Skip to main content
Log in

In vitro biological evaluations of Fe3O4 compared with core–shell structures of chitosan-coated Fe3O4 and polyacrylic acid-coated Fe3O4 nanoparticles

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Today the use of magnetic nanoparticles (MNPs) is widely investigated because of their biocompatibility and nontoxicity. The objective of this study was to synthesis a uniform superparamagnetic Fe3O4, the core–shell structures of chitosan-coated Fe3O4 (cc/Fe3O4) and polyacrylic acid-coated Fe3O4 (pc/Fe3O4) nanoparticles using an in situ co-precipitation process for evaluation of biomedical applications. To structurally characterize the synthesized nanoparticles, morphological and magnetic properties, Fourier transform infrared, X-ray diffraction, transmission electron microscopy, dynamic light scattering and vibrating sample magnetometry studies were employed. Our results showed that Fe3O4, cc/Fe3O4 and pc/Fe3O4 nanoparticles possess an average mean diameter of 10, 15 and 11 nm (dry samples) per Scherrer's equation in a dry state with saturation magnetization (MS) values of 70.64, 38.65 and 23.53 emu/g, respectively. The cytotoxicity of nanoparticles was evaluated by MTT assay using breast cancer (MCF7) and human normal skin (fibroblast) cell lines. Both of the two core–shell structures did not show toxicity on the fibroblast cell line even after 24 and 48 h. The viability rate of the bare Fe3O4 MNPs on the MCF7 cell line was significantly less than two the coated nanoparticles. MTT assays demonstrated that core–shell nanoparticles have less cytotoxicity than bare Fe3O4 MNPs (in 100 μg/ml during 24 h, the viability of bare Fe3O4 MNPs, cc/Fe3O4 and pc/Fe3O4 nanoparticles was 68.01%, 85.91%, and 88.13%, respectively). Moreover, hemolysis assay was performed to measure cytotoxicity of the nanoparticles on red blood cells (RBCs). The cc/Fe3O4 structure at all concentrations had less hemolysis percentage than the pc/Fe3O4 structure. The chitosan-coated Fe3O4 nanoparticle showed the highest biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Nosrati, M. Salehiabar, S. Davaran, A. Ramazani, H.K. Manjili, H. Danafar, Res. Chem. Intermed. 43(12), 7423 (2017)

    Article  CAS  Google Scholar 

  2. R. Nisticò, Res. Chem. Intermed. 43(12), 6911 (2017)

    Article  CAS  Google Scholar 

  3. C. Bárcena, A.K. Sra, J. Gao, in Applications of Magnetic Nanoparticles in Biomedicine. Nanoscale Magnetic Materials and Applications (Springer, Boston, MA, 2009), pp. 591–626

  4. K.S. Kim, KONA Powder Particle J. 33, 33 (2016)

    Article  CAS  Google Scholar 

  5. H. Zeng, J. Li, J.P. Liu, Z.L. Wang, S. Sun, Nature 420(6914), 395 (2002)

    Article  CAS  PubMed  Google Scholar 

  6. A. Hu, G.T. Yee, W. Lin, J. Am. Chem. Soc. 127(36), 12486 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. H. Firouzabadi, N. Iranpoor, M. Gholinejad, J. Hoseini, Adv. Synth. Catal. 353(1), 125 (2011)

    Article  CAS  Google Scholar 

  8. F.Q. Hu, L. Wei, Z. Zhou, Y.L. Ran, Z. Li, M.Y. Gao, Adv. Mater. 18(19), 2553 (2006)

    Article  CAS  Google Scholar 

  9. J.H. Lee, Y.W. Jun, S.I. Yeon, J.S. Shin, J. Cheon, Angew. Chem. Int. Ed. 45(48), 8160 (2006)

    Article  CAS  Google Scholar 

  10. N. Nasongkla, E. Bey, J. Ren, H. Ai, C. Khemtong, J.S. Guthi, J. Gao, Nano Lett. 6(11), 2427 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. S. Lotfi, S. Bahari, A. Bahari, M. Roudbari, J. Supercond. Novel Magn. 31(1), 2187–2193 (2017)

    Google Scholar 

  12. P. Soares, I. Ferreira, R. Igreja, C. Novo, J. Borges, Recent Patents Anti Cancer Drug Discov. 7(1), 64 (2012)

    Article  CAS  Google Scholar 

  13. Z. Nemati, R. Das, J. Alonso, E. Clements, M.H. Phan, H. Srikanth, J. Electron. Mater. 46(6), 3764 (2017)

    Article  CAS  Google Scholar 

  14. Y. Oh, N. Lee, H.W. Kang, J. Oh, Nanotechnology 27(11), 115101 (2016)

    Article  CAS  PubMed  Google Scholar 

  15. F. Cellai, A. Munnia, J. Viti, S. Doumett, C. Ravagli, E. Ceni, A. Galli, Int. J. Mol. Sci. 18(5), 939 (2017)

    Article  CAS  PubMed Central  Google Scholar 

  16. L.H. Reddy, J.L. Arias, J. Nicolas, P. Couvreur, Chem. Rev. 112(11), 5818 (2012)

    Article  CAS  Google Scholar 

  17. F.Y. Cheng, C.H. Su, Y.S. Yang, C.S. Yeh, C.Y. Tsai, C.L. Wu, D.B. Shieh, Biomaterials 26(7), 729 (2005)

    Article  CAS  PubMed  Google Scholar 

  18. R. Qiao, C. Yang, M. Gao, J. Mater. Chem. 19(35), 6274 (2009)

    Article  CAS  Google Scholar 

  19. S.M. Hussain, K.L. Hess, J.M. Gearhart, K.T. Geiss, J.J. Schlager, Toxicol. In Vitro 19(7), 975 (2005)

    Article  CAS  Google Scholar 

  20. J.R. McCarthy, R. Weissleder, Adv. Drug Deliv. Rev. 60(11), 1241 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M.M. Yallapu, N. Chauhan, S.F. Othman, V. Khalilzad-Sharghi, M.C. Ebeling, S. Khan, S.C. Chauhan, Biomaterials 46, 1 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Q.A. Pankhurst, J. Connolly, S.K. Jones, J.J. Dobson, J. Phys. D Appl. Phys. 36(13), R167 (2003)

    Article  CAS  Google Scholar 

  23. S. Gyergyek, D. Makovec, M. Jagodič, M. Drofenik, K. Schenk, O. Jordan, H. Hofmann, J. Alloys Compd. 694, 261 (2017)

    Article  CAS  Google Scholar 

  24. N. Mahmed, O. Heczko, A. Lancok, S.P. Hannula, J. Magn. Magn. Mater. 353, 15 (2014)

    Article  CAS  Google Scholar 

  25. L. Pislaru-Danescu, A. Morega, G. Telipan, V. Stoica, Optoelectron. Adv. Mater. 4(8), 1182 (2010)

    CAS  Google Scholar 

  26. K. Do Kim, S.S. Kim, Y.H. Choa, H.T. Kim, J. Ind. Eng. Chem. 13(7), 1137 (2007)

    Google Scholar 

  27. E. Alzahrani, A. Sharfalddin, M. Alamodi, Adv. Nanopart. 4(02), 53 (2015)

    Article  CAS  Google Scholar 

  28. D. Maity, S.G. Choo, J. Yi, J. Ding, J.M. Xue, J. Magn. Magn. Mater. 321(9), 1256 (2009)

    Article  CAS  Google Scholar 

  29. G. Thomas, F. Demoisson, R. Chassagnon, E. Popova, N. Millot, Nanotechnology 27(13), 135604 (2016)

    Article  CAS  PubMed  Google Scholar 

  30. F.M. Kievit, M. Zhang, Acc. Chem. Res. 44(10), 853 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. D. Yang, X. Pang, Y. He, Y. Wang, G. Chen, W. Wang, Z. Lin, Angew. Chem. Int. Ed. 54(41), 12091 (2015)

    Article  CAS  Google Scholar 

  32. X. Pang, Y. He, J. Jung, Z. Lin, Science 353(6305), 1268 (2016)

    Article  CAS  PubMed  Google Scholar 

  33. X. Pang, L. Zhao, W. Han, X. Xin, Z. Lin, Nat. Nanotechnol. 8(6), 426 (2013)

    Article  CAS  PubMed  Google Scholar 

  34. C. Pilapong, Y. Keereeta, S. Munkhetkorn, S. Thongtem, T. Thongtem, Colloids Surf. B 113, 249 (2014)

    Article  CAS  Google Scholar 

  35. P.E. Feuser, L. dos Santos Bubniak, M.C. dos Santos Silva, A. da Cas Viegas, A.C. Fernandes, E. Ricci-Junior, P.H.H. de Araújo, Eur. Polym. J. 68, 355 (2015)

    Article  CAS  Google Scholar 

  36. M.E.F. Brollo, J.M. Orozco-Henao, R. López-Ruiz, D. Muraca, C.S.B. Dias, K.R. Pirota, M. Knobel, J. Magn. Magn. Mater. 397, 20 (2016)

    Article  CAS  Google Scholar 

  37. I. Khmara, O. Strbak, V. Zavisova, M. Koneracka, M. Kubovcikova, I. Antal, V. Kavecnsky, D. Lucanska, D. Dobrota, P. Kopcansky, J. Magn. Magn. Mater. 474, 319–325 (2019)

    Article  CAS  Google Scholar 

  38. H. Xu, Y. Xu, X. Pang, Y. He, J. Jung, H. Xia, Z. Lin, Sci. Adv. 1(2), e1500025 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  39. H. El Ghandoor, H.M. Zidan, M.M. Khalil, M.I.M. Ismail, Int. J. Electrochem. Sci. 7(6), 5734 (2012)

    Google Scholar 

  40. M. Mahmoudi, A. Simchi, M. Imani, A.S. Milani, P. Stroeve, J. Phys. Chem. B 112(46), 14470 (2008)

    Article  CAS  PubMed  Google Scholar 

  41. P.B. Shete, R.M. Patil, N.D. Thorat, A. Prasad, R.S. Ningthoujam, S.J. Ghosh, S.H. Pawar, Appl. Surf. Sci. 288, 149 (2014)

    Article  CAS  Google Scholar 

  42. F. Gao, Y. Cai, J. Zhou, X. Xie, W. Ouyang, Y. Zhang, J. Tang, Nano Res. 3(1), 23 (2010)

    Article  CAS  Google Scholar 

  43. S.P. Gubin, Magnetic Nanoparticles. (WILEY-VCH Verlag GmbH & Co, 2009)

  44. S.A. Jadhav, S.V. Patil, Front. Mater. Sci. 8(2), 193 (2014)

    Article  Google Scholar 

  45. J. Yang, L. Fan, Y. Xu, J. Xia, J. Nanopart. Res. 19(10), 333 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soleiman Mahjoub.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotfi, S., Bahari, A. & Mahjoub, S. In vitro biological evaluations of Fe3O4 compared with core–shell structures of chitosan-coated Fe3O4 and polyacrylic acid-coated Fe3O4 nanoparticles. Res Chem Intermed 45, 3497–3512 (2019). https://doi.org/10.1007/s11164-019-03804-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-03804-5

Keywords

Navigation