Skip to main content
Log in

Prediction of the deswelling behaviors of pH- and temperature-responsive poly(NIPAAm-co-AAc) IPN hydrogel by artificial intelligence techniques

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

One of the most important fields of interest in respect of stimuli-responsive hydrogels is modeling and simulation of their deswelling behavior. The problem mentioned above plays an important role regarding diffusion of fluid from hydrogel to media, what is very useful in biomedical applications, such as controlled drug delivery systems, biomaterials or biosensors. In this study, the pH- and temperature-responsive poly(N-isopropylacrylamide-co-acrylic acid) interpenetrating polymer network (poly(NIPAAm-co-AAc) IPN) hydrogel was synthesized by free radical solution polymerization method. In order to improve the deswelling rate of the conventional poly(NIPAAm-co-AAc) hydrogels, their IPN structure was synthesized by using poly(NIPAAm-co-AAc) microgels. The chemical structure and surface morphology of poly(NIPAAm-co-AAc) IPN hydrogels were characterized by FT-IR and SEM analysis techniques. The synthesized poly(NIPAAm-co-AAc) IPN hydrogel has high swelling capacity (112 g water/g dry polymer at 20 °C and pH 7) and exhibited fast and multivariable deswelling behaviors dependent on pH and temperature. The pH- and temperature-dependent mechanical property of IPN hydrogel was investigated. It was found that the compressive strength of the IPN hydrogels was changed inversely proportional to the swelling capacity. To develop the model for deswelling behaviors of IPN hydrogel, artificial neural network (ANN) model and least squares support vector machine model techniques were used. The predictions from the ANN model showed very good correlation with observed data. The results indicated that the ANN model could accurately predict complex deswelling behavior of pH- and temperature-responsive IPN hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. O. Ismail, A.S. Kipcak, S. Piskin, Res. Chem. Intermed. 39, 907 (2013)

    CAS  Google Scholar 

  2. C. Boztepe, E. Tosun, T. Bilenler, K. Şişlioğlu, Int. J. Polym. Mater. Polym. Biomater. 66, 934 (2017)

    CAS  Google Scholar 

  3. S. Çavuş, J. Polym. Sci. B Polym. Phys. 48, 2497 (2010)

    Google Scholar 

  4. Q. Zhao, Y. Liang, L. Ren, F. Qui, Z. Zhang, L. Ren, J. Mech. Behav. Biomed. 78, 395 (2018)

    CAS  Google Scholar 

  5. J. Qu, X. Zhao, P.X. Ma, B. Guo, Acta Biomater. 58, 168 (2017)

    CAS  PubMed  Google Scholar 

  6. N. Arbabi, M. Baghani, J. Abdolahi, H. Mazaheri, M. Mosavi-Mashhadi, J. Intell. Mater. Syst. Struct. 28(12), 1589 (2017)

    CAS  Google Scholar 

  7. H. Li, R. Luo, J. Intell. Mater. Syst. Struct. 22, 715 (2011)

    CAS  Google Scholar 

  8. M. Guenther, M. Gerlach, T. Wallmersperger, J. Intell. Mater. Syst. Struct. 20, 949 (2009)

    CAS  Google Scholar 

  9. J. Zhao, X. Zhao, B. Guo, P.X. Ma, Biomacromolecules 15, 3246 (2014)

    CAS  PubMed  Google Scholar 

  10. L. Zhang, L. Wang, B. Guo, P.X. Ma, Carbohydr. Polym. 103, 110 (2014)

    CAS  PubMed  Google Scholar 

  11. Y. Chen, G. Song, J. Yu, Y. Wang, J. Zhu, Z. Hu, J. Mech. Behav. Biomed. 82, 61 (2018)

    CAS  Google Scholar 

  12. Z. Deng, Y. Guo, X. Zhao, P.X. Ma, B. Guo, Cham. Mater. 30, 1729 (2018)

    CAS  Google Scholar 

  13. Y. Wu, L. Wang, B. Guo, P.X. Ma, ACS Nano 11, 5646 (2017)

    CAS  PubMed  Google Scholar 

  14. M. Ahearne, A. Coyle, J. Mech. Behav. Biomed. 54, 259 (2018)

    Google Scholar 

  15. T.R. Hoare, D.S. Kohane, Polymer 49, 1993 (2008)

    CAS  Google Scholar 

  16. Z. Deng, T. Hu, Q. Li, J. He, P.X. Ma, B. Guo, A.C.S. Appl, Mater. Interfaces. 11, 6796 (2019)

    CAS  Google Scholar 

  17. J. Qu, X. Zhao, Y. Liang, T. Zhang, P.X. Ma, B. Guo, Biomaterials 183, 185 (2018)

    CAS  PubMed  Google Scholar 

  18. Y.C. Fu, C.H. Chen, C.Z. Wang, Y.H. Wang, J.K. Chang, G.J. Wang, M.L. Ho, C.K. Wang, J. Mech. Behav. Biomed. 27, 64 (2013)

    CAS  Google Scholar 

  19. H. Mazaheri, M. Baghani, R. Naghdabadi, J. Intell. Mater. Syst. Struct. 27, 324 (2016)

    CAS  Google Scholar 

  20. Z. Deng, Y. Guo, P.X. Ma, B. Guo, J. Colloid Interface Sci. 526, 281 (2018)

    CAS  PubMed  Google Scholar 

  21. D.E. Owens, Y. Jian, J.E. Fang, B.V. Slaughter, Y.H. Chen, N.A. Peppas, Macromolecules 40, 7306 (2007)

    CAS  Google Scholar 

  22. A. Sarkar, S. Hegde, T. Mukherjee, S. Kapoor, Res. Chem. Intermed. 36, 309 (2010)

    CAS  Google Scholar 

  23. J.T. Zhang, M. Thunga, S. Petersen, R. Bhat, X. Liu, R. Weidisch, A. Fahr, K.D. Jandt, Adv. Eng. Mater. 11(3), 12 (2009)

    CAS  Google Scholar 

  24. K.L. Deng, H. Tian, P.F. Zhang, X.B. Ren, H.B. Zhong, Express. Polym. Lett. 3, 97 (2009)

    CAS  Google Scholar 

  25. M. Pruettiphap, G.L. Rempel, Q. Pan, S. Kiatkamjornwong, Iran Polym. J. 26, 957 (2017)

    CAS  Google Scholar 

  26. M. Sobczyk, T. Wallmersperger, J. Intell. Mater. Syst. Struct. 27(13), 1725 (2015)

    Google Scholar 

  27. E. Rafiee, N. Nobakht, L. Behbood, Res. Chem. Intermed. 43, 951 (2017)

    CAS  Google Scholar 

  28. Y. Liang, X. Zhao, P.X. Ma, B. Guo, Y. Du, X. Han, J. Colloid Interface Sci. 536, 224 (2019)

    CAS  PubMed  Google Scholar 

  29. T. Brend, K. Kraus, Colloid Polym. Sci. 292, 3127 (2012)

    Google Scholar 

  30. X. Yin, A.S. Hoffman, P.S. Stayton, Biomacromolecules 5, 1381 (2006)

    Google Scholar 

  31. P.K. Lavric, M.S.G. Marijin, W.D. Jocic, Cellulose 19, 257 (2012)

    Google Scholar 

  32. N. Şahiner, W.T. Godbey, G.L. McPherson, V.T. John, Colloid Polym. Sci. 284, 1121 (2006)

    Google Scholar 

  33. Y. Guobin, H. Yunwei, X. Fuhua, L. Bing, Y. Jin, C. Xudong, J. Wuhan Univ. Technol. 26, 1073 (2011)

    Google Scholar 

  34. G.B. Marandi, M. Baharloui, M. Kurdtabar, L.M. Sharabian, M.A. Mojarrad, Res. Chem. Intermed. 41, 7043 (2015)

    CAS  Google Scholar 

  35. S. Peng, D. Zhang, H. Huang, Z. Jin, X. Peng, Res. Chem. Intermed. 45, 1545 (2019)

    CAS  Google Scholar 

  36. A. Mohandas, W. Sun, T.R. Nimal, S.A. Shankarappa, N.S. Hwang, R. Jayakumar, Res. Chem. Intermed. 44, 4873 (2018)

    CAS  Google Scholar 

  37. Y.Q. Xiang, Y. Zhang, D.J. Chen, Polym. Int. 55, 1407 (2006)

    CAS  Google Scholar 

  38. K. Jalili, F. Abbasi, S.S. Oskoee, Z. Alinejad, J. Mech. Behav. Biomed. 2, 534 (2009)

    CAS  Google Scholar 

  39. J. Jang, J. Hong, C. Cha, J. Mech. Behav. Biomed. 69, 282 (2017)

    CAS  Google Scholar 

  40. V. Nigro, R. Angelini, M. Bertoldo, V. Castelvetro, G. Ruocco, B. Ruzicka, J Non-Cryst Solids 407, 361 (2015)

    CAS  Google Scholar 

  41. X. Zhao, J. Mech. Phys. Solids 60, 319 (2012)

    CAS  Google Scholar 

  42. J. Hao, Y. Liu, S. Zhou, Z. Li, X. Deng, Biomaterials 24, 1531 (2003)

    CAS  PubMed  Google Scholar 

  43. B. Jankovic, B. Adnadevic, J. Jovanovic, Thermochim. Acta 452, 106 (2007)

    CAS  Google Scholar 

  44. F. Jiang, S. Chen, Z. Cao, G. Wang, Polymer 83, 85 (2016)

    CAS  Google Scholar 

  45. F. Taktak, AKU. J. Sci. Eng. 16, 68 (2016)

    Google Scholar 

  46. H. Li, Smart hydrogel modeling (Springer, Berlin, 2009), pp. 4–47

    Google Scholar 

  47. P.J. Flory, Principles of polymer chemistry (Cornell University Press, Ithaca, 1953), pp. 12–67

    Google Scholar 

  48. T. Wallmersperger, B. Kroplin, J. Holdenried, W. Gulch, Smart Mater. Struct. 20(12), 1483 (2001)

    Google Scholar 

  49. X. Zhou, Y.C. Hon, S. Sun, A.F.T. Mak, Smart Mater. Struct. 11, 459 (2002)

    CAS  Google Scholar 

  50. D. Ostrovskii, M. Edvardsson, P. Jacobsson, J. Raman Spectrosc. 34, 40 (2003)

    CAS  Google Scholar 

  51. C.H. Li, X.J. Zhu, G.Y. Cao, S. Sui, M.R. Hu, J. Power Sources 175, 303 (2008)

    CAS  Google Scholar 

  52. H. Schott, J. Macromol. Sci. Part B Phys. 31, 1 (1992)

    CAS  Google Scholar 

  53. G. Astarita, in Transport phenomena in polymeric systems, ed. by R.A. Mashelkar, A.S. Mujumdar, R. Kamal (Wiley, New York, 1989), p. 339

    Google Scholar 

  54. A.R. Berens, H.B. Hopfenberg, Polymer 19, 489 (1978)

    CAS  Google Scholar 

  55. A.K. Bajpai, M. Shrivastava, J. Sci. Ind. Res. 60, 131 (2001)

    CAS  Google Scholar 

  56. E.F. Lee, P.L. Yeh, J. Appl. Polym. Sci. 77, 14 (2000)

    CAS  Google Scholar 

  57. A.K. Bajpai, A. Giri, React. Funct. Polym. 53, 125 (2002)

    CAS  Google Scholar 

  58. S.J. Kim, S.J. Park, I.Y. Kim, M.S. Shin, S.I. Kim, J. Appl. Polym. Sci. 86, 2285 (2002)

    CAS  Google Scholar 

  59. K.Y. Lee, K.H. Bouhadir, D.J. Mooney, Macromolecules 33, 97 (2000)

    CAS  Google Scholar 

  60. D.J.T. Hill, N.G. Moss, P.J. Pomery, A.K. Whittaker, Polymer 41, 1287 (2000)

    CAS  Google Scholar 

  61. N.E. Angar, D. Aliouche, Period. Polytech. Chem. Eng. 62(2), 137 (2017)

    Google Scholar 

  62. A. Richter, G. Paschew, S. Klatt, K.F. Arndt, H.J. Adler, Sensors 8, 561 (2008)

    CAS  PubMed  Google Scholar 

  63. S. Brahima, C. Boztepe, A. Künkül, M. Yüceer, Mat. Sci. Eng. C. 75, 425 (2017)

    CAS  Google Scholar 

  64. E. Karadurmuş, M. Çeşmeci, M. Yüceer, R. Berber, Appl. Soft. C. 12, 494 (2012)

    Google Scholar 

  65. G. Rajabzadeh, S. Salehi, A. Nemati, R. Tavakoli, M.S. Hashjin, J. Mech. Behav. Biomed. 29, 317 (2014)

    CAS  Google Scholar 

  66. T. Karadağ, M. Yüceer, T. Abbasov, Radiat. Prot. Dosim. 168, 134 (2015)

    Google Scholar 

  67. M.L. Koç, U. Özdemir, D. İmren, Chem. Eng. Sci. 63, 2913 (2008)

    Google Scholar 

  68. A. Sarımeşeli, M. Yüceer, Chem. Eng. Process. 36, 425 (2015)

    Google Scholar 

  69. C. Boztepe, M. Şölener, M. Yüceer, A. Künkül, O.S. Kabasakal, J. Dispers. Sci. Technol. 36, 1647 (2015)

    CAS  Google Scholar 

  70. M. Yüceer, Z. Yıldız, T. Abbasov, Physicochem. Probl. Process. 51, 173 (2015)

    Google Scholar 

  71. A. Borin, M.F. Ferrao, C. Mello, D.A. Maretto, J.R. Poppi, Anal. Chim. Acta 579, 25 (2006)

    CAS  PubMed  Google Scholar 

  72. Y. Ke, C. Yiyu, Chi. J. Anal. Chem. 34, 561 (2006)

    Google Scholar 

  73. A.D. Drozdov, J.C. Christiansen, J. Mech. Behav. Biomed. 65, 533 (2017)

    CAS  Google Scholar 

  74. J. Ma, Y. Xu, Q. Zhang, L. Zha, B. Liang, Colloid Polym. Sci. 285, 479 (2007)

    CAS  Google Scholar 

  75. N. Hamzavi, A.D. Drozdov, Y. Gu, E. Birgersson, J. Appl. Mech. 8, 1650039 (2016)

    Google Scholar 

  76. B. Andadevic, B. Jankovic, L.K. Anic, D. Minic, Chem. Eng. J. 130, 11 (2007)

    Google Scholar 

  77. K. Chamerski, W. Korzekwa, J. Filipecki, O. Shpotyuk, M. Stopa, P. Jelen, M. Sitarz, Res. Lett. 12, 303 (2017)

    Google Scholar 

  78. H.V. Chavda, C.N. Patel, Ethiop. Pharm. J. 27, 16 (2009)

    CAS  Google Scholar 

  79. K. Laszlo, A. Fluerasu, A. Moussaid, E. Geissler, Soft Matter 6, 4335 (2010)

    Google Scholar 

  80. T. Serizawa, K. Wakita, M. Akashi, Macromolecules 35, 10 (2002)

    CAS  Google Scholar 

  81. K. Levenberg, Q. Appl. Math. 2, 164 (1994)

    Google Scholar 

  82. J.A.K. Suykens, J. Vandewalle, J. Neural. Process. Lett. 9, 293 (1999)

    Google Scholar 

  83. Z. Cheng, HKIE Trans. 20, 141 (2013)

    Google Scholar 

  84. C. Zhang, H. Zhang, Int. J. Comp. Integr. Manuf. 1, 76 (2014)

    Google Scholar 

  85. J. Liu, Q. Li, Y. Su, Q. Yue, B. Gao, Carbohydr. Polym. 107, 232 (2014)

    CAS  PubMed  Google Scholar 

  86. Y. Yu, Y. Liu, Y. Kong, E. Zhang, F. Jia, S. Li, Polym. Plast. Technol. Eng. 51, 854 (2012)

    CAS  Google Scholar 

  87. J. Zhang, L.Y. Chu, Y.K. Li, Y.M. Lee, Polymer 48, 1718 (2007)

    CAS  Google Scholar 

  88. L.Y. Chu, in Smart hydrogel functional materials, ed. by L.Y. Chu, R. Xie, X.J. Ju, W. Wang (Springer, New York, 2013), p. 13

    Google Scholar 

  89. N. Zhang, S. Zheng, Z. Pan, Z. Liu, Polymers 10, 358 (2018)

    PubMed Central  Google Scholar 

  90. LS-SVMLab1.8 (2013) www.esat.kuleuven.ac.be/sista/lssvmlab

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Yüceer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boztepe, C., Yüceer, M., Künkül, A. et al. Prediction of the deswelling behaviors of pH- and temperature-responsive poly(NIPAAm-co-AAc) IPN hydrogel by artificial intelligence techniques. Res Chem Intermed 46, 409–428 (2020). https://doi.org/10.1007/s11164-019-03957-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03957-3

Keywords

Navigation