Skip to main content
Log in

Synthesis and evaluation of antibacterial and anti-oxidant activity of small molecular chitosan–fucoidan conjugate nanoparticles

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Low-molecular weight chitosan (LMWC) and low-molecular weight fucoidan (LMWF) have been reported to possess diverse biological activity. In this study, LMWC and LMWF of different molecular weights were prepared by a H2O2-involved oxidative depolymerization method. Covalently linked LMWC–LMWF conjugates were synthesized through the activation of carboxyl groups of LMWF and an amidation reaction between the activated LMWF and LMWC. Light transmittance assay and TEM analysis showed that the LMWC–LMWF conjugates gradually form colloidal nanoparticles during the amidation reaction. The LMWC–LMWF conjugates prepared from lower-molecular weight (depolymerized in a longer degradation time) LMWC and LMWF have larger particle sizes and lower zeta potentials. The LMWC–LMWF conjugates were investigated for their ability to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl and superoxide anion radicals. The DPPH and superoxide anion radical scavenging activities of the LMWC–LMWF conjugates were higher than that of LMWC alone and generally increased with a decrease in degradation time during the preparation of LMWF and LMWC. LMWC has superior hydroxyl radical scavenging activity, thus the hydroxyl radical scavenging activity of LMWC–LMWF conjugates were higher than that of LMWF alone. Bacterial inhibition assay of the conjugates against Escherichia coli and Staphylococcus aureus indicated that the conjugation of LMWC with LMWF improved the antibacterial activity of LMWF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.C. Chien, M.T. Yen, J.L. Mau, Carbohydr. Polym. 138, 259–264 (2016)

    Article  CAS  PubMed  Google Scholar 

  2. M. Kong, X.G. Chen, K. Xing, H.J. Park, Int. J. Food Microbiol. 144, 51–63 (2010)

    Article  CAS  PubMed  Google Scholar 

  3. M. Hosseinnejad, S.M. Jafari, Int. J. Biol. Macromol. 85, 467–475 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. B. Krajewska, P. Wydro, A. Janczyk, Biomacromolecules 12, 4144–4152 (2011)

    Article  CAS  PubMed  Google Scholar 

  5. A. Sarwar, H. Katas, N.M. Zin, J. Nanopart. Res. 16, 2517 (2014)

    Article  CAS  Google Scholar 

  6. A.B.V. Kumar, M.C. Varadaraj, L.R. Gowda, R.N. Tharanathan, Bba-Gen Subj. 1770, 495–505 (2007)

    Article  CAS  Google Scholar 

  7. A. Mohammadi, M. Hashemi, S.M. Hosseini, LWT-Food Sci. Technol. 71, 347–355 (2016)

    Article  CAS  Google Scholar 

  8. A. Pavinatto, J.A.M. Delezuk, A.L. Souza, F.J. Pavinatto, D. Volpati, P.B. Miranda, S.P. Campana, O.N. Oliveira, Colloid Surf. B 145, 201–207 (2016)

    Article  CAS  Google Scholar 

  9. J. Vinsova, E. Vavrikova, Curr. Pharm. Des. 17, 3596–3607 (2011)

    Article  CAS  Google Scholar 

  10. L. Wu, J. Sun, X.T. Su, Q.L. Yu, Q.Y. Yu, P. Zhang, Carbohydr. Polym. 154, 96–111 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. M.T. Ale, J.D. Mikkelsen, A.S. Meyer, Mar. Drugs 9, 2106–2130 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Y. Yuan, D. Macquarrie, Carbohydr. Polym. 129, 101–107 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. S. Lim, J.I. Choi, H. Park, Radiat. Phys. Chem. 109, 23–26 (2015)

    Article  CAS  Google Scholar 

  14. J.I. Choi, H.J. Kim, Carbohydr. Polym. 97, 358–362 (2013)

    Article  CAS  PubMed  Google Scholar 

  15. X. Guo, X.Q. Ye, Y.J. Sun, D. Wu, N.A. Wu, Y.Q. Hu, S.G. Chen, J. Agric. Food Chem. 62, 1088–1095 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. C.H. Xue, Y. Fang, H. Lin, L. Chen, Z.J. Li, D. Deng, C.X. Lu, J. Appl. Phycol. 13, 67–70 (2001)

    Article  CAS  Google Scholar 

  17. Y. Hou, J. Wang, W.H. Jin, H. Zhang, Q.B. Zhang, Carbohydr. Polym. 87, 153–159 (2012)

    Article  CAS  Google Scholar 

  18. P.J. Chien, F. Sheu, W.T. Huang, M.S. Su, Food Chem. 102, 1192–1198 (2007)

    Article  CAS  Google Scholar 

  19. S.H. Chang, H.T.V. Lin, G.J. Wu, G.J. Tsai, Carbohydr. Polym. 134, 74–81 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. J. Huang, D.K. Zhao, S. Hu, J.W. Mao, L.H. Mei, Carbohydr. Polym. 87, 2231–2236 (2012)

    Article  CAS  Google Scholar 

  21. J. Li, Y.M. Du, J.H. Yang, T. Feng, A.H. Li, P. Chen, Polym. Degrad. Stabil. 87, 441–448 (2005)

    Article  CAS  Google Scholar 

  22. C.Q. Qin, Y.M. Du, L. Xiao, Polym. Degrad. Stabil. 76, 211–218 (2002)

    Article  CAS  Google Scholar 

  23. B.W. Jo, S.K. Choi, Carbohydr. Polym. 111, 822–829 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. B. Kang, Y.D. Dai, H.Q. Zhang, D. Chen, Polym. Degrad. Stabil. 92, 359–362 (2007)

    Article  CAS  Google Scholar 

  25. Y.C. Huang, R.Y. Li, J.Y. Chen, J.K. Chen, Carbohydr. Polym. 138, 114–122 (2016)

    Article  CAS  PubMed  Google Scholar 

  26. Y.C. Huang, J.K. Chen, U.I. Lam, S.Y. Chen, J. Polym. Res. 21, 1–9 (2014)

    Google Scholar 

  27. S.H. Yu, D.W. Tang, H.Y. Hsieh, W.S. Wu, B.X. Lin, E.Y. Chuang, H.W. Sung, F.L. Mi, Acta Biomater. 9, 7449–7459 (2013)

    Article  CAS  PubMed  Google Scholar 

  28. S.H. Yu, S.J. Wu, J.Y. Wu, D.Y. Wen, F.L. Mi, Carbohydr. Polym. 126, 97–107 (2015)

    Article  CAS  PubMed  Google Scholar 

  29. K.Y. Lu, R. Li, C.H. Hsu, C.W. Lin, S.C. Chou, M.L. Tsai, F.L. Mi, Carbohydr. Polym. 165, 410–420 (2017)

    Article  CAS  PubMed  Google Scholar 

  30. A.F. Hifney, M.A. Fawzy, K.M. Abdel-Gawad, M. Gomaa, Food Hydrocolloid 54, 77–88 (2016)

    Article  CAS  Google Scholar 

  31. J. Wang, F. Wang, Q.B. Zhang, Z.S. Zhang, X.L. Shi, P.C. Li, Int. J. Biol. Macromol. 44, 379–384 (2009)

    Article  CAS  PubMed  Google Scholar 

  32. J. Tian, H. Tu, X.W. Shi, X.Y. Wang, H.B. Deng, B. Li, Y.M. Du, Colloids Surf. B 145, 643–652 (2016)

    Article  CAS  Google Scholar 

  33. M.J. Moreno-Vasquez, E.L. Valenzuela-Buitimea, M. Plascencia-Jatomea, J.C. Encinas-Encinas, F. Rodriguez-Felix, S. Sanchez-Valdes, E.C. Rosas-Burgos, V.M. Ocano-Higuera, A.Z. Graciano-Verdugo, Carbohydr. Polym. 155, 117–127 (2017)

    Article  CAS  PubMed  Google Scholar 

  34. H. Mellegard, S.P. Strand, B.E. Christensen, P.E. Granum, S.P. Hardy, Int. J. Food Microbiol. 148, 48–54 (2011)

    Article  CAS  PubMed  Google Scholar 

  35. I. Younes, S. Sellimi, M. Rinaudo, K. Jellouli, M. Nasri, Int. J. Food Microbiol. 185, 57–63 (2014)

    Article  CAS  PubMed  Google Scholar 

  36. M. Kong, X.G. Chen, K. Xing, H.J. Park, Int. J. Food Microbiol. 144, 51–63 (2010)

    Article  CAS  PubMed  Google Scholar 

  37. A. Zimoch-Korzycka, L. Bobak, A. Jarmoluk, Int. J. Mol. Sci. 17, 1–10 (2016)

    Article  CAS  Google Scholar 

  38. X.F. Li, X.Q. Feng, S. Yang, G.Q. Fu, T.P. Wang, Z.X. Su, Carbohydr. Polym. 79, 493–499 (2010)

    Article  CAS  Google Scholar 

  39. J.H. Li, Y.G. Wu, L.Q. Zhao, Carbohydr. Polym. 148, 200–205 (2016)

    Article  CAS  PubMed  Google Scholar 

  40. L.T.K. Ngan, S.L. Wang, D.M. Hiep, P.M. Luong, N.T. Vui, T.M. Dinh, N.A. Dzung, Res. Chem. Intermediat. 40, 2165–2175 (2014)

    Article  CAS  Google Scholar 

  41. T.T. Wu, C.H. Wu, S.L. Fu, L.P. Wang, C.H. Yuan, S.G. Chen, Y.Q. Hu, Carbohydr. Polym. 155, 192–200 (2017)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by a grant (USTP-NTUT-TMU-104-02) from Taipei Medical University and National Taipei University of Technology, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fwu-Long Mi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, LC., Tsai, ML., Lu, KY. et al. Synthesis and evaluation of antibacterial and anti-oxidant activity of small molecular chitosan–fucoidan conjugate nanoparticles. Res Chem Intermed 44, 4855–4871 (2018). https://doi.org/10.1007/s11164-018-3341-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3341-0

Keywords

Navigation