Chem. (Engl. Transl.), 1993, 63].

    CAS  Google Scholar 

  67. A. J. Mukherjee, S. S. Zade, H. B. Singh, R. B. Sunoj, Chem. Rev., 2010, 110, 4357.

    Article  CAS  Google Scholar 

  68. V. I. Minkin, R. M. Minyaev, Chem. Rev., 2001, 101, 1247.

    Article  CAS  Google Scholar 

  69. I. Vargas-Baca, T. Chivers, Phosphorus, Sulfur, Silicon Relat. Elem., 2000, 164, 207.

    Article  CAS  Google Scholar 

  70. I. Vargas-Baca, T. Chivers, Main Group Chem., 1999, 7, 6.

    Google Scholar 

  71. B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, S. Alvarez, Dalton Trans., 2008, 2832.

    Google Scholar 

  72. M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. A, 2009, 113, 5806.

    Article  CAS  Google Scholar 

  73. The Quantum Theory of Atoms in Molecules, Eds C. F. Matta, R. J. Boyd, Wiley—VCH, Weinheim, 2007.

  74. R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, 1990.

    Google Scholar 

  75. F. Weinhold, C. R. Landis, Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective, Cambridge University Press, Cambridge, 2005.

    Book  Google Scholar 

  76. A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev., 1988, 88, 899.

    Article  CAS  Google Scholar 

  77. N. W. Alcock, Bonding and Structure: Structural Principles in Inorganic and Organic Chemistry, Ellis Horwood, 1990.

    Google Scholar 

  78. N. W. Alcock, Adv. Inorg. Chem. Radiochem., 1972, 15, 1.

    CAS  Google Scholar 

  79. Nitrenes and Nitrenium Ions, Eds D. A. Falvey, A. D. Gudmundsdottir, Wiley, Hoboken, New Jersey, 2013.

  80. S. J. Blanksby, G. B. Ellison, Acc. Chem. Res., 2003, 36, 255.

    Article  CAS  Google Scholar 

  81. E. Espinosa, I. Alkorta, J. Elguero, E. Molins, J. Chem. Phys., 2002, 117, 5529.

    Article  CAS  Google Scholar 

  82. N. W. Greenwood, A. Earnshaw, Chemistry of the Elements, Butterworth—Heinemann, Oxford, 1997, 747.

    Google Scholar 

  83. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1.

    Google Scholar 

  84. I. D. Sadekov, V. I. Minkin, Russ. Chem. Rev., 1995, 64, 491.

    Article  Google Scholar 

  85. I. D. Sadekov, Russ. Chem. Rev., 2002, 71, 99.

    Article  CAS  Google Scholar 

  86. Handbook of Chalcogen Chemistry. New Perspectives in Sulfur, Selenium and Tellurium, Ed. F. Devillanova, RSC Press, Cambridge, 2007.

  87. S. M. Winter, R. T. Oakley, A. E. Kovalev, S. Hill, Phys. Rev. B, 2012, 85, 094430.

    Article  Google Scholar 

  88. S. M. Winter, S. Datta, S. Hill, R. T. Oakley, J. Am. Chem. Soc., 2011, 133, 8126.

    Article  CAS  Google Scholar 

  89. A. A. Leitch, K. Lekin, S. M. Winter, L. E. Downie, H. Tsuruda, J. S. Tse, M. Mito, S. Desgreniers, P. A. Dube, S. Zhang, Q. Liu, C. Jin, Y. Ohishi, R. T. Oakley, J. Am. Chem. Soc., 2011, 133, 6051.

    Article  CAS  Google Scholar 

  90. H. Tsuruda, M. Mito, H. Deguchi, S. Takagi, A. A. Leitch, K. Lekin, S. M. Winter, R. T. Oakley, Polyhedron, 2011, 30, 2997.

    Article  CAS  Google Scholar 

  91. J. L. Dutton, P. J. Ragogna, Inorg. Chem., 2009, 48, 1722.

    Article  CAS  Google Scholar 

  92. J. L. Dutton, P. J. Ragogna, in Selenium and Tellurium Chemistry: From Small Molecules to Biomolecules and Materials, Eds J. D. Woollins, R. S. Laitinen, Springer, Berlin, 2011, 179.

  93. G. A. Gamez, M. Yanez, Chem. Commun., 2011, 47, 2929.

    Google Scholar 

  94. C. Bleiholder, D. B. Werz, H. Koeppel, R. Gleiter, J. Am. Chem. Soc., 2006, 128, 2666.

    Article  CAS  Google Scholar 

  95. D. Roy, R. B. Sunoj, J. Phys. Chem. A, 2006, 110, 5942.

    Article  CAS  Google Scholar 

  96. M. Tiecco, L. Testaferri, C. Santi, C. Tomassini, S. Santoro, F. Marini, L. Bagnoli, A. Temperini, F. Constantino, Eur. J. Org. Chem., 2006, 4867.

    Google Scholar 

  97. S. M. Bachrach, D. W. Demoin, M. Luk, J. V. Miller, J. Phys. Chem. A, 2004, 108, 4040.

    Article  CAS  Google Scholar 

  98. M. Tiecco, L. Testaferri, C. Santi, C. Tomassini, F. Marini, L. Bagnoli, A. Temperini, Angew. Chem., Int. Ed., 2003, 42, 3131.

    Article  CAS  Google Scholar 

  99. M. Tiecco, L. Testaferri, C. Santi, C. Tomassini, F. Marini, L. Bagnoli, A. Temperini, Chem. Eur. J., 2002, 8, 1118.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. P. Gritsan or A. V. Zibarev.

Additional information

Dedicated to Academician of the Russian Academy of Sciences V. I. Minkin on the occasion of his 80th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 0499—0510, March, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, N.A., Lonchakov, A.V., Gritsan, N.P. et al. Donor-acceptor coordination of anions by chalcogen atoms of 1,2,5-chalcogenadiazoles. Russ Chem Bull 64, 499–510 (2015). https://doi.org/10.1007/s11172-015-0893-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-015-0893-7

Key words

Navigation