Skip to main content

Advertisement

Log in

Interaction of fishes with pathogenic micro-organisms and application of phages for their control: a review

  • Reviews
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

The present condition of aquacultural industry is influenced by the economical losses due to various aquacultural diseases causing fish mortality. The present review provides benchmark information related to application of bacteriophages in aquacultural industries over available traditional treatment procedures like antibiotics and chemotherapy. The traditional methods are mostly less advantageous due to development of resistance, non-specific targeting of bacteria including intestinal microflora, etc. In short here we discuss the interaction between fish, bacteria and their phages in order to have an alternate treatment method for the pathogens responsible for aquacultural diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackermann HW, DuBow MS (1987) Viruses of prokaryotes. CRC Press, Boca Raton

    Google Scholar 

  • Alderman DJ (1999) Aquaculture and environment. In: De Pauw N, Joyce J (eds) European aquaculture society special publication 16. EAS, Bruxelles

  • Allen MJ, Wilson WH (2008) Aquatic virus diversity accessed through omic techniques: a route map to function. Curr Opin Microbiol 11:226–232

    PubMed  CAS  Google Scholar 

  • Almeida A, Cunha A, Gomes NCM, Alves E, Costa L Faustino M (2009) Phage therapy and photodynamic therapy: low environmental impact approaches to inactivate microorganisms in fish farming plants. Mar Drugs 7:268–313

    Google Scholar 

  • Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA, Carlson C, Chan AM, Haynes M, Kelley S, Liu H, Mahaffy JM, Mueller JE, Nulton J, Olson R, Parsons R, Rayhawk S, Suttle CA, Rohwer F (2006) The marine viromes of four oceanic regions. PLoS Biol 4:e368

    PubMed  Google Scholar 

  • Austin B, Pride AC, Rhodie GA (2003) Association of a bacteriophage with virulence in Vibrio harveyi. J Fish Dis 26:55–58

    PubMed  CAS  Google Scholar 

  • Bakopoulos V, Adams A, Richards RH (1995) Some biochemical properties and antibiotic sensitivities of Pasteurella piscicida isolated in Greece and comparison with strains from Japan, France and Italy. J Fish Dis 18:1–7

    Google Scholar 

  • Baquero F, Martínez J-L, Cantón R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19:260–265

    PubMed  CAS  Google Scholar 

  • Barrow P, Lovell M, Berchieri A Jr (1998) Use of lytic bacteriophage for control of experimental Escherichia coli septicemia and meningitis in chickens and calves. Clin Diagn Lab Immunol 5:294–298

    PubMed  CAS  Google Scholar 

  • Bernoth EM (1997) Furunculosis: multidisciplinary fish disease research. Elsevier Academic Press, San Diego

    Google Scholar 

  • Birkbeck TH, Bordevik M, Frøystad MK, Baklien Å (2007) Identification of Francisella sp. from atlantic salmon, Salmo salar L., in Chile. J Fish Dis 30:505–507

    PubMed  CAS  Google Scholar 

  • Biswas B, Adhya S, Washart P, Paul B, Trostel AN, Powell B, Carlton R, Merril CR (2002) Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect Immun 70:204–210

    PubMed  CAS  Google Scholar 

  • Bogovazova GG, Voroshilova NN, Bondarenko VM (1991) The efficacy of Klebsiella pneumoniae bacteriophage in the therapy of experimental Klebsiella infection. Zh Mikrobiol Epidemiol Immunobiol 4:5–8

    PubMed  Google Scholar 

  • Brussow H, Canchaya C, Hardt WD (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602

    PubMed  Google Scholar 

  • Bruun MS, Schmidt AS, Madsen L, Dalsgaard I (2000) Antimicrobial resistance patterns in Danish isolates of Flavobacterium psychrophilum. Aquaculture 187:201–212

    CAS  Google Scholar 

  • Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8:1137–1144

    PubMed  CAS  Google Scholar 

  • Cao J, Sun Y-Q, Berglindh T, Mellgard B, Li Z-Q, Mardh B, Mardh S (2000) Helicobacter pylori-antigen-binding fragments expressed on the filamentous M13 phage prevent bacterial growth. Biochim Biophys Acta 1474:107–113

    PubMed  CAS  Google Scholar 

  • Cissoko M, Desnues A, Bouvy M, Sime-Ngando T, Verling E, Bettarel Y (2008) Effects of freshwater and seawater mixing on virio- and bacterioplankton in a tropical estuary. Freshw Biol 53:1154–1162

    Google Scholar 

  • Cochran PK, Kellog CA, Paul JH (1998) Prophage induction of indigenous marine lysogenic bacteria by environmental pollutants. Mar Ecol Prog Ser 164:125–133

    CAS  Google Scholar 

  • Comeau AM, Hatfull GF, Krisch HM, Lindell D, Mann NH, Prangishvili D (2008) Exploring the prokaryotic virosphere. Res Microbiol 159:306–313

    PubMed  CAS  Google Scholar 

  • Culley AI, Lang AS, Suttle CA (2006) Metagenomic analysis of coastal RNA virus communities. Science 312:1795–1798

    PubMed  CAS  Google Scholar 

  • Dalton R (2004) Aquaculture: fishing for trouble. Nature 431:502–504

    PubMed  CAS  Google Scholar 

  • Defoirdt T, Boon N, Sorgeloos P, Verstraete W, Bossier P (2007) Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends Biotechnol 25:472–479

    PubMed  CAS  Google Scholar 

  • Drake JW, Holland JJ (1999) Mutation rates among RNA viruses. Proc Natl Acad Sci USA 96:13910–13913

    PubMed  CAS  Google Scholar 

  • Duckworth DH, Gulig PA (2002) Bacteriophages: potential treatment for bacterial infections. BioDrugs 16:57–62

    PubMed  CAS  Google Scholar 

  • Evans ML, Neff BD (2009) Major histocompatibility complex heterozygote advantage and widespread bacterial infections in populations of Chinook salmon (Oncorhynchus tshawytscha). Mol Ecol 18:4716–4729

    PubMed  CAS  Google Scholar 

  • Fiorentin L, Vieira ND, Jr Barioni W (2005) Use of lytic bacteriophages to reduce Salmonella enteritidis in experimentally contaminated chicken cuts. Rev Bras Cienc Avic 7:255–260

    Google Scholar 

  • Fischer UR, Velimirov B (2002) High control of bacterial production by viruses in a eutrophic oxbow lake. Aquat Microb Ecol 27:1–12

    Google Scholar 

  • Flegel TW (2006) Detection of major penaeid shrimp viruses in Asia, a historical perspective with emphasis on Thailand. Aquaculture 258:1–33

    Google Scholar 

  • Freifelder D (1983) Molecular biology: a comprehensive introduction to prokaryotes and eukaryotes. Science Books International, Boston

    Google Scholar 

  • Fryer JL, Lannan CN (1996) Rickettsial infections of fish. Annu Rev Fish Dis 6:3–13

    Google Scholar 

  • Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399:541–548

    PubMed  CAS  Google Scholar 

  • Fukuda Y, Nguyen HD, Furuhashi M, Nakai T (1996) Mass mortality of cultured sevenband grouper, Epinephelus septemfasciatus, associated with viral nervous necrosis. Fish Pathol 31:165–170

    Google Scholar 

  • Gieseker CM, Serfling SG, Reimschuessel R (2006) Formalin treatment to reduce mortality associated with Saprolegnia parasitica in rainbow trout, Oncorhynchus mykiss. Aquaculture 253:120–129

    CAS  Google Scholar 

  • Hagens S, Habel A, von Ahsen U, von Gabain A, Blasi U (2004) Therapy of experimental pseudomonas infections with a nonreplicating genetically modified phage. Antimicrob Agents Chemother 48:3817–3822

    PubMed  CAS  Google Scholar 

  • Hamaguchi M, Kawahara I, Usuki H (1993) Mass mortality of Pseudocentrotus depressus caused by a bacterial infection in summer. Suisan Zoshoku 41:189–193

    Google Scholar 

  • Heidrich S, Herms J, Schneider J (1999) Chromatography with humic acids in fish culture. EAFP 157–163

  • Holmström K, Gräslund S, Wahlström A, Poungshompoo S, Bengtsson B-E, Kautsky N (2003) Antibiotic use in shrimp farming and implications for environmental impacts and human health. Int J Food Sci Technol 38:255–266

    Google Scholar 

  • Howgate PC, Lima dos Santos CA, Shehadeh ZK (1997) Safety of food products from aquaculture. FAO, Rome

    Google Scholar 

  • Hsieh CY, Tung MC, Tu C, Chang CD, Tsai SS (2006) Enzootics of visceral granulomas associated with Francisella-like organism infection in tilapia (Oreochromis spp.). Aquaculture 254:129–138

    Google Scholar 

  • Iida Y, Masumura K, Nakai T, Sorimachi M, Matsuda H (1989) A viral disease in larvae and juveniles of the Japanese flounder Paralichthys olivaceus. J Aquat Anim Health 1:7–12

    Google Scholar 

  • Iida H, Tanaka S, Shibata Y (1997) Small GTP-binding protein, Rab6, is associated with secretory granules in atrial myocytes. Am J Physiol Cell Physiol 272:1594–1601

    Google Scholar 

  • Imbeault S, Parent S, Lagacé M, Uhland CF, Blais J-F (2006) Using bacteriophages to prevent furunculosis caused by Aeromonas salmonicida in farmed brook trout. J Aquat Anim Health 18:203–214

    Google Scholar 

  • Jado I, Lopez R, Garcia E, Fenoll A, Casal J, Garcia P (2003) Phage lytic enzymes as therapy for antibiotic-resistant Streptococcus pneumoniae infection in a murine sepsis model. J Antimicrob Chemother 52:967–973

    PubMed  CAS  Google Scholar 

  • Jiang SC, Paul JH (1994) Seasonal and diel abundance of viruses and occurrence of lysogeny/bacteriogenicity in the marine environment. Mar Ecol Prog Ser 104:163–172

    Google Scholar 

  • Kamaishi T, Fukuda Y, Nishiyama M, Kawakami H, Matsuyama T, Yoshinaga T, Oseko N (2005) Identification and pathogenicity of intracellular Francisella bacterium in three-line grunt Parapristipoma trilineatum. Fish Pathol 40:67–71

    CAS  Google Scholar 

  • Karlsson L, Bjerselius R, Aune M, Darnerud PO, Glynn A, Tysklind M, Wichardt UP (2002) Impacts of the fishery, disease, and contaminants on Baltic salmon (Salmo salar L.) in the sea. North Pacific Anadromous Fish Comission

  • Karunasagar I, Shivu MM, Girisha SK, Krohne G, Karunasagar I (2007) Biocontrol of pathogens in shrimp hatcheries using bacteriophages. Aquaculture 268:288–292

    Google Scholar 

  • Khodabandeh S, Abtahi B (2006) Effects of sodium chloride, formalin and iodine on the hatching success of common carp, Cyprinus carpio, eggs. J Appl Ichthyol 22:54–56

    CAS  Google Scholar 

  • Kropinski AM (2006) Phage therapy—everything old is new again. Can J Infect Dis Med Microbiol 17:297–306

    PubMed  Google Scholar 

  • Kusuda R, Kawai K (1998) Bacterial diseases of cultured marine fish in Japan. Fish Pathol 33:221–227

    CAS  Google Scholar 

  • Kusuda R, Kimura H (1982) Characteristics of gliding bacterium isolated from cultured yellowtail Seriola quinqueradiata. Bull Jpn Soc Sci Fish 48:1107–1112

    Google Scholar 

  • Lorenzen E, Dalsgaard I, From J, Hansen EM, Hørlyck V, Korsholm H, Mellergaard S, Olesen NJ (1991) Preliminary investigations of fry mortality syndrome in rainbow trout. Bull Eur Assoc Fish Pathol 11:77–79

    Google Scholar 

  • Lucena F, Duran AE, Morón A, Calderón E, Campos C, Gantzer C, Skraber S, Jofre J (2004) Reduction of bacterial indicators and bacteriophages infecting faecal bacteria in primary and secondary wastewater treatments. J Appl Microbiol 97:1069–1076

    PubMed  CAS  Google Scholar 

  • Magaraggia M, Faccenda F, Gandolfi A, Jori G (2006) Treatment of microbiologically polluted aquaculture waters by a novel photochemical technique of potentially low environmental impact. J Environ Monit 8:923–931

    PubMed  CAS  Google Scholar 

  • Martinez JL (2003) In: Fingerman N (eds) Recent advances in marine biotechnology. Molecular genetics of marine organisms, vol 10. Science Publishers, Inc, Enfield

  • Matsuzaki S, Yasuda M, Nishikawa H, Kuroda M, Ujihara T, Shuin T, Shen Y, Jin Z, Fujimoto S, Nasimuzzaman MÂD, Wakiguchi H, Sugihara S, Sugiura T, Koda S, Muraoka A, Imai S (2003) Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage phi MR11. J Infect Dis 187:613–624

    PubMed  CAS  Google Scholar 

  • Mauel MJ, Soto E, Morales JA, Hawke J (2007) A piscirickettsiosis like syndrome in cultured Nile tilapia in Latin America with Francisella spp. as the pathogenic agent. J Aquat Anim Health 19:27–34

    PubMed  CAS  Google Scholar 

  • McDaniel L, Paul JH (2005) Effect of nutrient addition and environmental factors on prophage induction in natural populations of marine Synechococcus species. Appl Environ Microbiol 71:842–850

    PubMed  CAS  Google Scholar 

  • Mekuchi T, Kiyokawa T, Honda K, Nakai T, Muroga K (1995) Vaccination trials in the Japanese flounder against Edwardsiellosis. Fish Pathol 30:251–256

    Google Scholar 

  • Merino S, Camprubi S, Tomas JM (1990) Isolation and characterization of bacteriophage PM2 from Aeromonas hydrophila. FEMS Microbiol Lett 68:239–244

    CAS  Google Scholar 

  • Mikalsen J, Olsen AB, Tengs T, Colquohoun DJ (2007) Francisella philomiragia subsp noatunensis subsp nov., isolated from farmed Atlantic cod (Gadus morhua L.). Int J Syst Evol Microbiol 57:1960–1965

    PubMed  CAS  Google Scholar 

  • Miyazaki T, Fujiwara K, Kobara J, Matsumoto N, Abe M, Nagano T (1989) Histopathology associated with two viral diseases of larval and juvenile fishes: epidermal necrosis of the Japanese flounder Paralichthys olivaceus and epithelial necrosis of black sea bream Acanthopagrus schlegeli. J Aquat Anim Health 1:85–93

    Google Scholar 

  • Mladineo I (2005) Parasite communities of adriatic cage-reared fish. Dis Aquat Organ 64:77–83

    PubMed  Google Scholar 

  • Munro J, Oakey J, Bromage E, Owens L (2003) Experimental bacteriophage-mediated virulence in strains of Vibrio harveyi. Dis Aquat Org 54:187–194

    PubMed  Google Scholar 

  • Muroga K (2001) Viral and bacterial diseases of marine fish and shellfish in Japanese hatcheries. Aquaculture 202:23–44

    Google Scholar 

  • Muroga K, Iida M, Matsumoto H, Nakai T (1986) Detection of Vibrio anguillarum from waters. Nippon Suisan Gakk 52:641–647

    Google Scholar 

  • Muroga K, Tanasomwang V, Momoyama K (1987) Vibrio anguillarum infection in juveniles of tiger puffer (Takifugu rubripes). Fish Pathol 22:29–30

    Google Scholar 

  • Nakai T, Park SC (2002) Bacteriophage therapy of infectious diseases in aquaculture. Res Microbiol 153:13–18

    PubMed  Google Scholar 

  • Nakai T, Sugimoto R, Park KH, Mori K, Nishioka T, Maruyama K (1999a) Protective effects of bacteriophage on experimental Lactococcus garvieae infection in yellowtail. Dis Aquat Organ 37:33–41

    PubMed  CAS  Google Scholar 

  • Nakai T, Sugimoto R, Park K, Matsuoka S, Mori K, Nishioka T, Maruyama K (1999b) Protective effects of bacteriophage on experimental Lactococcus garvieae infection in yellowtail. Dis Aquat Org 37:33–41

    PubMed  CAS  Google Scholar 

  • Nakatsugawa T (1983) Edwardsiella tarda isolated from cultured young flounder. Fish Pathol 18:99–101

    Google Scholar 

  • Nakatsugawa T (2000) Studies on amyotrophia of Japanese black abalone, Nordotis discus. Kyoto Inst Ocean Fish Sci Spec Rep 5:1–61

    Google Scholar 

  • Nematollahi A, Decostere A, Pasmans F, Haesebrouck F (2003) Flavobacterium psychrophilum infections in salmonid fish. J Fish Dis 26:563–574

    PubMed  CAS  Google Scholar 

  • Noya M, Magarinos B, Lamas J (1995) La administracion intraperitoneal y oral de glucano afecta al sistema immune no especifico y a la resistencia de la dorada, Sparus aurata, a la pasteurelosis. In: Proceedings of the fifth national congress of aquaculture, Sant Carles de la Rapita, Spain, pp 734–738

  • Oakey HJ, Owens L (2000) A new bacteriophage, VHML, isolated from a toxin-producing strain of Vibrio harveyi in tropical Australia. J Appl Microbiol 89:702–709

    PubMed  CAS  Google Scholar 

  • Oakey HJ, Cullen BR, Owens L (2002) The complete nucleotide sequence of the Vibrio harveyi bacteriophage VHML. J Appl Microbiol 93:1089–1098

    PubMed  CAS  Google Scholar 

  • Ostland VE, Stannard JA, Creek JJ, Hedrick RP, Ferguson HW, Carlberg JM, Westerman ME (2006) Aquatic Francisella-like bacterium associated with mortality of intensively cultured hybrid striped bass Morone chrysops M. saxatilis. Dis Aquat Org 72:135–145

    PubMed  CAS  Google Scholar 

  • Ottem KF, Nylund A, Karlsbakk E, Friis-Moller A, Krossoy B, Knappskog D (2007) New species in the genus Francisella (Gammaproteobacteria; Francisellaceae); Francisella piscicida sp. nov. isolated from cod (Gadus morhua). Arch Microbiol 188:547–550

    PubMed  CAS  Google Scholar 

  • Park SC, Nakai T (2003) Bacteriophage control of Pseudomonas plecoglossicidae infection in ayu Plecoglossus altivelis. Dis Aquat Organ 53:33–39

    PubMed  Google Scholar 

  • Park SC, Shimamura I, Fukunaga M, Mori KI, Nakai T (2000) Isolation of bacteriophages specific to a fish pathogen, Pseudomonas plecoglossicida, as a candidate for disease control. Appl Environ Microbiol 66:1416–1422

    PubMed  CAS  Google Scholar 

  • Paunikar WN, Sanmukh SG, Ghosh TK (2011) Non-specificity of phage enzymes. Int J Pharma Biosci 2:B546–B552

    Google Scholar 

  • Pillay TVR, Kutty MN (2005) Aquaculture: principles and practices. Wiley, Oxford

    Google Scholar 

  • Ramírez E, Villaverde A (1997) Viral spread within ageing bacterial populations. Gene 202:147–149

    PubMed  Google Scholar 

  • Raoult D, Forterre P (2008) Redefining viruses: lessons from mimivirus. Nat Rev Microbiol 6:315–319

    PubMed  CAS  Google Scholar 

  • Ripp S, Miller RV (1997) The role of pseudolysogeny in bacteriophage-host interactions in a natural freshwater environment. Microbiology (Reading, Engl.) 143:2065–2070

    Google Scholar 

  • Ripp S, Miller RV (1998) Dynamics of the pseudolysogenic response in slowly growing cells of Pseudomonas aeruginosa. Microbiology (Reading, Engl.) 144:2225–2232

  • Rodgers CJ, Pringle JH, McCarthy DH, Austin B (1981) Quantitative and qualitative studies of Aeromonas salmonicida bacteriophage. J Gen Microbiol 125:335–345

    Google Scholar 

  • Roque A, Molina-Aja A, Bolán-Mejía C, Gomez-Gil B (2001) In vitro susceptibility to 15 antibiotics of vibrios isolated from penaeid shrimps in Northwestern Mexico. Int J Antimicrob Agents 17:383–387

    PubMed  CAS  Google Scholar 

  • Ruangpan L, Yaowanit D, Sataporn D, Siriporn S, Flegel TW (1999) Lethal toxicity of Vibrio harveyi to cultivated Penaeus monodon induced by a bacteriophage. Dis Aquat Org 35:195–201

    Google Scholar 

  • Saksida S, Constantine J, Karreman GA, Neville C, Sweeting R, Beamish R (2006) Evaluation of sea lice, Lepeophtheirus salmonis, abundance levels on farmed salmon in British Columbia, Canada. In: The proceedings from the international symposium on veterinary epidemiology and economics XI, Cairns, Australia

  • Sano T (1998) Control of fish disease, and the use of drugs and vaccines in Japan. J Appl Ichthyol 14:131–137

    Google Scholar 

  • Shao ZJ (2001) Aquaculture pharmaceuticals and biologicals: current perspectives and future possibilities. Adv Drug Delivery Rev 50:229–243

    CAS  Google Scholar 

  • Shivu MM, Rajeeva BC, Girisha SK, Karunasagar I, Krohne G, Karunasagar I (2007) Molecular characterization of Vibrio harveyi bacteriophages isolated from aquaculture environments along the coast of India. Environ Microbiol 9:322–331

    PubMed  CAS  Google Scholar 

  • Smith HW, Huggins RB (1982) Successful treatment of experimental E. coli infections in mice using phage: its general superiority over antibiotics. J Gen Microbiol 128:307–318

    PubMed  CAS  Google Scholar 

  • Sorimachi M, Hara T (1985) Characteristics and pathogenicity of a virus isolated from yellowtail fingerlings showing ascites. Fish Pathol 19:231–238

    Google Scholar 

  • Soto E, Hawke J, Fernandez D, Morales JA (2009) Francisella sp., an emerging pathogen of tilapia (Oreochromis niloticus) in Costa Rica. J Fish Dis 32:713–722

    PubMed  CAS  Google Scholar 

  • Stevenson RMW, Airdrie DW (1984) Isolation of Yersinia ruckeri bacteriophages. Appl Environ Microbiol 47:1201–1205

    PubMed  CAS  Google Scholar 

  • Subasinghe RP, Bondad-Reantaso MG, McGladdery SE (2001) Aquaculture development, health and wealth. In: Subasinghe RP, Bueno P, Phillips MJ, Hough C, McGladdery SE, Arthur JR (eds) Aquaculture in the millennium. Technical proceedings of the conference on aquaculture in the third millennium, Bangkok, Thailand

  • Suttle CA (2007) Marine viruses-major players in the global ecosystem. Nat Rev Microbiol 5:801–812

    PubMed  CAS  Google Scholar 

  • Suttle CA, Chan AM (1993) Marine cyanophages infecting oceanic and costal strains of Synechococcus: abundance, morphology, cross-infectivity and growth characteristics. Mar Ecol Prog Ser 92:99–109

    Google Scholar 

  • Thyssen A, Ollevier F (2001) In vitro antimicrobial susceptibility of Photobacterium damselae subsp. piscicida to 15 different antimicrobial agents. Aquaculture 200:259–269

    CAS  Google Scholar 

  • Toranzo AE, Barreiro S, Casal JF, Figueras A, Magariños B, Barja JL (1991) Pasteurellosis in cultured gilthead seabream, Sparus aurata: first report in Spain. Aquaculture 99:1–15

    Google Scholar 

  • Toro H, Price SB, McKee AS, Hoerr FJ, Krehling J, Perdue M, Bauermeister L (2005) Use of bacteriophages in combination with competitive exclusion to reduce Salmonella from infected chickens. Avian Dis 9:118–124

    Google Scholar 

  • Vinod MG, Shivu MM, Umesha KR, Rajeeva BC, Krohne G, Karunasagar I, Karunasagar I (2006) Isolation of Vibrio harveyi bacteriophage with a potential for biocontrol of luminous vibriosis in hatchery environments. Aquaculture 255:117–124

    CAS  Google Scholar 

  • Vlak JM, Bonami JR, Flegel TW, Kou GH, Lightner DV, Loh CF, Loh PC, Walker PW (2005) Nimaviridae-virus taxonomy. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) 8th Reports of the International Committee on Taxonomy of Viruses. Academic Press, Elsevier, New York

  • Wagner PL, Waldor MK (2002) Bacteriophage control of bacterial virulence. Infect Immun 70:3985–3993

    PubMed  CAS  Google Scholar 

  • Wahli T, Knuesel R, Bernet D, Segner H, Pugovkin D, Burkhardt-Holm P, Escher M, Schmidt-Posthaus H (2002) Proliferative kidney disease in Switzerland: current state of knowledge. J Fish Dis 25:491–500

    Google Scholar 

  • Wakabayashi H, Hikida M, Masumura K (1984) Flexibacter infection in cultured marine fish in Japan. Helgolander Meeresun 37:587–593

    Google Scholar 

  • Watanabe R, Matsumoto T, Sano G, Ishii Y, Tateda K, Sumiyama Y, Uchiyama J, Sakurai S, Matsuzaki S, Imai S, Yamaguchi K (2007) Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob Agents Chemother 51:446–452

    PubMed  CAS  Google Scholar 

  • Weinbauer M (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181

    PubMed  CAS  Google Scholar 

  • Weinbauer MG, Suttle CA (1999) Lysogeny and prophage induction in coastal and offshore bacterial communities. Aquat Microb Ecol 18:217–225

    Google Scholar 

  • Weiss KR (2002) Fish farms become feedlots of the sea. Los Angeles Times, 9 Dec

  • Wichels A, Biel SS, Gelderblom HR, Brinkhoff T, Muyzer G, Schütt C (1998) Bacteriophage diversity in the North Sea. Appl Environ Microbiol 64:4128–4133

    PubMed  CAS  Google Scholar 

  • Wilhelm SW, Suttle CA (1999) Viruses and nutrient cycles in the sea. Bioscience 49:781–788

    Google Scholar 

  • Wills QF, Kerrigan C, Soothill JS (2005) Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrob Agents Chemother 49:1220–1221

    PubMed  CAS  Google Scholar 

  • Wilson WH, Mann NH (1997) Lysogenic and lytic viral production in marine microbial communities. Aquat Microb Ecol 13:95–100

    Google Scholar 

  • Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114

    PubMed  CAS  Google Scholar 

  • Wu JL, Chao WJ (1984) The epizootic of milkfish vibriosis and its biological control by bacteriophage AS10, COA Fisheries No. 10. Fish Dis Res VI 34–46

  • Wu JL, Lin HM, Jan L, Hsu YL, Chang LH (1981) Biological control of fish pathogen, Aeromonas hydrophila, by bacteriophage AH1. Fish Pathol 15:271–276

    Google Scholar 

  • Yuksel S, Thompson K, Ellis A, Adams A (2001) Purification of Piscirickettsia salmonis and associated phage particles. Dis Aquat Org 44:231–235

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very thankful to Dr. Satish R. Wate, Director, National Environmental Engineering Research Institute (NEERI), Nagpur, Maharashtra (India) for their support and motivation during these studies. We are also thankful to Dr. Lalita N Sangolkar, Senior Principal Scientist and Dr. Vijay W Lande, Scientist, Applied Aquatic Ecosystem Division, National Environmental Engineering Research Institute (NEERI), Nagpur, Maharashtra (India) for their encouragement and suggestions for writing this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waman N. Paunikar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanmukh, S.G., Meshram, D.B., Paunikar, W.N. et al. Interaction of fishes with pathogenic micro-organisms and application of phages for their control: a review. Rev Fish Biol Fisheries 22, 567–574 (2012). https://doi.org/10.1007/s11160-012-9257-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-012-9257-7

Keywords

Navigation