Skip to main content
Log in

Preparation of chitosan nanoparticles by TPP ionic gelation combined with spray drying, and the antibacterial activity of chitosan nanoparticles and a chitosan nanoparticle–amoxicillin complex

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Chitosan nanoparticles were prepared from chitosan with various molecular weights by tripolyphosphate (TPP) ionic gelation combined with a spray drying method. The morphologies and characteristics of chitosan nanoparticles were determined by TEM, FE-SEM and from their mean sizes and zeta potentials. The effect of chitosan molecular weight (130, 276, 760 and 1200 cPs) and size of spray dryer nozzle (4.0, 5.5 and 7.0 µm) on mean size, size distribution and zeta potential values of chitosan nanoparticles was investigated. The results showed that the mean size of chitosan nanoparticles was in the range of 166–1230 nm and the zeta potential value ranged from 34.9 to 59 mV, depending on the molecular weight of chitosan and size of the spray dryer nozzles. The lower the molecular weight of chitosan, the smaller the size of the chitosan nanoparticles and the higher the zeta potential. A test for the antibacterial activity of chitosan nanoparticles (only) and a chitosan nanoparticle–amoxicillin complex against Streptococcus pneumoniae was also conducted. The results indicated that a smaller chitosan nanoparticle and higher zeta potential showed higher antibacterial activity. The chitosan nanoparticle–amoxicillin complex resulted in improved antibacterial activity as compared to amoxicillin and chitosan nanopaticles alone. Using a chitosan nanoparticle–amoxicillin complex could reduce by three times the dosage of amoxicillin while still completely inhibiting S. pneumoniae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Dagan, Vaccine 19(Suppl 1), S9–S16 (2000)

    Article  Google Scholar 

  2. J. Nishant, S. Meenu, T.K. Kumar, B. Bhavneet, A. Amit, K. Ajay, K. Harpreet, C. Neelima, PLoS One 9, e96282 (2014)

    Article  Google Scholar 

  3. T. van der Poll, S.M. Opal, Lancet 374, 1543–1556 (2009)

    Article  Google Scholar 

  4. A.T. Rodriguez, M.A. Ramirez, R.M. Cardenas, A.N. Hernandez, M.G. Velazquez, S. Bautista, Pestic. Biochem. Physiol. 89, 206–215 (2007)

    Article  CAS  Google Scholar 

  5. L.Q. Luan, V.T.T. Ha, N. Nagasawa, T. Kume, F. Yoshii, T.M. Nakanishi, Biotechnol. Appl. Biochem. 41, 49–57 (2005)

    Article  CAS  Google Scholar 

  6. N.A. Dzung, V.T.P. Khanh, T.T. Dung, Carbhydr. Polym. 84, 751–755 (2011)

    Article  CAS  Google Scholar 

  7. T. Yamaguchi, Y. Maehara, O. Kodama, M. Okada, M. Matsumura, N. Shibuya, J. Plant Physiol. 159, 1147–1149 (2002)

    Article  CAS  Google Scholar 

  8. M. Rinaudo, Prog. Polym. Sci. 31, 603–632 (2006)

    Article  CAS  Google Scholar 

  9. H.K. No, N.J. Park, S.H. Lee, S.P. Meyers, Int. J. Food Microbiol. 74, 65–72 (2002)

    Article  CAS  Google Scholar 

  10. M.N. Alves, J.F. Mano, Int. J. Biol. Macromol. 43, 401–414 (2008)

    Article  CAS  Google Scholar 

  11. D.N. Ngo, S.K. Kim, in Antioxidant, antimicrobial properties of chitin, chitosan, and their derivatives, ed. by S.K. Kim. Chitin and Chitosan Derivatives: Advances in Drug and Discovery and Developments (CRC Press, 2014), pp. 201–209

  12. N.A. Dzung, in Chitosan and Chitosan Derivatives as potential adjuvants for Influenza Vaccine, ed. by S.K. Kim. Chitin and Chitosan Derivatives, Advances in Drug and Discovery and Developments, in Advances in Drug and Discovery and Developments (CRC Press, 2014), pp. 418–492

  13. N.V. Sang, D.M. Hiep, N.A. Dzung, Biocatal. Agric. Biotechnol. 2, 289–294 (2013)

    Google Scholar 

  14. M.R. Avadi, A.M.M. Sadeghi, A. Tahzibi, K. Bayati, M. Pouladzadeh, M. Zohuriaan, M. Rafiee-Tehrani, Eur. Polym. J. 40, 1355–1361 (2004)

    Article  CAS  Google Scholar 

  15. A.J. Kevin, M.P. Fresneau, A. Marazuela, A. Fabra, M.J. Alonso, J. Control. Release 73, 255–267 (2001)

    Article  Google Scholar 

  16. S.A. Agnihotri, N. Mallikarjuna, T.M. Amineabhavi, J. Control Release 100, 5–28 (2004)

    Article  CAS  Google Scholar 

  17. H. Li, L. Qin, Z. Wang, S. Li, Res. Chem. Intermed. 38, 1421–1429 (2012)

    Article  CAS  Google Scholar 

  18. N.K. Gupta, P. Tomar, V. Sharma, V.K. Dixit, Vaccine 29, 9026–9037 (2011)

    Article  CAS  Google Scholar 

  19. B. Guy, N. Pascal, A. Francon, Vaccine 19, 1794–1805 (2001)

    Article  CAS  Google Scholar 

  20. O. Borges, J. Tavares, A. de Sousa, G. Borchard, H.E. Junginger, A. Cordeiro-da-Silva, 2007. Eur. J. Pharm. Sci. 32, 278–290 (2007)

    Article  CAS  Google Scholar 

  21. Q.T. Gan, C. Wang, P.M. Cochrane, Colloids Surf. B 44, 65–73 (2005)

    Article  CAS  Google Scholar 

  22. T. Kiang, J. Wen, H.W. Lim, K.W. Leong, Biomaterials 25, 5293–5301 (2004)

    Article  CAS  Google Scholar 

  23. L. Qi, Z. Xu, X. Jiang, C. Hu, X. Zou, Carbohydr. Res. 339, 2693–2700 (2004)

    Article  CAS  Google Scholar 

  24. K. Xing, X.G. Chen, Y.Y. Li, C.S. Liu, C.G. Liu, D.S. Cha, H.J. Park, Carbohydr. Polym. 74, 114–120 (2008)

    Article  CAS  Google Scholar 

  25. A.K. Anal, W.F. Stevens, C. Remunan-Lopez, Int. J. Pharm. 312, 166–173 (2006)

    Article  CAS  Google Scholar 

  26. E. Cevher, Z. Orhan, L. Mulazimoglu, D. Sensoy, M. Alper, A. Yildiz, Y. Ozsoy, Int. J. Pharm. 317, 127–135 (2006)

    Article  CAS  Google Scholar 

  27. S. Jafarinejad, K. Gilani, E. Moazeni, M. Ghazi-Khansani, A.R. Najafabadi, N. Mohajel, Power Technol. 222, 65–70 (2012)

    Article  CAS  Google Scholar 

  28. L.T.K. Ngan, S.L. Wang, D.M. Hiep, P.M. Luong, N.T. Vui, T.M. Dinh, N.A. Dzung, Res. Chem. Intermed. 40, 2165–2175 (2014)

    Article  CAS  Google Scholar 

  29. G.A. Robert, J.G. Domzy, Makromol. Chem. 186, 1671–1677 (1985)

    Article  Google Scholar 

  30. T.P. Learoyd, J.L. Burrows, E. French, P.C. Seville, Eur. J. Pharm. Biopharm. 68, 224–234 (2008)

    Article  CAS  Google Scholar 

  31. B.N. Estevinho, F. Rocha, L. Santos, A. Alves, Trends Food Sci. Tech. 31, 138–155 (2013)

    Article  CAS  Google Scholar 

  32. A.R. Dudhani, S.L. Kosaraju, Carbohydr. Polym. 81, 243–251 (2010)

    Article  CAS  Google Scholar 

  33. P. de Vos, M.M. Farr, M. Spasojevic, J. Sikkema, Int. Dairy J. 20, 292–302 (2010)

    Article  Google Scholar 

  34. O. Kašpar, M. Jakubec, F. Stepanek, Power Technol. 240, 31–43 (2013)

    Article  Google Scholar 

  35. J.C. Fernandes, F.K. Tavaria, J.C. Soares, O.S. Ramos, M.J. Monteiro, M.E. Pintado, F.X. Macata, Food Microbiol. 25, 922–928 (2008)

    Article  CAS  Google Scholar 

  36. A.J. Huh, Y.J. Kwon, J. Control. Release 156, 128–145 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Dept. of Science and Technology, Ho Chi Minh City, Vietnam, for supporting this work (217/2013/HDD-SKHCN). This work was supported in part by a grant from Ministry of Education and Training, Vietnam (2014–2016) and the Ministry of Science and Technology, Taiwan (NSC 102-2313-B-032-001-MY3 and MOST 103-2621-M-032-001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to San-Lang Wang or Anh Dzung Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.V., Nguyen, T.T.H., Wang, SL. et al. Preparation of chitosan nanoparticles by TPP ionic gelation combined with spray drying, and the antibacterial activity of chitosan nanoparticles and a chitosan nanoparticle–amoxicillin complex. Res Chem Intermed 43, 3527–3537 (2017). https://doi.org/10.1007/s11164-016-2428-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2428-8

Keywords

Navigation