Skip to main content

Advertisement

Log in

Advances and new technologies applied in controlled drug delivery system

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A drug delivery system is defined as a formulation or a device that enables the introduction of a therapeutic substance into the body and improves its efficacy and safety by controlling the rate, time, and place of release of drugs in the body. This process includes the administration of the therapeutic product, the release of the active ingredients by the product, and the subsequent transport of the active ingredients across the biological membranes to the site of action. Drug delivery systems aim to improve patient compliance and convenience, such as, for example, fast-dissolving tablets. One of the most important goals of pharmaceutical science is localizing the pharmacological activity of the drug at the site of action. Drug delivery systems are molecular tools which, without undesired interactions at other sites, target a specific drug receptor. Keeping in view the advantages of the delivery system, rapidly disintegrating dosage forms have been successfully commercialized, and, because of increased patient demand, these dosage forms are expected to become more popular. Modern drug delivery technology has been made possible by advances in polymer science. These advances have resulted in polymers with unique properties. Drug delivery systems are made from a variety of organic and inorganic compounds such as polymers, lipids (liposomes, nanoemulsions, and solid–lipid nanoparticles), self-assembling amphiphilic molecules, dendrimers, and inorganic nanocrystals. In addition, hydrogels are novel delivery systems that have attracted much attention in current pharmaceutical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Y.W. Chien, in Novel drug delivery systems, vol. 50, ed. by J. Swarbrick (Informa Healthcare USA, New York, 2009), p. 270

    Google Scholar 

  2. S.R. Parakh, A.V. Gothoskar, A review of mouth dissolving tablet technologies. Pharma Technol 27, 92–100 (2003)

    CAS  Google Scholar 

  3. M.E. Aulton, Pharmaceutics, the science of dosage form and design, 2nd edn. (Churchill Livingstone, London, 2002)

    Google Scholar 

  4. D. Brown, Drug Deliv. Technol. (2004)

  5. S.P. Vyas, R.K. Khar, Niosomes. Targeted and controlled drug delivery (CBS, New Delhi, 2010), p. 259

    Google Scholar 

  6. R. Langer, Drug delivery and targeting. Nature 392, 5–10 (1998)

    CAS  Google Scholar 

  7. R. Duncan, The dawning era of polymer therapeutics. Nat Rev Drug Discov 2, 347–360 (2003)

    CAS  Google Scholar 

  8. R. Duncan, Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6, 688–701 (2006)

    CAS  Google Scholar 

  9. R. Gref, A. Dombb, P. Quelled, T. Blunk, R.H. Miillerd, J.M. Verbavatz, R. Langerf, Adv Drug Deliv Rev 16, 215–233 (1995)

    CAS  Google Scholar 

  10. T.M. Saba, Physiology and physiopatholgy of the reticuloendothelial system. Arch Intern Med 126, 1031–1052 (1970)

    CAS  Google Scholar 

  11. L. Illum, S.S. Davis, R.H. Miiller, E. Mak, P. West, The organ distribution and circulation time of intravenously injected colloidal carriers sterically stabilized with a block copolymer—poloxamine 908. Life Sci 40, 367–374 (1987)

    CAS  Google Scholar 

  12. S. Trgster, J. Kreuter, Influence of the surface properties of low contact angle surfactants on the body distribution of 14C-poly(methyl methacrylate) nanoparticles. J. Microencapsul. 9, 19–28 (1992)

    Google Scholar 

  13. A.L. Klibanov, K. Maruyama, V.P. Torchilin, L. Huang, Amphiphatic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268, 235–237 (1990)

    CAS  Google Scholar 

  14. G. Blume, G. Cevc, Liposomes for the sustained drug release in vivo. Biochim. Biophys. Acta 1029, 91–97 (1990)

    CAS  Google Scholar 

  15. J. Senior, How do hydrophilic surfaces determine liposome fate in vivo? J. Liposome Res. 2, 307–319 (1992)

    CAS  Google Scholar 

  16. K. Petrak, Design and properties of particulate carriers for intravascular administration, in Pharmaceutical particulate carriers, ed. by A. Rolland (Marcel Dekker, New York, 1993)

    Google Scholar 

  17. T.M. Allen, The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system. Adv. Drug Deliv. Rev. 13, 285–309 (1994)

    CAS  Google Scholar 

  18. R.T. Liggins, H.M. Burt, Polyether–polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. Adv. Drug Deliv. Rev. 54, 191–202 (2002)

    CAS  Google Scholar 

  19. G.F. Paciotti, D.G.I. Kingston, L. Tamarkin, Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Dev. Res. 67, 47–54 (2006)

    CAS  Google Scholar 

  20. A. Gabizon, H. Shmeeda, Y. Barenholz, Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin. Pharmacokinet. 42, 419–436 (2003)

    CAS  Google Scholar 

  21. C. Klumpp, K. Kostarelos, M. Prato, A. Bianco, Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim. Biophys. Acta 1758, 404–412 (2006)

    CAS  Google Scholar 

  22. K. Letchford, H. Burt, A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur. J. Pharm. Biopharm. 65, 259–269 (2007)

    CAS  Google Scholar 

  23. Z. Jin, Q. Christopher, M.P. Lan, S. Benott, D. Yves, H.H. Tsung, Design of nanoparticles as drug carriers for cancer therapy. Genomics Proteomics 3, 147–158 (2006)

    Google Scholar 

  24. T.R. Hoare, D.S. Kohane, Hydrogels in drug delivery: progess and challenges. Polymer (Guildf.) 49, 1993–2007 (2008)

    CAS  Google Scholar 

  25. H.C. Ansel, L.V. Allen Jr, N.G. Popovich, Pharmaceutical dosage forms and drug delivery systems (Lippincott Williams & Wilkins, Baltimore, 2005)

    Google Scholar 

  26. B.W. Barry, Dermatological formulation: percutaneous absorption (Marcel Decker, New York, 1983)

    Google Scholar 

  27. R.L. Bronaugh, H.I. Maibach (eds.), Percutaneous absorption, 3rd edn. (Marcel Decker, New York, 1989)

    Google Scholar 

  28. Y.W. Chien, Novel drug delivery system, Chap. 7, 2nd edn. (Marcel Decker, New York, 1982)

    Google Scholar 

  29. D.S. Hsieh, Drug permeation enhancement (Marcel Decker, New York, 1994)

    Google Scholar 

  30. R.D. Stoughton, Percutaneous absorption. Toxicol. Appl. Pharmocol. 7, 1–8 (1965)

    Google Scholar 

  31. C.D. Black, Transdermal DDS. US Pharm. 1, 49 (1982)

    Google Scholar 

  32. A. Gupta, S.K. Prajapati, M. Balamurugan et al., Design and development of a proniosomal transdermal drug delivery system for captopril. Trop. J. Pharm. Res. 6, 687–693 (2007)

    Google Scholar 

  33. A. Shahiwala, A.N. Misra, Studies in topical application of niosomally entrapped Nimesulide. J. Pharm. Pharm. Sci. 5, 220–225 (2002)

    CAS  Google Scholar 

  34. A. Namdeo, N.K. Jain, Niosomal delivery of 5-fluorouracil. J. Microencapsul. 16, 731–740 (1999)

    CAS  Google Scholar 

  35. J.Y. Fang, C.T. Hong, W.T. Chiu et al., Effect of liposomes and niosomes on skin permeation of enoxacin. Int. J. Pharm. 219, 61–72 (2001)

    CAS  Google Scholar 

  36. P.J. Watts, L. Illum, Colonic drug delivery. Drug Dev. Ind. Pharm. 23, 893–913 (1997)

    CAS  Google Scholar 

  37. M. Marvola, P. Nykänen, S. Rautio et al., Enteric polymers as binders and coating materials in multiple-unit site-specific drug delivery systems. Eur. J. Pharm. Sci. 7, 259–267 (1999)

    CAS  Google Scholar 

  38. K. Niwa, T. Takaya, T. Morimoto et al., Preparation and evaluation of a time-controlled release capsule made of ethylcellulose for colon delivery of drugs. J. Drug Target. 3, 83–89 (1995)

    CAS  Google Scholar 

  39. V.R. Sinha, R. Kumria, Microbially triggered drug delivery to the colon. Eur. J. Pharm. Sci. 18, 3–18 (2003)

    CAS  Google Scholar 

  40. D.F. Evans, G. Pye, R. Bramley et al., Measurement of gastrointestinal pH profiles in normal ambulant subject. Gut 29, 1035–1041 (1988)

    CAS  Google Scholar 

  41. S.S. Davis, J.G. Hardy, A. Stockwell et al., The effect of food on the gastrointestinal transit of pellets and an osmotic device (Osmet). Int. J. Pharm. 21, 331–340 (1984)

    Google Scholar 

  42. R.K. Verma, B. Mishra, S. Garg, Osmotically controlled oral drug delivery. Drug Dev. Ind. Pharm. 26, 695–708 (2000)

    CAS  Google Scholar 

  43. Y. Gan, W. Pan, M. Wei, R. Zhang, Cyclodextrin complex osmotic tablet for glipizide delivery. Drug Dev. Ind. Pharm. 28, 1015–1021 (2002)

    CAS  Google Scholar 

  44. M. Ali, A. Behnaz, P. Mojgan et al., Solid carriers for improved solubility of glipizide in osmotically controlled oral drug delivery system. Drug Dev. Ind. Pharm. 33, 812–823 (2007)

    Google Scholar 

  45. S.A. Menqi, S.G. Deshpande, Ocular drug delivery, in Controlled and novel drug delivery, 1997th edn., ed. by N.K. Jain (CBS, Sagar, 2002), p. 85

    Google Scholar 

  46. S. Paul, R. Mondal, R. Somdipta, S. Maiti, Anti-glaucoma niosomal system: rescent trend in ocular delivery. Int. J. Pharm. Pharm. Sci. 2, 15–18 (2010)

    CAS  Google Scholar 

  47. S. Rathode, S.G. Deshpande, Albumin microspheres as an ocular delivery for pilocarpine nitrate. Int. J. Pharm. Sci. 70(2), 193–197 (2008)

    Google Scholar 

  48. M. Charsden, R. Langer (eds.), Biodegradable polymers as drug delivery system (Marcel Dekker, New York, 1990), pp. 43–70

    Google Scholar 

  49. S.A. Menqi, S.G. Deshpande, Ocular drug delivery, in Controlled and novel drug delivery, 1997th edn., ed. by N.K. Jain (CBS, Sagar, 2002), p. 89

    Google Scholar 

  50. R. Kapadia, H. Khambete, R. Katara, S. Ramteke, A novel approach for ocular delivery of acyclovir via niosome entrapped in-situ hydrogel system. J. Pharm. Res. 2(4), 745–751 (2009)

    CAS  Google Scholar 

  51. S.J. Douglas, S.S. Davis, L. Illum, Nanoparticles in drug delivery. Crit. Rev. Ther. Drug Carr. Syst. 3, 233–261 (1987)

    CAS  Google Scholar 

  52. H. Harashima, K. Sakata, K. Funato, H. Kiwada, Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes. Pharm. Res. 11, 402–406 (1994)

    CAS  Google Scholar 

  53. D.V. Devine, K. Wong, K. Serrano, A. Chonn, P.R. Cullis, Liposome–complement interactions in rat serum: implications for liposome survival studies. Biochim. Biophys. Acta 1191, 43–51 (1994)

    CAS  Google Scholar 

  54. S.M. Moghimi, H. Hedeman, I.S. Muir, L. Illum, S.S. Davis, An investigation of the filtration capacity and the fate of large filtered sterically-stabilized microspheres in rat spleen. Biochim. Biophys. Acta 1157, 233–240 (1993)

    CAS  Google Scholar 

  55. S.E. Dunn, A. Brindley, S.S. Davis, M.C. Davies, L. Illum, Polystyrene–poly(ethylene glycol) (PS-PEG2000) particles as model systems for site specific drug delivery. 2. The effect of PEG surface density on the in vitro cell interaction and in vivo biodistribution. Pharm. Res. 11, 1016–1022 (1994)

    CAS  Google Scholar 

  56. R. Gref, Y. Minamitake, M.T. Peracchia, V. Trubetskoy, V. Torchilin, R. Langer, Biodegradable long-circulating polymer nanospheres. Science 263, 1600–1603 (1994)

    CAS  Google Scholar 

  57. M. Yokoyama, G.S. Kwon, T. Okano, Y. Sakurai, K. Kataoka, Development of micelle-forming polymeric drug with superior anticancer activity. ACS Symp. Ser. 545, 126–134 (1994)

    CAS  Google Scholar 

  58. Y.-L. Hao, Y.-J. Deng, Y. Chen, K.-Z. Wang, A.-J. Hao, Y. Zhang, In-vitro cytotoxicity, in vivo biodistribution and antitumor effect of PEGylated liposomal topotecan. J. Pharm. Pharmacol. 57, 1279–1287 (2005)

    CAS  Google Scholar 

  59. S.Y. Kim, I.G. Shin, Y.M. Lee, Amphiphilic diblock copolymeric nanospheres composed of methoxy poly(ethylene glycol) and glycolide: properties, cytotoxicity and drug release behaviour. Biomaterials 20, 1033–1042 (1999)

    CAS  Google Scholar 

  60. J. Liu, Y. Xiao, C. Allen, Polymer–drug compatibility: a guide to the development of delivery systems for the anticancer agent, ellipticine. J. Pharm. Sci. 93, 132–143 (2004)

    CAS  Google Scholar 

  61. S.Y. Kim, I.G. Shin, Y.M. Lee, C.S. Cho, Y.K. Sung, Methoxy poly(ethylene glycol) and epsilon-caprolactone amphiphilic block copolymeric micelle containing indomethacin. II. Micelle formation and drug release behaviours. J. Control. Release 51, 13–22 (1998)

    CAS  Google Scholar 

  62. R.T. Dorr, Pharmacology and toxicology of Cremophor EL diluent. Ann. Pharmacother. 28, 11–14 (1994)

    Google Scholar 

  63. R.R. Kokardekar, H.R. Mody, Solid lipid nanoparticles: a drug carrier system. Chron. Young Sci. 2(1), 26–28 (2011)

    CAS  Google Scholar 

  64. A. Sharma, U. Sharma, Liposomes in drug delivery: progress and limitations. Int. J. Pharm. 154, 123–140 (1997)

    CAS  Google Scholar 

  65. A.D. Bangham, in Progress in biophysics and molecular biology, ed. by J.A.V. Butler, D. Noble (Pergamon, Oxford, 1968)

    Google Scholar 

  66. D. Papahadjopoulos, K.K. Kimelberg, Prog. Surf Sci. 4, 141 (1973)

    Google Scholar 

  67. A.D. Bangham, M.W. Hill, N.G.A. Miller, in Methods in membrane biology, ed. by E.D. Korn (Plenum, New York, 1974), pp. 11–38

    Google Scholar 

  68. A. Jesorka, O. Orwar, Liposomes: technologies and analytical applications. Annu. Rev. Anal. Chem. 1(1), 801–832 (2008)

    CAS  Google Scholar 

  69. T. Lian, R.J.Y. Ho, Trends and developments in liposome drug delivery systems. J. Pharm. Sci. 90(6), 667–680 (2001)

    CAS  Google Scholar 

  70. A.N. Martin, Colloids, Chapt. 15, in Physical pharmacy: physical chemical principles in the pharmaceutical sciences, 4th edn., ed. by A.N. Martin (Williams and Wilkins, Baltimore, 1993), pp. 393–422

    Google Scholar 

  71. M.C. Jones, J.C. Leroux, Polymeric micelles—a new generation of colloidal drug carriers. Eur. J. Pharm. Biopharm. 48, 101–111 (1999)

    CAS  Google Scholar 

  72. G.S. Kwon, K. Kataoka, Block copolymer micelles as long-circulating drug vehicles. Adv. Drug Deliv. Rev. 16, 295–309 (1995)

    CAS  Google Scholar 

  73. G.S. Kwon, Diblock copolymer nanoparticles for drug delivery. Crit. Rev. Ther. Drug Carr. Syst. 15, 481–512 (1998)

    CAS  Google Scholar 

  74. A. Lavasanifar, J. Samuel, G.S. Kwon, Poly(ethylene oxide)-blockpoly(l-amino acid) micelles for drug delivery. Adv. Drug Deliv. Rev. 54, 169–190 (2002)

    CAS  Google Scholar 

  75. C. Allen, D. Maysinger, A. Eisenberg, Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf. B 16, 3–27 (1999)

    CAS  Google Scholar 

  76. A. Vonarbourg, C. Passirani, P. Saulnier, J.-P. Benoit, Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27, 4356–4373 (2006)

    CAS  Google Scholar 

  77. K. Kataoka, T. Matsumoto, M. Yokoyama, T. Okano, Y. Sakurai, S. Fukushima, K. Okamoto, G.S. Kwon, Doxorubicin-loaded poly(ethylene glycol)–poly(beta-benzyl-l-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J. Control. Release 64, 143–153 (2000)

    CAS  Google Scholar 

  78. G.S. Kwon, M. Yokoyama, T. Okano, Y. Sakurai, K. Kataoka, Biodistribution of micelle-forming polymer–drug conjugates. Pharm. Res. 10, 970–974 (1993)

    CAS  Google Scholar 

  79. G. Kwon, S. Suwa, M. Yokoyama, T. Okano, Y. Sakurai, K. Kataoka, Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly(ethylene oxide-aspartate) block copolymer–adriamycin conjugates. J. Control. Release 29, 17–23 (1994)

    CAS  Google Scholar 

  80. S.Y. Kim, Y.M. Lee, H.J. Shin, J.S. Kang, Indomethacin-loaded methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) diblock copolymeric nanosphere: pharmacokinetic characteristics of indomethacin in the normal Sprague-Dawley rats. Biomaterials 22, 2049–2056 (2001)

    CAS  Google Scholar 

  81. F. Kohori, K. Sakai, T. Aoyagi, M. Yokoyama, Y. Sakurai, T. Okano, Preparation and characterization of thermally responsive block copolymer micelles comprising poly(N-isopropylacrylamide-b-dl-lactide). J. Control. Release 55, 87–98 (1998)

    CAS  Google Scholar 

  82. M. Yokoyama, Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin. Drug Deliv. 7(2), 145–158 (2010)

    CAS  Google Scholar 

  83. U. Kedar, P. Phutane, S. Shidhaye, V. Kadam, Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine 6, 714–729 (2010)

    CAS  Google Scholar 

  84. M. Yokoyama, T. Okano, Y. Sakurai, S. Suwa, K. Kataoka, Introduction of cisplatin into polymeric micelles. J. Control. Release 39, 351–356 (1996)

    CAS  Google Scholar 

  85. M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K. Kataoka et al., Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)–poly(aspartic acid) block copolymer. Cancer Res. 50, 1693–1700 (1990)

    CAS  Google Scholar 

  86. K. Kataoka, H. Togawa, A. Harada, K. Yasugi, T. Matsumoto, S. Katayose, Spontaneous formation of polyion complex micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in physiological saline. Macromolecules 29, 8556–8557 (1996)

    CAS  Google Scholar 

  87. A. Harada, K. Kataoka, Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments. Macromolecules 28, 5294–5299 (1995)

    CAS  Google Scholar 

  88. T.K. Bronich, V.A. Kabanov, A.V. Kabanov, A. Eisenberg, Soluble complexes from poly(ethylene oxide)-block-polymethacrylate anions and N-alkylpyridinium cations. Macromolecules 30, 3519–3525 (1997)

    CAS  Google Scholar 

  89. X. Shuai, T. Merdan, A.K. Schaper, F. Xi, T. Kissel, Core-cross-linked polymeric micelles as paclitaxel carriers. Bioconjug. Chem. 154, 441–448 (2004)

    Google Scholar 

  90. Y. Liu, J. Sun, P. Zhang, Z. He, Amphiphilic polysaccharide–hydrophobicized graft polymeric micelles for drug delivery nanosystems. Curr. Med. Chem. 18(17), 2638–2648 (2011)

    CAS  Google Scholar 

  91. Y. Ohya, S. Takeda, Y. Shibata, T. Ouchi, A. Kano, T. Iwata, S. Mochizuki, Y. Taniwaki, A. Maruyama, Evaluation of polyanion-coated biodegradable polymeric micelles as drug delivery vehicles. J. Control. Release 155(1), 104–110 (2011)

    CAS  Google Scholar 

  92. Z. Zhang, D.W. Grijpma, J. Feijen, Thermo-sensitive transition of monomethoxy poly(ethylene glycol)-block-poly(trimethylene carbonate) films to micellar-like nanoparticles. J. Control. Release 112, 57–63 (2006)

    CAS  Google Scholar 

  93. V.P. Torchilin, V.S. Trubetskoy, K.R. Whiteman, P. Caliceti, P. Ferruti, F.M. Veronese, New synthetic amphiphilic polymers for steric protection of liposomes in vivo. J. Pharm. Sci. 84, 1049–1053 (1995)

    CAS  Google Scholar 

  94. M. Stepanek, K. Podhajecka, E. Tesarova, K. Prochazka, Hybrid polymeric micelles with hydrophobic cores and mixed polyelectrolyte/nonelectrolyte shells in aqueous media. I. Preparation and basic characterization. Langmuir 17, 4240–4244 (2001)

    CAS  Google Scholar 

  95. V.P. Torchilin, Structure and design of polymeric surfactant based drug delivery systems. J. Control. Release 73, 137–172 (2001)

    CAS  Google Scholar 

  96. M.Y. Kozlov, N.S. Melik-Nubarov, E.V. Batrakova, A.V. Kabanov, Relationship between pluronic block copolymer structure, critical micellization concentration and partitioning coefficients of low molecular mass solutes. Macromolecules 33, 3305–3313 (2000)

    CAS  Google Scholar 

  97. K.S. Soppimath, T.M. Aminabhavi, A.R. Kulkarni, W.E. Rudzinski, Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 70, 1–20 (2001)

    CAS  Google Scholar 

  98. T. Ameller, V. Marsaud, P. Legrand, R. Gref, G. Barratt, J.-M. Renoir, Polyester–poly(ethylene glycol) nanoparticles loaded with the pure antiestrogen RU 58668: physicochemical and opsonization properties. Pharm. Res. 20, 1063–1070 (2003)

    CAS  Google Scholar 

  99. L. Illum, S.S. Davis, The organ uptake of intravenously administered colloidal particles can be altered using a nonionic surfactant (Poloxamer 338). FEBS Lett. 167, 79–82 (1984)

    CAS  Google Scholar 

  100. R.H. Mueller, K.H. Wallis, Surface modification of i.v. injectable biodegradable nanoparticles with poloxamer polymers and poloxamine. Int. J. Pharm. 89, 25–31 (1993)

    CAS  Google Scholar 

  101. S.D. Troester, J. Kreuter, Contact angles of surfactants with a potential to alter the body distribution of colloidal drug carriers on poly(methyl methacrylate) surfaces. Int. J. Pharm. 45, 91–100 (1988)

    CAS  Google Scholar 

  102. L. Illum, I.M. Hunneyball, S.S. Davis, The effect of hydrophilic coatings on the uptake of colloidal particles by the liver and by peritoneal macrophages. Int. J. Pharm. 29, 53–65 (1986)

    CAS  Google Scholar 

  103. M.T. Peracchia, R. Gref, Y. Minamitake, A. Domb, N. Lotan, R. Langer, PEG-coated nanospheres from amphiphilic diblock and multiblock copolymers: investigation of their drug encapsulation and release characteristics. J. Control. Release 46, 223–231 (1997)

    CAS  Google Scholar 

  104. K. Tahara, S. Furukawa, H. Yamamoto, Y. Kawashima, Hybrid-modified poly(d,l-lactide-co-glycolide) nanospheres for a novel cellular drug delivery system. Int. J. Pharm. 392(1–2), 311–313 (2010)

    CAS  Google Scholar 

  105. T.J. de Faria, A. Machado de Campos, E.L. Senna, Preparation and characterization of poly(d,l-lactide) (PLA) and poly(d,l-lactide)–poly(ethylene glycol) (PLA–PEG) nanocapsules containing antitumoral agent methotrexate. Macromol. Symp. 229, 228–233 (2005)

    Google Scholar 

  106. M. Teixeira, M.J. Alonso, M.M.M. Pinto, C.M. Barbosa, Development and characterization of PLGA nanospheres and nanocapsules containing xanthone and 3-methoxyxanthone. Eur. J. Pharm. Biopharm. 59, 491–500 (2005)

    CAS  Google Scholar 

  107. C. Prego, D. Torres, E. Fernandez-Megia, R. Novoa-Carballal, E. Quinoa, M.J. Alonso, Chitosan–PEG nanocapsules as new carriers for oral peptide delivery. J. Control. Release 111, 299–308 (2006)

    CAS  Google Scholar 

  108. D.E. Discher, A. Eisenberg, Materials science: soft surfaces: polymer vesicles. Science 297, 967–973 (2002)

    CAS  Google Scholar 

  109. B.M. Discher, Y.-Y. Won, D.S. Ege, J.C.M. Lee, F.S. Bates, D.E. Discher, D.A. Hammer, Polymersomes: tough vesicles made from diblock copolymers. Science 284, 1143–1146 (1999)

    CAS  Google Scholar 

  110. H. Bermudez, A.K. Brannan, D.A. Hammer, F.S. Bates, D.E. Discher, Molecular weight dependence of polymersome membrane structure, elasticity, and stability. Macromolecules 35, 8203–8208 (2002)

    CAS  Google Scholar 

  111. F. Ahmed, D.E. Discher, Self-porating polymersomes of PEG–PLA and PEG–PCL: hydrolysis-triggered controlled release vesicles. J. Control. Release 96, 37–53 (2004)

    CAS  Google Scholar 

  112. F. Meng, C. Hiemstra, G.H.M. Engbers, J. Feijen, Biodegradable polymersomes. Macromolecules 36, 3004–3006 (2003)

    CAS  Google Scholar 

  113. P.J. Photos, L. Bacakova, B. Discher, F.S. Bates, D.E. Discher, Polymer vesicles in vivo: correlations with PEG molecular weight. J. Control. Release 90, 323–334 (2003)

    CAS  Google Scholar 

  114. S. Prakash, M. Malhotra, W. Shao, C. Tomaro-Duchesneau, S. Abbasi, Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv. Drug Deliv. Rev. 63(14–15), 1340–1351 (2011)

    CAS  Google Scholar 

  115. F. Liang, B. Chen, A review on biomedical applications on single-walled carbon nanotubes. Curr. Med. Chem. 17, 10–24 (2010)

    CAS  Google Scholar 

  116. D.S. Bethune, C.H. Klang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993)

    CAS  Google Scholar 

  117. A. Thess, R. Lee, P. Nikolaev, H. Diah, P. Petit, J. Robert, C. Xu, J.E. Fischer, R.E. Samalley, Crystalline ropes of metallic nanotubes. Science 273, 483–487 (1996)

    CAS  Google Scholar 

  118. A.M. Cassel, J.A. Raymakers, J. Kong, H. Dia, Large scale CVD synthesis of singlewalled carbon nanotubes. J. Phys. Chem B 103, 6484–6492 (1999)

    Google Scholar 

  119. D. Bonifazi, C. Nacci, R. Marega, S. Campidelli, G. Ceballos, S. Modesti, M. Meneghetti, M. Prato, Microscopic and spectroscopic characterization of paint brush-like single-walled carbon nanotubes. Nano Lett. 6, 1408–1414 (2006)

    CAS  Google Scholar 

  120. B. Zhao, H. Hu, A. Yu, D. Perea, R.C. Haddon, Synthesis and characterization of water soluble single-walled carbon nanotube graft copolymers. J. Am. Chem. Soc. 127, 8197–8203 (2005)

    CAS  Google Scholar 

  121. E.B. Malarkey, R.C. Reyes, B. Zhao, R.C. Haddon, V. Parpura, Water soluble singlewalled carbon nanotubes inhibit stimulated endocytosis in neurons. Nano Lett. 8, 3538–3542 (2008)

    CAS  Google Scholar 

  122. E.B. Malarkey, K.A. Fisher, E. Bekyarova, W. Liu, R.C. Haddon, V. Parpura, Conductive single-walled carbon nanotube substrates modulate neuronal growth. Nano Lett. 9, 264–268 (2009)

    CAS  Google Scholar 

  123. C.L. Lay, H.Q. Liu, H.R. Tan, Y. Liu, Delivery of paclitaxel by physically loading onto poly(ethylene glycol) (PEG)–graft-carbon nanotubes for potent cancer therapeutics. Nanotechnology 21, 65101 (2010)

    Google Scholar 

  124. M. Prato, K. Kostarelos, A. Bianco, Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res. 41, 60–68 (2008)

    CAS  Google Scholar 

  125. J.E. Chung, M. Yokoyama, T. Aoyagi, Y. Sakurai, T. Okano, Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. J. Control. Release 53, 119–130 (1998)

    CAS  Google Scholar 

  126. Y.N. Nujoma, C.J. Kim, A designer’s polymer as an oral drug carrier (tablet) with pseudo-zero order kinetics. J. Pharm. Sci. 85, 1091–1095 (1996)

    CAS  Google Scholar 

  127. N. Konar, C.J. Kim, Water-soluble polycations as oral drug carriers (tablets). J. Pharm. Sci. 86, 1339–1344 (1997)

    CAS  Google Scholar 

  128. N. Konar, C.J. Kim, Water soluble quaternary amine polymers as controlled release carriers. J. Appl. Polym. Sci. 691, 263–269 (1998)

    Google Scholar 

  129. N. Konar, C.J. Kim, Drug release from drug–polyanion complex tablets: poly(acrylamido-2-methyl-1-propranesulfonate sodium-co-methyl methacrylate). J. Control. Release 57, 141–150 (1999)

    CAS  Google Scholar 

  130. N. Konar, C.J. Kim, Drug release from ionic drugs from water insoluble drug–polyion complex tablets, in Polymeric drugs and drug delivery systems, ed. by R.M. Ottenbrite, S.W. Kim (Technomic, Lancaster, 2001), pp. 69–85

    Google Scholar 

  131. E. Khalil, A. Sallam, Interaction of two diclofenac acid salts with copolymers of ammoniomethacrylate: effect of additives and release profiles. Drug Dev. Ind. Pharm. 25, 419–427 (1999)

    CAS  Google Scholar 

  132. H.K. Lee, J. Hadju, P. McGoff, Propranolol–methacrylic acid copolymer binding interaction. J. Pharm. Sci. 80, 178–180 (1991)

    CAS  Google Scholar 

  133. A. Licea-Claverie, E. Rogel-Hernandez, R. Salgado-Rodriguez, J.A. Lopez-Sanchez, L.A. Castillo, J.M. Cornejo-Bravo, K.F. Arndt, The use of hydrophobic spacers in the development of new temperature and pH-sensitive polymers. Macromol. Symp. 207, 193–215 (2004)

    CAS  Google Scholar 

  134. J. Zhang, C. Li, Y. Wang, R.-X. Zhuo, X.-Z. Zhang, Controllable exploding microcapsules as drug carriers. Chem. Commun. 47, 4457–4459 (2011)

    CAS  Google Scholar 

  135. J.H. Hamman, Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar. Drugs. 8, 1305–1322 (2010)

    CAS  Google Scholar 

  136. W. Argüelles-Monal, G. Cabrera, C. Peniche, M. Rinaudo, Conductimetric study of the interpolyelectrolyte reaction between chitosan and polygalacturonic acid. Polymer 41, 2373–2378 (2000)

    Google Scholar 

  137. A.I. Gamzazade, S.M. Nasibov, Formation and properties of polyelectrolyte complexes of chitosan hydrochloride and sodium dextransulfate. Carbohydr. Polym. 50, 339–343 (2002)

    CAS  Google Scholar 

  138. J.S. Maciel, D.A. Silva, H.C.B. Paula, R.C.M. de Paula, Chitosan/carboxymethyl cashew gum polyelectrolyte complex: synthesis and thermal stability. Eur. Polym. J. 41, 2726–2733 (2005)

    CAS  Google Scholar 

  139. E.S. Sashina, N.P. Novoselov, Polyelectrolyte complexes of fibroin with chitosan. Macromol. Chem. Polym. Mater. 78, 493–497 (2005)

    Google Scholar 

  140. Q. Zhao, J. Qian, Q. An, C. Gao, Z. Gui, H. Jin, Synthesis and characterization of soluble chitosan/sodium carboxymethyl cellulose polyelectrolyte complexes and the pervaporation dehydration of their homogenous membranes. J. Membr. Sci. 333, 68–78 (2009)

    CAS  Google Scholar 

  141. M.A. Oliveira, P.C. Ciarlini, J.P.A. Feitosa, R.C.M. de Paula, H.C.B. Paula, Chitosan/“angico” gum nanoparticles: synthesis and characterization. Mater. Sci. Eng. C 29, 448–451 (2009)

    CAS  Google Scholar 

  142. C. Alvarez-Lorenzo, A. Concheiro, Intelligent drug delivery systems: polymeric micelles and hydrogels. Mini Rev. Med. Chem. 8(11), 1065–1074 (2008)

    CAS  Google Scholar 

  143. C.Y. Nho, S.U. Park, H.I. Kim, T.S. Hwang, Oral delivery of insulin using pH-sensitive hydrogels based on polyvinyl alcohol grafted with acrylic acid/methacrylic acid by radiation. Nucl. Instrum. Methods B 236, 283–288 (2005)

    CAS  Google Scholar 

  144. R.C. Mundargi, V. Rangaswamy, T.M. Aminabhavi, Poly(N-vinylcaprolactam-co-methacrylic acid) hydrogel microparticles for oral insulin delivery. J. Microencapsul. 28(5), 384–394 (2011)

    CAS  Google Scholar 

  145. K.M. Gupta, S.R. Barnes, R.A. Tangaro et al., Temperature and pH sensitive hydrogels: an approach towards smart semen-triggered vaginal microbicidal vehicles. J. Pharm. Sci. 96(3), 670–681 (2007)

    CAS  Google Scholar 

  146. P. Gupta, K. Vermani, S. Garg, Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today 7(10), 569–579 (2002)

    CAS  Google Scholar 

  147. S.R. Sershen, S.L. Westcott, N.J. Halas, J.L. West, Temperature-sensitive polymer–nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res. 51(3), 293–298 (2000)

    CAS  Google Scholar 

  148. S. Tanna, T.S. Sahota, K. Sawicka, M.J. Taylor, The effect of degree of acrylic derivatisation on dextran and concanavalin A glucose-responsive materials for closed-loop insulin delivery. Biomaterials 27(25), 4498–4507 (2006)

    CAS  Google Scholar 

  149. Y. Ishihara, H.S. Bazzi, V. Toader, F. Godin, H.F. Sleiman, Molecule-responsive block copolymer micelle. Chemistry 13(16), 4560–4570 (2007)

    CAS  Google Scholar 

  150. C. Alvarez-Lorenzo, S. Deshmukh, L. Bromberg, T.A. Hatton, I. Sandez-Macho, A. Concheiro, Temperature- and light-responsive blends of pluronic F127 and poly(N,N-dimethylacrylamide-co-methacryloyloxyazobenzene). Langmuir 23(23), 11475–11481 (2007)

    CAS  Google Scholar 

  151. L.B. Alkayyali, O.A. Abu-Diak, G.P. Andrews, D.S. Jones, Hydrogels as drug-delivery platforms: physicochemical barriers and solutions. Ther. Deliv. 3(6), 775–786 (2012)

    CAS  Google Scholar 

  152. H.K. Shah, J.A. Conkie, R.C. Tait, J.R. Johnson, C.G. Wilson, A novel, biodegradable and reversible polyelectrolyte platform for topical-colonic delivery of pentosan polysulphate. Int. J. Pharm. 404(1–2), 124–132 (2011)

    CAS  Google Scholar 

  153. X. Jin, X. Zhang, Z. Wu et al., Amphiphilic random glycopolymer based on phenylboronic acid: synthesis, characterization, and potential as glucose-sensitive matrix. Biomacromolecules 10(6), 1337–1345 (2009)

    CAS  Google Scholar 

  154. L. Wang, M. Liu, C. Gao, L. Ma, D. Cui, A pH-thermo-, and glucose-, triple responsive hydorgels: synthesis and controlled drug delivery. React. Funct. Polym. 70, 159–167 (2010)

    CAS  Google Scholar 

  155. L. Bromberg, Intelligent hydrogels for the oral delivery of chemotherapeutics. Expert Opin. Drug Deliv. 2(6), 1003–1013 (2005)

    CAS  Google Scholar 

  156. N. Li, J. Wang, X. Yang, L. Li, Novel nanogels as drug delivery systems for poorly soluble anticancer drugs. Colloids Surf. B Biointerfaces 83(2), 237–244 (2011)

    CAS  Google Scholar 

  157. H.T. Ta, C.R. Dass, I. Larson, P.F. Choong, D.E. Dunstan, A chitosan–dipotassium orthophosphate hydrogel for the delivery of Doxorubicin in the treatment of osteosarcoma. Biomaterials 30(21), 3605–3613 (2009)

    CAS  Google Scholar 

  158. M. Patel, L. Mao, B. Wu, P.J. Vandevord, GDNF–chitosan blended nerve guides: a functional study. J. Tissue Eng. Regen. Med. 1(5), 360–367 (2007)

    CAS  Google Scholar 

  159. N. Bhattarai, J. Gunn, M. Zhang, Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev. 62(1), 83–99 (2010)

    CAS  Google Scholar 

  160. L. Klouda, K.R. Perkins, B.M. Watson et al., Thermoresponsive, in situ cross-linkable hydrogels based on N-isopropylacrylamide: fabrication, characterization and mesenchymal stem cell encapsulation. Acta Biomater. 7(4), 1460–1467 (2011)

    CAS  Google Scholar 

  161. H. Nazar, M. Roldo, D.G. Fatouros, S.M. Van Der Merwe, J. Tsibouklis, Hydrogels in mucosal delivery. Ther. Deliv. 3(4), 535–555 (2012)

    CAS  Google Scholar 

  162. Y. Cao, C. Zhang, W. Shen, Z. Cheng, L.L. Yu, Q. Ping, Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J. Control. Release 120(3), 186–194 (2007)

    CAS  Google Scholar 

  163. E. Barbu, L. Verestiuc, M. Iancu, A. Jatariu, A. Lungu, J. Tsibouklis, Hybrid polymeric hydrogels for ocular drug delivery: nanoparticulate systems from copolymers of acrylic acid-functionalized chitosan and N-isopropylacrylamide or 2-hydroxyethyl methacrylate. Nanotechnology 20(22), 225108 (2009)

    Google Scholar 

  164. G.P. Misra, R.S. Singh, T.S. Aleman, S.G. Jacobson, T.W. Gardner, T.L. Lowe, Subconjunctivally implantable hydrogels with degradable and thermoresponsive properties for sustained release of insulin to the retina. Biomaterials 30(33), 6541–6547 (2009)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Bassyouni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bassyouni, F., ElHalwany, N., Abdel Rehim, M. et al. Advances and new technologies applied in controlled drug delivery system. Res Chem Intermed 41, 2165–2200 (2015). https://doi.org/10.1007/s11164-013-1338-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-013-1338-2

Keywords

Navigation