Skip to main content
Log in

Comparison of the performance of a hydrogel and hybrid graphene oxide with hydrogel to remove iron (III) and phenol from wastewater

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this study, two different polymers have been synthesized and introduced as adsorbents to study their performances in the removal of Fe(III) ions and phenol from wastewater. The polymers have been synthesized by mixing acrylic acid, acryl amide, and N,N-dimethylacrylamide. This is both used as a primary polymer and grafted with graphene oxide as modified polymer to compare their performances in Fe(III) ions and phenol removal. The structure and morphology of the polymer and the grafting polymer with GO were characterized by FT-IR, SEM, and TEM. The effects of pH, time, contact temperature, and dosage of adsorbent were evaluated. From the obtained results, the optimum condition of the adsorption process was concluded to be a concentration of graphene oxide/polymer (1 g L−1) and polymer (3 g L−1) at an ion concentration of 75 ppm, pH 8 for 2 h. The highest removal rates for Fe3+ and phenol were 92–98% and 86–89%, respectively. The Freundlich and Langmuir adsorption isotherm model was studied. The removal of Fe3+ and phenol is consistent with a pseudo-second-order model, meaning physical adsorption occurs on the surface of both polymers. Other isotherm models, like Temkin and intra-particle, were used; the error function was calculated to test the fitness of all the models’ results. Adsorption was not consistent with the last two models and the result from the error function proved that the pseudo-second-order model is favorable for the removal of Fe(III) and phenol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X. Sun, C. Wang, Y. Li, W. Wang, J. Wei, Desalination 68, 355 (2015)

    Google Scholar 

  2. P.C. Lindholm-Lehto, J.S. Knuutinen, H.S. Ahkola, S.H. Herve, Environ. Sci. Pollut. Res. 22, 6473 (2015)

    CAS  Google Scholar 

  3. M. Razzaghi, A. Karimi, Z. Ansari, H. Aghdasinia, J. Taiwan Inst. Chem. Eng. 1, 89 (2018)

    Google Scholar 

  4. M. Sajid, M.K. Nazal, N. Baig, A.M. Osman, Sep. Pure Technol. 191, 400 (2018)

    CAS  Google Scholar 

  5. H. Karadede, E. Ünlü, Chemosphere 9, 41 (2000)

    Google Scholar 

  6. N. Jothinayagi, C. Anbazhagan, Am. Euras. J. Sci. Res. 4, 73 (2009)

    CAS  Google Scholar 

  7. J. Salehzadeh, Leon. J. Sci. 23, 97 (2013)

    Google Scholar 

  8. X. Hu, Y. Li, Y. Wang, X. Li, H. Li, X. Liu, P. Zhang, Desalination 1, 259 (2010)

    Google Scholar 

  9. A. Duta, M. Visa, J. Photochem. Photobiol. A Chem. 21, 306 (2015)

    Google Scholar 

  10. Z. Jiang, A. Li, J. Cai, W. Chun, Q. Zhang, J. Environ. Sci. 19, 135 (2007)

    CAS  Google Scholar 

  11. C. Hariharan, Appl. Catal. A Gen. 55, 304 (2006)

    Google Scholar 

  12. H. Ozaki, K. Sharma, W. Saktaywin, Desalination 1, 144 (2002)

    Google Scholar 

  13. J. Heydaripour, M. Gazi, A.A. Oladipo, H.O. Gulcan, Int. J. Bio. Macromol. 123, 1125 (2019)

    CAS  Google Scholar 

  14. M. Khalid, G. Joly, A. Renaud, P. Magnoux, Ind. Eng. Chem. Res. 43, 5275 (2004)

    CAS  Google Scholar 

  15. A.Z.M. Badruddoza, Z.B.Z. Shawon, W.J.D. Tay, K. Hidajat, M.S. Uddin, Carbohydr. Poly. 91, 322 (2013)

    CAS  Google Scholar 

  16. S.-H. Cho, J. Shim, S.-H. Yun, S.-H. Moon, Appl. Catal. A Gen. 66, 337 (2008)

    Google Scholar 

  17. J.O. Méndez, J.H. Melian, J. Araña, J.D. Rodriguez, O.G. Diaz, J.P. Pena, Appl. Catal. Environ. 63, 163 (2015)

    Google Scholar 

  18. A. Sherlala, A. Raman, M. Bello, A. Asghar, Chemosphere 193, 1004 (2018)

    CAS  PubMed  Google Scholar 

  19. H. Ravishankar, J. Wang, L. Shu, V. Jegatheesan, Proc. Saf. Environ. Prot. 104, 472 (2016)

    CAS  Google Scholar 

  20. M. Liu, T. Wen, X. Wu, C. Chen, J. Hu, J. Li, X. Wang, Dalt. Trans. 42, 14710 (2013)

    CAS  Google Scholar 

  21. J. Heydaripour, M. Gazi, A.A. Oladipo, H.O. Gulcan, J. Porous Mater. 26, 1249 (2019)

    CAS  Google Scholar 

  22. M. Gazi, A.A. Oladipo, Z.E. Ojoro, H.O. Gulcan, Chem. Eng. Commun. 204, 729 (2017)

    CAS  Google Scholar 

  23. J. Liu, W. Fang, Y. Wang, M. Xing, J. Zhang, Chin. J. Catal. 8, 39 (2018)

    Google Scholar 

  24. X. Chen, S. Zhou, L. Zhang, T. You, F. Xu, Materials 9, 582 (2016)

    PubMed Central  Google Scholar 

  25. I. Ali, X. Mbianda, A. Burakov, E. Galunin, I. Burakova, A. Tkachev, V. Grachev, Environ. Int. 127, 160 (2019)

    CAS  PubMed  Google Scholar 

  26. N. Zaaba, K. Foo, U. Hashim, S. Tan, W.-W. Liu, C. Voon, Procedia Eng. 184, 469 (2017)

    CAS  Google Scholar 

  27. Z. Tai, J. Yang, Y. Qi, X. Yan, Q. Xue, RSC Adv. 3, 12751 (2013)

    CAS  Google Scholar 

  28. A.A. Oladipo, M.A. Abureesh, M. Gazi, Int. J. Biol. Macromol. 90, 89 (2016)

    CAS  PubMed  Google Scholar 

  29. A. Haghtalab, M. Nabipoor, S. Farzad, Fuel Process. Technol. 104, 73 (2012)

    CAS  Google Scholar 

  30. S. Al-Shahrani, Alex. Eng. J. 53, 205 (2014)

    Google Scholar 

  31. M. Temkin, Acta. Physiochim. URSS 12, 327 (1940)

    CAS  Google Scholar 

  32. Q.-S. Liu, T. Zheng, P. Wang, J.-P. Jiang, N. Li, Chem. Eng. J. 157, 348 (2010)

    CAS  Google Scholar 

  33. D.C. Ko, J.F. Porter, G. McKay, Water Res. 35, 3876 (2001)

    CAS  PubMed  Google Scholar 

  34. S.K. Singh, T.G. Townsend, D. Mazyck, T.H. Boyer, Water Res. 46, 491 (2012)

    CAS  PubMed  Google Scholar 

  35. S. Dubey, D. Gusain, Y.C. Sharma, J. Mol. Liq. 219, 1 (2016)

    CAS  Google Scholar 

  36. T. Tjur, Am. Stat. 63, 366 (2009)

    Google Scholar 

  37. R. Singhal, R.S. Tomar, A. Nagpal, Int. J. Plast. Technol. 13, 22 (2009)

    CAS  Google Scholar 

  38. A.G. Ibrahim, F.A. Hai, H.A. Wahab, H. Mahmoud, Am. J. Appl. Chem. 4, 221 (2016)

    CAS  Google Scholar 

  39. R. Bhattacharyya, S.K. Ray, J. Ind. Eng. Chem. 20, 3714 (2014)

    CAS  Google Scholar 

  40. M. Sadeghi, B. Heidari, Materials 4, 543 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. H. El-Hamshary, Eur. Polym. J. 43, 4830 (2007)

    CAS  Google Scholar 

  42. S. Ozcan, S. Vempati, A. Çırpan, T. Uyar, Phys. Chem. Chem. Phys. 20, 7559 (2018)

    CAS  PubMed  Google Scholar 

  43. S. Ningaraju, K. Jagadish, S. Srikantaswamy, A.G. Prakash, H. Ravikumar, Mater. Sci. Eng., B 246, 62 (2019)

    CAS  Google Scholar 

  44. B. Zhang, L. Li, Z. Wang, S. Xie, Y. Zhang, Y. Shen, M. Yu, B. Deng, Q. Huang, C. Fan, J. Mater. Chem. 22, 7775 (2012)

    CAS  Google Scholar 

  45. M. Doğan, H. Abak, M. Alkan, J. Hazard. Mater. 164, 172 (2009)

    PubMed  Google Scholar 

  46. L. Jin, R. Bai, Langmuir 18, 9765 (2002)

    CAS  Google Scholar 

  47. M.A.L. Milhome, D.D. Keukeleire, J.P. Ribeiro, R.F. Nascimento, T.V. Carvalho, D.C. Queiroz, Quím. Nova. 32, 2122 (2009)

    CAS  Google Scholar 

  48. S. Yapar, V. Özbudak, A. Dias, A. Lopes, J. Hazard. Mater. 121, 135 (2005)

    CAS  PubMed  Google Scholar 

  49. Y.-G. Chen, W.-M. Ye, X.-M. Yang, F.-Y. Deng, Y. He, Environ. Earth Sci. 64, 329 (2011)

    CAS  Google Scholar 

  50. C. Osu, S. Odoemelam, Int. Arch. Appl. Sci. Technol. 1, 62 (2010)

    Google Scholar 

  51. A. Mandal, P. Mukhopadhyay, S.K. Das, SN Appl. Sci. 1, 192 (2019)

    Google Scholar 

  52. S. Ahmadi, C.A. Igwegbe, Appl. Water Sci. 8, 170 (2018)

    Google Scholar 

  53. M. Ge, X. Wang, M. Du, G. Liang, G. Hu, J. Sm, Materials 12, 96 (2019)

    CAS  Google Scholar 

  54. L.A. Rodrigues, L.A. de Sousa Ribeiro, G.P. Thim, R.R. Ferreira, M.O. Alvarez-Mendez, A. dos Reis Coutinho, J. Porous Mater. 206, 619 (2013)

    Google Scholar 

  55. O. Abdelwahab, N. Amin, E.Z. El-Ashtoukhy, J. Hazard. Mater. 163, 711 (2009)

    CAS  PubMed  Google Scholar 

  56. A. Gupta, C. Balomajumder, J. Water Proc. Eng. 6, 1 (2015)

    Google Scholar 

  57. W.P. Cheng, W. Gao, X. Cui, J.H. Ma, R.F. Li, J. Taiwan Inst. Chem. Eng. 62, 192 (2016)

    CAS  Google Scholar 

  58. C. Yang, Y. Qian, L. Zhang, J. Feng, Chem. Eng. J. 117, 179 (2006)

    CAS  Google Scholar 

  59. T. Motsi, N. Rowson, M. Simmons, Int. J. Miner. Proc. 92, 42 (2009)

    CAS  Google Scholar 

  60. D. Ghosh, H. Solanki, M. Purkait, J. Hazard. Mater. 155, 135 (2008)

    CAS  PubMed  Google Scholar 

  61. S. Lyubchik, M. Khodorkovskij, T. Makarova, L. Tikhonova, J.P. Mota, I. Fonseca, Recent Advances in Adsorption Processes for Environmental Protection and Security (Springer, Dordrecht, 2008), p. 133

    Google Scholar 

  62. S.B. Lyubchik, A.I. Lyubchik, E.S. Lygina, S.I. Lyubchik, T.L. Makarova, J. Vital, A.M. do Rego, I.M. Fons, Sep. Purif. Technol. 60, 264 (2008)

    CAS  Google Scholar 

  63. M. Namdeo, S. Bajpai, Colloids Surf. A Physicochem. Eng. Asp. 320, 161 (2008)

    CAS  Google Scholar 

  64. G. Kousalya, M.R. Gandhi, C.S. Sundaram, S. Meenakshi, Carbohy. Poly. 82, 594 (2010)

    CAS  Google Scholar 

  65. M. Shavandi, Z. Haddadian, M.H.S. Ismail, N. Abdullah, Z. Abidin, J. Taiwan Inst. Chem. Eng. 43, 750 (2012)

    CAS  Google Scholar 

  66. J. Xie, X. Liu, J. Liang, J. Appl. Poly. Sci. 106, 1606 (2007)

    CAS  Google Scholar 

  67. A.Y.S. Eng, C.K. Chua, M. Pumera, Nanoscale 7, 20256 (2015)

    CAS  PubMed  Google Scholar 

  68. E.S. Orth, J.G. Ferreira, J.E. Fonsaca, S.F. Blaskievicz, S.H. Domingues, A. Dasgupta, M. Terrones, A.J. Zarbin, J. Colloid Interf. Sci. 467, 239 (2016)

    CAS  Google Scholar 

  69. A. Dada, A. Olalekan, A. Olatunya, O. Dada, J. Appl. Chem. 3, 38 (2012)

    Google Scholar 

  70. K. Nath, M.S. Bhakhar, Environ. Sci. Pol. Res. 18, 534 (2011)

    CAS  Google Scholar 

  71. S. Hokkanen, A. Bhatnagar, M. Sillanpää, Water Res. 91, 156 (2016)

    CAS  PubMed  Google Scholar 

  72. L.C. Toledo, A.C.B. Silva, R. Augusti, R.M. Lago, Chemosphere 50, 1049 (2003)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhao Hui.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, K., Hui, Y.Z. & Bairq, Z.A.S. Comparison of the performance of a hydrogel and hybrid graphene oxide with hydrogel to remove iron (III) and phenol from wastewater. Res Chem Intermed 46, 2613–2639 (2020). https://doi.org/10.1007/s11164-020-04110-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04110-1

Keywords

Navigation