Skip to main content
Log in

Three-dimensionally ordered macroporous metal oxide–silica composite for removal of mercaptan

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A series of 3DOM and non-3DOM metal oxide–silica composites were prepared and tested dynamically in a packed-bed reactor at room temperature to remove ethanethiol from a gas stream containing ethyl mercaptan in moist N2.The obtained sorbents were characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption–desorption techniques. The experimental results showed that the adsorption ability of different kinds of metal oxide–silica composites with 3DOM structure decreased in the sequence: 3D-CuO/SiO2 > 3D-NiO/SiO2 > 3D-Co3O4/SiO2 > 3D-ZnO/SiO2. The best ratio of CuO to SiO2 of 3DOM copper–silicon oxide sorbents for ethanethiol removal was found to be 1:2. The 3DOM structure could improve the removal activity of sorbents remarkably because of the high porosity with ordered interconnected macropores as well as the large surface area and high dispersion of CuO. It was also found that a moist atmosphere greatly benefited the adsorption of ethanethiol at ambient condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Das, B. Sain, S. Kumar, M.O. Garg, M.G.M. Dhar, Catal. Today 141, 152–156 (2009)

    Article  CAS  Google Scholar 

  2. R. Shawabkeh, A. Harahsheh, Oil Shale 24, 109 (2007)

    CAS  Google Scholar 

  3. P.J. DeWild, R.G. Nyqvist, F.A. DeBruijn, E.R. Stobbe, J. Power Sources 159, 995–1004 (2006)

    Article  CAS  Google Scholar 

  4. P. Gostelow, S.A. Parsons, R.M. Stuetz, Water Res. 35, 579–597 (2001)

    Article  CAS  Google Scholar 

  5. A. Farshi, Z. Rabiei, Petrol. Coal 47, 49–56 (2005)

    CAS  Google Scholar 

  6. G. Chen, S. Tan, W.J. Koros, Energy Fuels 29, 3312–3321 (2015)

    Article  CAS  Google Scholar 

  7. Z. Sun, L. Jin, S. He, Y. Zhao, M. Wei, D.G. Evans, X. Duan, Green Chem. 14, 1909–1916 (2012)

    Article  CAS  Google Scholar 

  8. L. Lv, J. Zhang, C. Huang, Z. Lei, B. Chen, Sep. Purif. Technol. 125, 247–255 (2014)

    Article  CAS  Google Scholar 

  9. J.C. Moreno-Piraján, J. Tiran, B. Salamanca, L. Giraldo, Int. J. Mol. Sci. 11, 927–942 (2010)

    Article  Google Scholar 

  10. S.Y. Jung, S.C. Lee, H.K. Jun, Catal. Surv. Asia 17, 85–102 (2013)

    Article  CAS  Google Scholar 

  11. L.Q. Yao, L.P. Gao, J. Fuel Chem. Technol. 34, 749–752 (2006)

    CAS  Google Scholar 

  12. W. Turbeville, N. Yap, Catal. Today 116, 519–525 (2006)

    Article  CAS  Google Scholar 

  13. E. Groppo, C. Lamberti, S. Bordiga, Chem. Rev. 105, 115–184 (2005)

    Article  CAS  Google Scholar 

  14. Ö. Metin, S. Özkar, S. Sun, Nano Res. 3, 676–684 (2010)

    Article  CAS  Google Scholar 

  15. B. Chowdhury, J.J. Bravo-Suárez, N. Mimura, J. Phys. Chem. B 110, 22995–22999 (2006)

    Article  CAS  Google Scholar 

  16. P. Dhage, A. Samokhvalov, D. Repala, Ind. Eng. Chem. Res. 49, 8388–8396 (2010)

    Article  CAS  Google Scholar 

  17. F. Ju, C. Liu, V. Li, Energy Fuels 30, 6688–6697 (2016)

    Article  Google Scholar 

  18. X.M. Liu, G.Q. Lu, Z.F. Yan, Ind. Eng. Chem. Res. 42, 6518–6530 (2003)

    Article  CAS  Google Scholar 

  19. L.J. Wang, H.L. Fan, J. Shangguan, ACS Appl. Mater. Interfaces 6, 21167–21177 (2014)

    Article  CAS  Google Scholar 

  20. G. Huang, E. He, Z. Wang, Ind. Eng. Chem. Res. 54, 8469–8478 (2015)

    Article  CAS  Google Scholar 

  21. I. Rosso, C. Galletti, M. Bizzi, Ind. Eng. Chem. Res. 42, 1688–1697 (2003)

    Article  CAS  Google Scholar 

  22. A. Stein, R.C. Schroden, Curr. Opin. Solid State Mater. Sci. 5, 553–564 (2001)

    Article  CAS  Google Scholar 

  23. Y. Liu, H. Dai, Y. Du, J. Catal. 287, 149–160 (2012)

    Article  CAS  Google Scholar 

  24. H.L. Fan, T. Sun, Y.P. Zhao, J. Shangguan, J.Y. Lin, Environ. Sci. Technol. 47, 4859–4865 (2013)

    Article  CAS  Google Scholar 

  25. Y. Yao, Z. Yang, H. Sun, Ind. Eng. Chem. Res. 51, 14958–14965 (2012)

    Article  CAS  Google Scholar 

  26. S. Vaidya, K.V. Ramanujachary, S.E. Lofland, Cryst. Growth Des. 9, 1666–1670 (2009)

    Article  CAS  Google Scholar 

  27. S. Zhao, H. Yi, X. Tang, J. Clean. Prod. 87, 856–861 (2015)

    Article  CAS  Google Scholar 

  28. Y. Wei, Z. Zhao, T. Li, Appl. Catal. B 146, 57–70 (2014)

    Article  CAS  Google Scholar 

  29. H. Arandiyan, J. Scott, Y. Wang, ACS Appl. Mater. Interfaces 8, 2457–2463 (2016)

    Article  CAS  Google Scholar 

  30. Y. Wang, H. Arandiyan, J. Scott, ACS Catal. 6, 6935–6947 (2016)

    Article  CAS  Google Scholar 

  31. G. Liu, Z.H. Huang, F. Kang, J. Hazard. Mater. 215, 166–172 (2012)

    Article  Google Scholar 

  32. A.N. Parikh, S.D. Gillmor, J.D. Beers, J. Phys. Chem. B 103, 2850–2861 (1999)

    Article  CAS  Google Scholar 

  33. T. Pradeep, N. Sandhyarani, J. Mater. Chem. 11, 1294 (2001)

    Article  Google Scholar 

  34. M.N. Sung, K. Sung, C.G. Kim, S.S. Lee, Y. Kim, J. Phys. Chem. B. 106, 9717–9722 (2002)

    Article  Google Scholar 

  35. O. Ozturk, J.B. Park, T.J. Black, Surf. Sci. 602, 3077–3088 (2008)

    Article  CAS  Google Scholar 

  36. D.R. Mullins, T.S. McDonald, Surf. Sci. 602, 1280–1287 (2008)

    Article  CAS  Google Scholar 

  37. Z. Zhang, J. Wang, W. Li, Carbon 96, 608–615 (2016)

    Article  CAS  Google Scholar 

  38. J.M. Davidson, C.M. Grant, R.E.P. Winpenny, Eng. Chem. Res. 40, 2982–2986 (2001)

    Article  CAS  Google Scholar 

  39. J.M. Davidson, D.H. Glass, Ind. Eng. Chem. Res. 46, 4772–4777 (2007)

    Article  CAS  Google Scholar 

  40. H. Noei, H. Qiu, Y. Wang, Phys. Chem. Chem. Phys. 10, 7092–7097 (2008)

    Article  CAS  Google Scholar 

  41. A. Bagreev, S. Bashkova, T.J. Bandosz, Langmuir 18, 8553–8559 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (Grant 21576180) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Ling Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Wang, J. & Fan, HL. Three-dimensionally ordered macroporous metal oxide–silica composite for removal of mercaptan. Res Chem Intermed 43, 3847–3858 (2017). https://doi.org/10.1007/s11164-016-2853-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2853-8

Keywords

Navigation