Skip to main content

Advertisement

Log in

Aquatic phytoremediation strategies for chromium removal

  • Review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

The environment is increasingly becoming contaminated with chromium (Cr) from increased industrial activity, and this is a serious ecotoxicological concern worldwide. Cr causes serious pollution problems and severe health hazards in living beings. To address contamination concerns, many attempts have been made to remove and recover Cr from wastewaters. To cope with Cr pollution, phytoremediation has emerged as economic and eco-sustainable solution to various physicochemical treatments that are expensive and inefficient, especially at low Cr concentrations. A great variety of plants including aquatic macrophytes and hydroponically grown plants are known to assimilate Cr by directly absorbing, precipitating, and concentrating it from polluted aquatic environments. In view of the above, present review examines the viability of phtoremediation as an eco-sustainable technology for remediation of Cr from aqueos environments. Moreover, such plants also act as catalysts for a variety of chemical and biochemical reactions in the rhizosphere. Furthermore, plants reduce the toxic Cr(VI) to nontoxic Cr(III) and serve as a useful tool for Cr detoxification. Low-molecular weight organic acids secreted by many plants may act as natural chelating agents and can play a major role in enhanced phytoremediation of Cr. This review critically evaluates the efficiency of different plants for Cr removal from wetlands, aqueous solutions and wastewaters. Additionally, an in-depth view on various mechanisms involved during bioaccumulation of Cr in plants is also presented. This review explores current scientific progress in the field of Cr phytoremediation from aqueos environments and presents phytoremediation as a sustainable remediation technology for Cr management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adki VS, Jadhav JP, Vishwas A, Bapat VA (2013) Nopalea cochenillifera, a potential chromium(VI) hyperaccumulator plant. Environ Sci Pollut Res 20:1173–1180

    CAS  Google Scholar 

  • Aguilar JRP, Cabriales JJP, Vega MM (2008) Identification and characterization of sulfur-oxidizing bacteria in an artificial wetland that treats wastewater from a tannery. Int J Phytoremediation 10:359–370

    CAS  Google Scholar 

  • Aksoy A, Demirezen D, Duman F (2005) Bioaccumulation, detection and analysis of heavy metal pollution in sultan marsh and its environment. Water Air Soil Pollut 164:241–255

    CAS  Google Scholar 

  • Aldrich MV, Gardea-Torresdey JL, Peralta-Videa JR, Parson JG (2003) Uptake and reduction of Cr(VI) to Cr(III) by mesquite (Prosopis spp.): chromate–plant interaction in hydroponics and solid media studied using XAS. Environ Sci Technol 37:1859–1864

    CAS  Google Scholar 

  • Alfaro-Saldana EF, Perez-Molphe-Balch E, Santos-Diaz MS (2016) Generation of transformed roots of Scirpus americanus Pers. and study of their potential to remove Pb2+ and Cr3+. Plant Cell Tissue Organ Cult 127:15–24

    CAS  Google Scholar 

  • Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere. Environ Sci Technol 27:2630–2636

    CAS  Google Scholar 

  • Anirudhan T, Radhakrishnan P (2007) Chromium (III) removal from water and wastewater using a carboxylate—functionalized cation exchanger prepared from a lignocellulosic residue. J Colloid Interface Sci 316(2):268–276

    CAS  Google Scholar 

  • Arán DS, Harguinteguy CA, Alicia Fernandez-Cirelli A, Pignata ML (2017) Phytoextraction of Pb, Cr, Ni, and Zn using the aquatic plant Limnobium laevigatum and its potential use in the treatment of wastewater. Environ Sci Pollut Res 24:18295–18308

    Google Scholar 

  • Arduini I, Masoni A, Ercoli L (2006) Effects of high chromium applications on miscanthus during the period of maximum growth. Environ Exp Bot 58:234–243

    CAS  Google Scholar 

  • Arienzo M, Adamo P, Cozzolino V (2004) The potential of Lolium perenne for revegetation of contaminated soil from a metallurgical site. Sci Total Environ 319:13–25

    CAS  Google Scholar 

  • Arora A, Saxena S, Sharma DK (2006) Tolerance and phytoaccumulation of chromium by three Azolla species. World J Microbiol Biotechnol 22:97–100

    CAS  Google Scholar 

  • ATSDR (2012) Toxicological profile for chromium. US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta

    Google Scholar 

  • ATSDR (2019) The ATSDR 2019 substance priority list. US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta

    Google Scholar 

  • Augustynowicz J, Grosicki M, Hanus-Fajerska E, Lekka M, Waloszek A, Kołoczek H (2010) Chromium(VI) bioremediation by aquatic macrophyte Callitriche cophocarpa Sendtn. Chemosphere 79:1077–1083

    CAS  Google Scholar 

  • Augustynowicz J, Wrobel P, Płachno BJ, Tylko G, Gajewski Z, Wegrzynek D (2014) Chromium distribution in shoots of macrophyte Callitriche cophocarpa Sendtn. Planta 239:1233–1242

    CAS  Google Scholar 

  • Augustynowicz J, Łukowicz K, Tokarz K, Płachno BJ (2015) Potential for chromium(VI) bioremediation by the aquatic carnivorous plant Utricularia gibba L. (Lentibulariaceae). Environ Sci Pollut Res 22:9742–9748

    CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–97

    CAS  Google Scholar 

  • Bala R, Thukral AK (2011) Phytoremediation of Cr(VI) by Spirodela polyrrhiza (L.) Schleiden employing reducing and chelating agents. Int J Phytorem 13:465–491

    CAS  Google Scholar 

  • Banks MK, Schwab AP, Henderson C (2006) Leaching and reduction of chromium in soil as affected by soil organic content and plants. Chemosphere 62:255–264

    CAS  Google Scholar 

  • Bartlett RJ, James BR (1988) Mobility and bioavailability of chromium in soils. In: Nriagu JO, Nieboer E (eds) Chromium in the natural and human environments. Wiley, New York, pp 267–383

    Google Scholar 

  • Bennicelli R, Stepniewska Z, Banach A, Szajnocha K, Ostrowski J (2004) The ability of Azolla caroliniana to remove heavy metals [Hg(II), Cr(III), Cr(VI)] from municipal waste water. Chemosphere 55:141–146

    CAS  Google Scholar 

  • Bharti S, Banerjee TK (2012) Phytoremediation of the coalmine effluent. Ecotoxicol Environ Saf 81:36–42

    CAS  Google Scholar 

  • Bolan NS, Adriano DC, Natesan R, Koo BJ (2003) Effects of organic amendments on the reduction and phytoavailability of chromate in mineral soil. J Environ Qual 32:120–128

    CAS  Google Scholar 

  • Bose S, Vedamati J, Rai V, Ramanathan GL (2008) Metal uptake and transport by Typha angustata L. grown on metal contaminated waste amended soil: an implication of phytoremediation. Geoderma 145:136–142

    CAS  Google Scholar 

  • Brezinová T (2015) The seasonal dynamics of heavy metals in vegetation of constructed wetlands for wastewater treatment. Ph.D. Thesis, Czech University of Life Sciences Prague

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals. CAB International Publishing (Oxford University Press), Oxford

    Google Scholar 

  • Bucheli-Witschel M, Egli T (2001) Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiol Rev 25:69–106

    CAS  Google Scholar 

  • Buendia-Gonzalez L, Orozco-Villafuerte J, Cruz-Sosa F, Barrera-Diaz CE, Vernon-Carter EJ (2010) Prosopis laevigata a potential chromium(VI) and cadmium(II) hyperaccumulator desert plant. Bioresour Technol 101:5862–5867

    CAS  Google Scholar 

  • Burken J (1999) Today’s phytoremediation: success had led to growth. Int J Phytoremediation 1(2):111–113

    Google Scholar 

  • Caldelas C, Araus JL, Febrero A, Bort J (2012) Accumulation and toxic effects of chromium and zinc in Iris pseudacorus L. Acta Physiol Plant 34:1217–1228

    CAS  Google Scholar 

  • Calheiros CSC, Rangel AOSS, Castro PML (2007) Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Water Res 41(8):1790–1798

    CAS  Google Scholar 

  • Calheiros CSC, Rangel AOSS, Castro PML (2008) The effects of tannery wastewater on the development of different plant species and chromium accumulation in Phragmites australis. Arch Environ Contam Toxicol 55:404–414

    CAS  Google Scholar 

  • Carillo V, Fuentes B, Gomez G, Vidal G (2020) Characterization and recovery of phosphorus from wastewater by combined technologies. Rev Environ Sci Biotechnol. https://doi.org/10.1007/s11157-020-09533-1

    Article  Google Scholar 

  • Carranza-Álvarez C, Alonso-Castro A, Alfaro-De La Torre M, García-De La Cruz R (2008) Accumulation and distribution of heavy metals in Scirpus americanus and Typha latifolia from an Artificial Lagoon in San Luis Potosí, México. Water Air Soil Pollut 188:297–309

    Google Scholar 

  • Cervantes C, Campos-Garcia J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC, Moreno-Sanchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Micro Rev 25:335–347

    CAS  Google Scholar 

  • Chandra P, Sinha S, Rai UN (1997) Bioremediation of chromium form water and soil by vascular aquatic plants. In: Kruger E, Anderson TA, Coats JR (eds) Phytoremediation of soil and water. American Chemical Society, Washington, pp 274–282

    Google Scholar 

  • Chaney RL (1983) Plant uptake of inorganic waste constituents. In: Parr JF, Marsh PB, Kla JM (eds) Land treatment of hazardous wastes. Noyes Data Corporation, Park Ridge, pp 50–76

    Google Scholar 

  • Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109:69–74

    CAS  Google Scholar 

  • Chaudhary E, Sharma P (2019) Chromium and cadmium removal from wastewater using duckweed—Lemna gibba L. and ultrastructural deformation due to metal toxicity. Int J Phytoremediation 21:1–8

    Google Scholar 

  • Choesin DN, Triawan PM, Laelasari E, Prayudi WA (2016) Treatment of chromium waste in a constructed wetland system: insights from microcosm experiments. Int J Adv Chem Eng Biol Sci 3:32–34

    Google Scholar 

  • Choo TP, Lee CK, Low KS, Hishamuddin O (2006) Accumulation of chromium(VI) from aqueous solutions using water lilies (Nymphaea spontanea). Chemosphere 62:961–967

    CAS  Google Scholar 

  • Clemens S, Palmgren MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    CAS  Google Scholar 

  • Cohen-Shoel N, Ilzycer D, Gilath I, Tel-Or E (2002) The involvement of pectin in Sr2+ biosorption by Azolla. Water Air Soil Pollut 135:195–205

    CAS  Google Scholar 

  • Cunningham SD, Anderson TA, Schwab AP, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. Adv Agron 56:55–114

    CAS  Google Scholar 

  • Daniels R (1998) You’re now entering the root zone-investigation: the potential of reed beds for treating waste waters from leather manufacture. World Leather 11:48–50

    Google Scholar 

  • Daniels R (2001) Enter the root-zone: green technology for the leather manufacturer. Part 1. World Leather 14:63–67

    Google Scholar 

  • Dazy M, Béraud E, Cotelle S, Meux E, Masfaraud JF, Férard JF (2008) Antioxidant enzyme activities as affected by trivalent and hexavalent chromium species in Fontinalis antipyretica Hedw. Chemosphere 73:281–290

    CAS  Google Scholar 

  • De tappi LS, Gabbrielli R (1999) Responses to zinc in higher plants. Environ Exp Bot 41:105–130

    Google Scholar 

  • Demirezen D, Aksoy A (2004) Accumulation of heavy metals in Typha angustifolia and Potamogeton pectinatus living in Sultan Marsh (Kayseri, Turkey). Chemosphere 56:685–696

    CAS  Google Scholar 

  • Denny P (1980) Solute movement in submerged angiosperms. Biol Rev 55:65–92

    CAS  Google Scholar 

  • Dhir B, Sharmila P, Pardha Saradhi P, Nasim SA (2009) Physiological and antioxidant responses of Salvinia natans exposed to chromium-rich wastewater. Ecotoxicol Environ Saf 72:1790–1797

    CAS  Google Scholar 

  • Dhir B, Sharmila P, Pardha Saradhi P, Sharma S, Kumar R, Mehta D (2011) Heavy metal induced physiological alterations in Salvinia natans. Ecotoxicol Environ Saf 74:1678–1684

    CAS  Google Scholar 

  • Di Luca GA, Maine MA, Mufarrege MM, Hadad HR, Sanchez GC, Bonetto CA (2011) Metal retention and distribution in the sediment of a constructed wetland for industrial wastewater treatment. Ecol Eng 37:1267–1275

    Google Scholar 

  • Di Luca GA, Hadad HR, Mufarrege MM, Maine MA, Sanchez GC (2014) Improvement of Cr phytoremediation by Pistia stratiotes in presence of nutrients. Int J Phytoremediation 16:167–178

    Google Scholar 

  • Dickinson N, Baker A, Doronila A, Laidlaw S, Reeves R (2009) Phytoremediation of inorganics: realism and Synergies. Int J Phytoremediation 11:97–114

    CAS  Google Scholar 

  • Diwan H, Ahmad A, Iqbal M (2008) Genotypic variation in the phytoremediation potential of Indian mustard for chromium. Environ Manag 41:734–741

    Google Scholar 

  • Dotro G, Castro S, Tujchneider O, Piovano N, Paris M, Faggi A, Palazolo P, Larsen D, Fitch M (2012) Performance of pilot-scale constructed wetlands for secondary treatment of chromium-bearing tannery wastewaters. J Hazard Mater 239–240:142–151

    Google Scholar 

  • Duarte B, Silva V, Cacador I (2012) Hexavalent chromium reduction, uptake andoxidative biomarkers in Halimione portulacoides. Ecotoxicol Environ Saf 83:1–7

    CAS  Google Scholar 

  • Duman F, Cicek M, Sezen G (2007) Seasonal changes of metal accumulation and distribution in common club rush (Schoenoplectus lacustris) and common reed (Phragmites australis). Ecotoxicology 16:457–463

    CAS  Google Scholar 

  • Duman F, Koca FD, Aksoy A (2011) Single and combined effects of exposure concentration and duration on chromium phytoaccumulation. Curr Opin Biotechnol 22:S145

    Google Scholar 

  • Dutertre S, Lewis RJ (2010) Use of venom peptides to probe ion channel structure and function. J Biol Chem 285:13315–13320

    CAS  Google Scholar 

  • Espinoza-Quinones FR, da Silva EA, Rizzutto MDA, Palacio SM, Modenes AN, Szymanski N, Martin N, Kroumov AD (2008) Chromium ions phytoaccumulation by three floating aquatic macrophytes from a nutrient medium. World J Microbiol Biotechnol 24:3063–3070

    CAS  Google Scholar 

  • Espinoza-Quinones FR, Martin N, Stutz G, Tirao G, Palácio SM, Rizzutto MA, Módenes AN, Silva FG Jr, Szymanski N, Kroumov AD (2009) Root uptake and reduction of hexavalent chromium by aquatic macrophytes as assessed by high-resolution X-ray emission. Water Res 43:4159–4166

    CAS  Google Scholar 

  • Fan TW, Lane AN, Shenker M, Bartley JP, Crowley D, Higashi RM (2001) Comprehensive chemical profiling of gramineous plant root exudates using high-resolution NMR and MS. Phytochemistry 57:209–221

    CAS  Google Scholar 

  • Fernandes MA, Santos MS, Alpoim MC, Madeira VM, Vicente JA (2002) Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study. J Biochem Mol Toxicol 16:53–63

    CAS  Google Scholar 

  • Fibbi D, Doumett S, Colzi I, Pucci S, Gonnelli C, Lepri L, Del Bubba M (2011) Total and hexavalent chromium removal in a subsurface horizontal flow (h-SSF) constructed wetland operating as post-treatment of textile wastewater for water reuse. Water Sci Technol 64(4):826–831

    CAS  Google Scholar 

  • Fibbi D, Doumett S, Lepri L, Checchini L, Gonnelli C, Coppini E, Del Bubba M (2012) Distribution and mass balance of hexavalent and trivalent chromium a subsurface, horizontal flow (SF-h) constructed wetland operating as posttreatment of textile wastewater for water reuse. J Hazard Mater 199–200:209–216

    Google Scholar 

  • Galal TM, Eid EM, Dakhil MA, Hassan LM (2018) Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the egyptian wetlands. Int J Phytoremediation 20:440–447

    CAS  Google Scholar 

  • Gardea-Torresdey JL, Peralta-Videa JR, Montes M, de la Rosa G, Corral-Diaz B (2004) Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: impact on plant growth and uptake of nutritional elements. Bioresour Technol 92:229–235

    CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) Comparative uptake and phytoextraction study of soil induced Chromium by accumulator and high biomass weed species. Appl Ecol Environ Res 3:67–79

    Google Scholar 

  • Gikas P, Romanos P (2006) Effects of trivalent Cr(III) and hexavalent Cr(VI) chromium on the growth of activated sludge. J Hazard Mater 133:212–217

    CAS  Google Scholar 

  • Giri AK, Patel RK (2011) Toxicity and bioaccumulation potential of Cr (VI) and Hg (II) on differential concentration by Eichhornia crassipes in hydroponic culture. Water Sci Technol 63:899–907

    CAS  Google Scholar 

  • Glass DJ (1999) Current market trends in phytoremediation. Int J Phytoremediation 1:1–8

    Google Scholar 

  • Gratao PL, Vara Prasad MN, Cardoso PF, Lea PJ, Azevedo RA (2005) Phytoremediation: green technology for the clean up of toxic metals in the environment. Braz J Plant Physiol 17:53–64

    CAS  Google Scholar 

  • Green S, Hoffnagle A (2004) Phytoremediation field studies database for chlorinated solvents, pesticides, explosives, and metals. U.S. Environmental Protection Agency

  • Hadad HR, Mufarrege MM, Pinciroli M, Di Luca GA, Maine MA (2010) Morphological response of Typha domingensis to an industrial effluent containing heavy metals in a constructed wetland. Arch Environ Contam Toxicol 58:666–675

    CAS  Google Scholar 

  • Han FX, Maruthi Sridhar BB, Monts DL, Su Y (2004) Phytoavailability and toxicity of trivalent and hexavalent chromium to Brassica juncea. New Phytol 162:489–499

    CAS  Google Scholar 

  • Howe JA, Loeppert RH, Derose VJ, Hunter DB, Bertsch PM (2003) Localization and speciation of chromium in subterranean clover using XRF, XANES, and EPR spectroscopy. Environ Sci Technol 37:4091–4097

    CAS  Google Scholar 

  • Huda AK, Haque MA, Zaman R, Swaraz AM, Kabir AH (2017) Silicon ameliorates chromium toxicity through phytochelatin-mediated vacuolar sequestration in the roots of Oryza sativa (L.). Int J Phytoremediation 19(3):246–253

    CAS  Google Scholar 

  • Jalali M, Khanboluki G (2007) Redistribution of fractions of zinc, cadmium and lead in calcareous soils treated with EDTA. Arch Agron Soil Sci 53:147–160

    CAS  Google Scholar 

  • January MC, Cutright TJ, Keulen HV, Wei R (2008) Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: can Helianthus annuus hyperaccumulate multiple heavy metals? Chemosphere 70:531–537

    CAS  Google Scholar 

  • Jian-Guo L, Guang-Hui L, Wan-Chen S, Jia-Kuan X, De-Ke W (2010) Variations in uptake and translocation of copper, chromium and nickel among nineteen wetland plant species. Pedosphere 20(1):96–103

    Google Scholar 

  • Karaca O, Cameselle C, Reddy KR (2017) Mine tailing disposal sites: contamination problems, remedial options and phytocaps for sustainable remediation. Rev Environ Sci Biotechnol 17:205–228

    Google Scholar 

  • Kaseva ME, Mbuligwe SE (2010) Potential of constructed wetland systems for treating tannery industrial wastewater. Water Sci Technol 61:1043–1052

    CAS  Google Scholar 

  • Kaur R, Bhardwaj R, Thukral AK (2009) Interactive effects of Cr(VI) with other heavy metals on the growth and metal uptake potential of Brassica juncea L. Seedlings. Terr Aquat Environ Toxicol 3:16–27

    Google Scholar 

  • Khan S, Ahmad I, Shah MT, Rehman S, Khaliq A (2009) Use of constructed wetland for the removal of heavy metals from industrial wastewater. J Environ Manag 90:3451–3457

    CAS  Google Scholar 

  • Khan AS, Hussain MW, Malik KA (2016) A possibility of using waterlily (Nymphaea alba L.) for reducing the toxic effects of chromium (Cr) in industrial wastewater. Pak J Bot 48(4):1447–1452

    CAS  Google Scholar 

  • Kidd PS, Diez J, Martinez CM (2004) Tolerance and bioaccumulation of heavy metals in five populations of Cistus ladanifer L. subsp. ladanifer. Plant Soil 258:189–205

    CAS  Google Scholar 

  • Kiser JR, Manning BA (2010) Reduction and immobilization of chromium(VI) by iron(II)-treated faujasite. J Hazard Mater 174:167–174

    CAS  Google Scholar 

  • Kleiman ID, Cogliatti DH (1998) Chromium removal from aqueous solutions by different plant species. Environ Technol 19:1127–1132

    CAS  Google Scholar 

  • Kotas J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283

    CAS  Google Scholar 

  • Kraemer SM, Crowley DE, Kretzschmar R (2006) Geochemical aspects of phytosiderophore-promoted iron acquisition by plants. Adv Agron 91:1–46

    CAS  Google Scholar 

  • Kucuk OS, Sengul F, Kapdan IK (2003) Removal of ammonia from tannery effluents in a reed bed constructed wetland. Water Sci Technol 48:179–186

    CAS  Google Scholar 

  • Kumar V, Chopra AK (2017) Phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater of activated sludge process based municipal wastewater treatment plant. Environ Technol. https://doi.org/10.1080/09593330.2017.1293165

    Article  Google Scholar 

  • Labra M, Gianazza E, Waitt R, Eberini I, Sozzi A, Regondi S, Grassi F, Agradi E (2006) Zea mays L. protein changes in response to potassium dichromate treatments. Chemosphere 62(8):1234–1244

    CAS  Google Scholar 

  • Lavid N, Barkay Z, Tel-Or E (2001) Accumulation of heavy metal in epidermal glands of water lily (Nymphaeaceae). Planta 212:313–322

    CAS  Google Scholar 

  • Leura-Vicencio A, Alonso-Castro AJ, Carranza-Alvarez C, Loredo-Portales R, Alfaro-De la Torre MC, Garcia-De la Cruz RF (2013) Removal and accumulation of As, Cd and Cr by Typha latifolia. Bull Environ Contam Toxicol 90:650–653

    CAS  Google Scholar 

  • Li Y-M, Chaney RL, Angle JS, Baker AJM (2000) Phytoremediation of heavy metal contaminated soils. In: Wise DL, Trantolo DJ, Cichon EJ, Inyang HI, Stoftmeister U (eds) Bioremediation of contaminated soils. Marcel Dekker, Inc, New York, pp 837–884

    Google Scholar 

  • Lin H, Liu J, Dong Y, Ren K, Zhang Y (2018) Absorption characteristics of compound heavy metals vanadium, chromium, and cadmium in water by emergent macrophytes and its combinations. Environ Sci Pollut Res 25:17820–17829

    CAS  Google Scholar 

  • Linacre NA, Whiting SN, Angle JS (2005) The impact of uncertainty on phytoremediation project costs. Int J Phytoremediation 7(4):259–269

    Google Scholar 

  • Liu D, Kottke I (2003) Subcellular localization of chromium and nickel in root cells of Allium cepa by EELS and ESI. Cell Biol Toxicol 19:299–311

    CAS  Google Scholar 

  • Liu JG, Li GH, Shao WC, Xu JK, Wang DK (2010) Variations in uptake and translocation of copper, chromium and nickel among nineteen wetland plant species. Pedosphere 20:96–103

    CAS  Google Scholar 

  • Liu J, Duan CQ, Zhang XH, Zhu YN, Hu C (2011) Characteristics of chromium(III) uptake in hyperaccumulator Leersia hexandra Swartz. Environ Exp Bot 74:122–126

    CAS  Google Scholar 

  • Liu Y, Sanguanphun T, Yuan W, Cheng JJ, Meetam M (2017) The biological responses and metal phytoaccumulation of duckweed Spirodela polyrhiza to manganese and chromium. Environ Sci Pollut Res 24:19104–19113

    CAS  Google Scholar 

  • Lytle CM, Lytle FW, Yang N, Qian JH, Hansen D, Zayed A, Terry N (1998) Reduction of Cr(VI) to Cr(III) by wetland plants: potential for in situ heavy metal detoxification. Environ Sci Technol 32:3087–3093

    CAS  Google Scholar 

  • MacFarlane GR, Burchett MD (2000) Cellular distribution of copper, lead and zinc in the grey mangrove, Avicennia marina (Forsk.) Vierh. Aquat Bot 68:45–59

    CAS  Google Scholar 

  • Maine M, Suné NL, Lagger SC (2004) Chromium bioaccumulation: comparison of the capacity of two floating aquatic macrophytes. Water Res 38:1494–1501

    CAS  Google Scholar 

  • Maine MA, Sune N, Hadad H, Sanchez G, Bonetto C (2006) Nutrient and metal removal in a constructed wetland for wastewater treatment from a metallurgic industry. Ecol Eng 26:341–347

    Google Scholar 

  • Malaviya P, Singh A (2011) Physicochemical technologies for remediation of chromium-containing waters and wastewaters. Crit Rev Environ Sci Technol 41:1111–1172

    CAS  Google Scholar 

  • Malaviya P, Singh A (2012a) Constructed wetlands for management of urban stormwater runoff. Crit Rev Environ Sci Technol 42:2153–2214

    CAS  Google Scholar 

  • Malaviya P, Singh A (2012b) Phytoremediation strategies for remediation of uranium-contaminated environments: a review. Crit Rev Environ Sci Technol 42:2575–2647

    CAS  Google Scholar 

  • Malaviya P, Singh A (2016) Bioremediation of chromium solutions and chromium containing wastewaters. Crit Rev Microbiol 42:607–633

    CAS  Google Scholar 

  • Malik N, Biswas AK, Qureshi TA, Borana K, Virha R (2010) Bioaccumulation of heavy metals in fish tissues of a freshwater lake of Bhopal. Environ Monit Assess 160:267–276

    CAS  Google Scholar 

  • Mandi L, Tiglyene S, Jaouad A (2009) Depuration of tannery effluent by phytoremediation and infiltration percolation under arid climate. Options Méditerr 88:199–205

    Google Scholar 

  • Mangabeira PA, Gavrilov KL, Almeida AF, Oliveira AH, Severo MI, Rosa TS, Silva DC, Labejof L, Escaig F, Levi-Setti R, Mielke MS, Loustalot FG, Galle P (2006a) Chromium localization in plant tissues of Lycopersicum esculentum Mill using ICP-MS and ion microscopy (SIMS). Appl Surf Sci 252:3488–3501

    CAS  Google Scholar 

  • Mangabeira PA, Mielke MS, Arantes I, Dutruch L, Silva DDC, Barbier F, de Almeida A-AF, Oliveira AH, Severo MIG, Labejof L, Rocha DC, Rosa TS, Santana KB, Gavrilov KL, Galle P, Levi-Setti R, Grenier-Loustalot MF (2006b) Bioaccumulation of chromium in aquatic macrophyte Borreria scabiosoides Cham. & Schltdl. Appl Surf Sci 252:6816–6819

    CAS  Google Scholar 

  • Mant C, Costa S, Williams J, Tambourgi E (2006) Phytoremediation of chromium by model constructed wetland. Bioresour Technol 97:1767–1772

    CAS  Google Scholar 

  • Marques APGC, Oliveira RS, Rangel AOSS, Castro PML (2006) Zinc accumulation in Solanum nigrum is enhanced by different arbuscular mycorrhizal fungi. Chemosphere 65:1256–1263

    CAS  Google Scholar 

  • McCutcheon SC, Schnoor JL (2003) Phytoremediation: transformation and control of contaminants. Wiley, Hoboken

    Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    CAS  Google Scholar 

  • Meers E, Hopgood M, Lesge E, Vervake P, Tack FMG, Verloo MG (2004) Enhanced phytoextraction: in search of EDTA alternatives. Int J Phytoremediation 6:95–109

    CAS  Google Scholar 

  • Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FMG (2005) Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58:1011–1022

    CAS  Google Scholar 

  • Mei B, Puryear JD, Newton RJ (2002) Assessment of Cr tolerance and accumulation in selected plant species. Plant Soil 247:223–231

    CAS  Google Scholar 

  • Michailides MK, Sultana MY, Tekerlekopoulou AG, Akratos CS, Vayenas DV (2013) Biological Cr(VI) removal using bio-filters and constructed wetlands. Water Sci Technol 68:2228–2233

    CAS  Google Scholar 

  • Miretzky P, Cirelli AF (2010) Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. J Hazard Mater 180:1–19

    CAS  Google Scholar 

  • Mishra VK, Tripathi BD (2009) Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes). J Hazard Mater 164:1059–1063

    CAS  Google Scholar 

  • Mishra K, Gupta K, Rai UN (2009) Bioconcentration and phytotoxicity of chromium in Eichhornia crassipes. J Environ Biol 30(4):521–526

    CAS  Google Scholar 

  • Mongkhonsin B, Nakbanpote W, Nakai I, Hokura A, Jearanaikoon N (2011) Distribution and speciation of chromium accumulated in Gynura pseudochina (L.) DC. Environ Exp Bot 74:56–64

    CAS  Google Scholar 

  • Moral R, Gomez I, Pedreno JN, Mataix J (1996) Absorption of chromium and effects on micronutrient content in tomato plant (Lycopersicum esculentum Mill.). Agrochimica 11:138–145

    Google Scholar 

  • Moreira OC, Rios PF, Barrabin H (2005) Inhibition of plasma membrane Ca2+-ATPase by CrATP. LaATP but not CrATP stabilizes the Ca2+-occluded state. BBA Bioenerg 3:411–419

    Google Scholar 

  • Nakayama E, Kuwamoto T, Tsurubo S, Tokoro H, Fujinaga T (1981) Effect of naturally occurring organic materials on the complex formation of chromium(III). Anal Chim Acta 130:289–294

    CAS  Google Scholar 

  • Nan Z, Li J, Zhang J, Cheng G (2002) Cadmium and zinc interactions and their transfer in soil–crop system under actual field conditions. Sci Total Environ 285:187–195

    CAS  Google Scholar 

  • Nichols PB, Couch JD, Al-Hamdani SH (2000) Selected physiological responses of Salvinia minima to different chromium concentrations. Aquat Bot 68:313–319

    CAS  Google Scholar 

  • Norouznia H, Hamidian AH (2014) Phytoremediation efficiency of pondweed (Potamogeton crispus) in removing heavy metals (Cu, Cr, Pb, As and Cd) from water of Anzali wetland. Int J Aquat Biol 2(4):206–214

    Google Scholar 

  • Paisio CE, Fernandez M, González PS, Talano MA, Medina MI, Agostini E (2018) Simultaneous phytoremediation of chromium and phenol by Lemna minuta Kunth: a promising biotechnological tool. Int J Environ Sci Technol 15:37–48

    CAS  Google Scholar 

  • Paiva LB, Oliveira JG, Azevedo RA, Ribeiro DR, da Silva MG, Vitória AP (2009) Ecophysiological responses of water hyacinth exposed to Cr3+ and Cr6+. Environ Exp Bot 65:403–409

    CAS  Google Scholar 

  • Pandey VC (2012) Phytoremediation of heavy metals from flyash pond by Azolla caroliniana. Ecotoxicol Environ Saf 82:8–12

    CAS  Google Scholar 

  • Pandey N, Sharma CP (2003) Chromium interference in iron nutrition and water relations of cabbage. Environ Exp Bot 49:195–200

    CAS  Google Scholar 

  • Pandey V, Dixit V, Shyam R (2005) Antioxidative responses in relation to growth of mustard (Brassica juncea cv. Pusa Jai kisan) plants exposed to hexavalent chromium. Chemosphere 61:40–47

    CAS  Google Scholar 

  • Pichtel J, Salt CA (1998) Vegetative growth and trace metal accumulation on metalliferous waste. J Environ Qual 27:618–624

    CAS  Google Scholar 

  • Pillichshammer M, Pumpel T, Poder R, Eller K, Klima J, Schinner F (1995) Biosorption of chromium to fungi. Biometals 8:117–121

    CAS  Google Scholar 

  • Prado C, Rodríguez-Montelongo L, Gonzálezc JA, Paganod EA, Hilal M, Prado FE (2010) Uptake of chromium by Salvinia minima: effect on plant growth, leaf respiration and carbohydrate metabolism. J Hazard Mater 177:546–553

    CAS  Google Scholar 

  • Prado C, Chocobar-Ponce S, Pagano E, Prado F, Rosa M (2020) Differential effects of Zn concentrations on Cr(VI) uptake by two Salvinia species: involvement of thiol compounds. Int J Phytoremediation. https://doi.org/10.1080/15226514.2020.1786796

    Article  Google Scholar 

  • Pulford ID, Watson C, McGregor SD (2001) Uptake of chromium by trees: prospects for phytoremediation. Environ Geochem Health 23:307–311

    CAS  Google Scholar 

  • Rai PK (2019) Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland. Environ Technol Innov 15:1–8

    Google Scholar 

  • Rai UN, Tripathi RD, Sinha S, Chandra P (1995) Chromium and cadmium bioaccumulation and toxicity in Hydrilla verticillata (l.f.) Royle and Chara corallina Wildenow. J Environ Sci Health A 30:537–551

    Google Scholar 

  • Rai UN, Dwivedi S, Tripathi RD, Shukla OP, Singh NK (2005) Algal biomass: an economical method for removal of chromium from tannery effluent. Bull Environ Contam Toxicol 75:297–303

    CAS  Google Scholar 

  • Ramana VV, Sastry KS (1994) Chromium toxicity in Neurospora crassa. J Inorg Biochem 56:87–95

    CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Riedel GF (1985) The relationship between chromium(VI) uptake, sulphate uptake, and chromium(VI) toxicity in the estuarine diatom Thalassiosira pseudonana. Aquat Toxicol 7:191–204

    CAS  Google Scholar 

  • Rodriguez E, Azevedo R, Fernandes P, Santos C (2011) Cr(VI) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in Pisum sativum. Chem Res Toxicol 24:1040–1047

    CAS  Google Scholar 

  • Saha P, Shinde O, Sarkar S (2017) Phytoremediation of industrial mines wastewater using water hyacinth. Int J Phytoremediation 19:87–96

    CAS  Google Scholar 

  • Sallah-Ud-Din R, Mujahid Farid M, Saeed R, Ali S, Rizwan M, Tauqeer HM, Bukhari SAH (2017) Citric acid enhanced the antioxidant defense system and chromium uptake by Lemna minor L. grown in hydroponics under Cr stress. Environ Sci Pollut Res 24:17669–17678

    CAS  Google Scholar 

  • Salt DE, Blaylock M, Nanda Kumar PBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Bio-Technology 13:468–474

    CAS  Google Scholar 

  • Samantaray S, Rout GR, Das P (2001) Induction, selection and characterization of Cr and Ni-tolerant cell lines of Echinochloa colona (L.) Link in vitro. J Plant Physiol 158:1281–1290

    CAS  Google Scholar 

  • Samecka-Cymerman A, Kempers AJ (2001) Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification. Sci Total Environ 281:87–98

    CAS  Google Scholar 

  • Santana KB, de Almeida AAF, Souza VL, Mangabeira PAO, Silva DDC, Gomes FP, Dutruch L, Loguercio LL (2012) Physiological analyses of Genipa americana L. reveals a tree with ability as phytostabilizer and rhizofilterer of chromium ions for phytoremediation of polluted watersheds. Environ Exp Bot 80:35–42

    CAS  Google Scholar 

  • Sas-Nowosielska A, Kucharski R, Małkowski E, Pogrzeba M, Kuperberg JM, Kryński K (2004) Phytoextraction crop disposal—an unsolved problem. Environ Pollut 128:373–379

    CAS  Google Scholar 

  • Saxena G, Purchase D, Mulla SI, Saratale GD, Bhargava RN (2019) Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues and future prospects. Rev Environ Contam Toxicol. https://doi.org/10.1007/398_2019_24

    Article  Google Scholar 

  • Schwartz K, Mertz W (1959) Chromium (III) and the glucose tolerant factor. Arch Biochem Biophys 85:292–295

    Google Scholar 

  • Sekomo CB, Nkuranga E, Rousseau DPL, Lens PNL (2011) Fate of heavy metals in an urban natural wetland: the Nyabugogo Swamp (Rwanda). Water Air Soil Pollut 214:321–333

    CAS  Google Scholar 

  • Sen AK, Mondal NG, Mondal S (1987) Studies of uptake and toxic effects of Cr(VI) on Pisita stratioites. Water Sci Technol 19:119–127

    CAS  Google Scholar 

  • Shah K, Nongkynrih JM (2007) Metal hyperaccumulation and bioremediation. Biol Plant 51(4):618–634

    CAS  Google Scholar 

  • Shanker AK, Cervantes C, Lon Tavera H, Arudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    CAS  Google Scholar 

  • Sharma S, Malaviya P (2016) Bioremediation of tannery wastewater by chromium resistant novel fungal consortium. Ecol Eng 91:419–425

    Google Scholar 

  • Sharma DC, Sharma CP, Tripathi RD (2003) Phytotoxic lesions of chromium in maize. Chemosphere 51:63–68

    CAS  Google Scholar 

  • Sharma PK, Minakshi D, Rani A, Malaviya P (2018) Treatment efficiency of vertical flow constructed wetland systems operated under different recirculation rates. Ecol Eng 120:474–480

    Google Scholar 

  • Sharpe V, Denny P (1976) Electron microscope studies on the absorption and localization of Lead in the leaf tissue of Potamogeton pectinatus L. J Exp Bot 27:1135–1162

    Google Scholar 

  • Shewry PR, Peterson PJ (1974) The uptake and transport of chromium by barley seedlings (Hordeum vulgare L.). J Exp Bot 25:785–797

    CAS  Google Scholar 

  • Shukla OP, Dubey S, Rai UN (2007) Preferential accumulation of cadmium and chromium: toxicity in Bacopa monnieri L. under mixed metal treatments. Bull Environ Contam Toxicol 78:252–257

    CAS  Google Scholar 

  • Siegel H (1973) Metal ion in biological systems, vol 2. Marcel Dekker, New York

    Google Scholar 

  • Singh A, Malaviya P (2013) Phytotoxic effect of chrome liquor on growth and chlorophyll content of Spirodela polyrrhiza L. Schleid. J Appl Nat Sci 5:165–170

    Google Scholar 

  • Singh A, Malaviya P (2019) Chromium phytoaccumulation and its impact on growth and photosynthetic pigments of Spirodela polyrrhiza (L.) Schleid. on exposure to tannery effluent. Environ Sustain 2:157–166

    CAS  Google Scholar 

  • Singh G, Sinha A (2011) Phytoremediation of chromium(VI)-laden waste by Eichhornia crassipes. Int J Environ Technol Manag 14:33–42

    CAS  Google Scholar 

  • Singh S, Saxena R, Pandey K, Bhatt K, Sinha S (2004a) Translocation of metals and its effects in the plant of tomato grown on various amendments of tannery wastes: evidence for involvement of antioxidants. Chemosphere 57:91–99

    CAS  Google Scholar 

  • Singh S, Saxena R, Pandey K, Bhatt K, Sinha S (2004b) Response of antioxidants in Helianthus annuus L. grown on different amendments of tannery sludge: its metal accumulation potential. Chemosphere 57:1663–1673

    CAS  Google Scholar 

  • Singh A, Vyas D, Malaviya P (2016) Two-stage phyto-microremediation of tannery effluent by Spirodela polyrrhiza (L.) Schleid. and chromium resistant bacteria. Bioresour Technol 216:883–893

    CAS  Google Scholar 

  • Sinha S, Rai UN, Tripathi RD, Chandra P (1993) Chromium and manganese uptake by Hydrilla verticillata (I.f.) Royle: amelioration of chromium toxicity by manganese. J Environ Sci Health A 28(7):1545–1552

    Google Scholar 

  • Sinha S, Saxena R, Singh S (2002) Comparative study on accumulation of Cr from metal solution and tannery effluent under repeated metal exposure by aquatic plants: its toxic effects. Chemosphere 80:17–31

    CAS  Google Scholar 

  • Sinha S, Saxena R, Singh S (2005) Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: role of antioxidants and antioxidant enzymes. Chemosphere 58:595–604

    CAS  Google Scholar 

  • Sinha V, Kannan Pakshirajan K, Chaturvedi R (2014) Chromium(VI) accumulation and tolerance by Tradescantia pallida: biochemical and antioxidant study. Appl Biochem Biotechnol 173:2297–2306

    CAS  Google Scholar 

  • Skeffington RA, Shewry PR, Peterson PJ (1976) Chromium uptake and transport in barley seedlings (Hordeum vulgare L.). Planta 132:209–214

    CAS  Google Scholar 

  • Soda S, Hamada T, Yamaoka Y, Ike M, Nakazato H, Saeki Y, Kasamatsu T, Sakurai Y (2012) Constructed wetlands for advanced treatment of wastewater with a complex matrix from a metal-processing plant: bioconcentration and translocation factors of various metals in Acorus gramineus and Cyperus alternifolius. Ecol Eng 39:63–70

    Google Scholar 

  • Song U, Park H (2017) Importance of biomass management acts and policies after phytoremediation. J Ecol Eng 41:13

    Google Scholar 

  • Song U, Kim DW, Waldman B, Lee EJ (2016) From phytoaccumulation to post-harvest use of water fern for landfill management. J Environ Manag 182:13–20

    CAS  Google Scholar 

  • Srivastava S, Nigam R, Prakash S, Srivastava MM (1999a) Mobilization of trivalent chromium in presence of organic acids: a hydroponic study of wheat plant (Triticum vulgare). Bull Environ Contam Toxicol 63:524–530

    CAS  Google Scholar 

  • Srivastava S, Prakash S, Srivatava MM (1999b) Chromium mobilization and plant availability—the impact of organic complexing ligands. Plant Soil 212:203–208

    CAS  Google Scholar 

  • Stefanakis AI, Tsihrintzis VA (2012) Effects of loading, resting period, temperature, porous media, vegetation and aeration on performance of pilot-scale vertical flow constructed wetlands. Chem Eng J 181–182:416–430

    Google Scholar 

  • Sultana MY, Chowdhury AKMMB, Michailides MK, Akratos CS, Tekerlekopoulou AG, Vayenas DV (2014a) Integrated Cr(VI) removal using constructed wetlands and composting. J Hazard Mater 96:181–190

    Google Scholar 

  • Sultana MY, Akratos CS, Pavlou S, Vayenas DV (2014b) Chromium removal in constructed wetlands: a review. Int Biodeterior Biodegrad 96:181–190

    Google Scholar 

  • Sune N, Sanchez G, Caffaratti S, Maine MA (2007) Cadmium and chromium removal kinetics from solution by two aquatic macrophytes. Environ Pollut 145:467–473

    CAS  Google Scholar 

  • Tabak HH, Lens P, Van Hullebusch ED, Dejonghe W (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides—1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport. Rev Environ Sci Biotechnol 4:115–156

    CAS  Google Scholar 

  • Tanackovic S, Caetano M, Vale C (2008) Effect of salt-marsh plants on the mobility of Cr in sediments. Cienc Mar 34:363–372

    CAS  Google Scholar 

  • Tang J, Zhang Y, Cui Y, Ma J (2015) Effects of a rhizobacterium on the growth of and chromium remediation by Lemna minor. Environ Sci Pollut Res 22:9686–9693

    CAS  Google Scholar 

  • Tappero R, Peltier E, Grafe M, Heidel K, Ginder-Vogel M, Livi K, Rivers M, Marcus M, Chaney R, Sparks D (2007) Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel. New Phytol 175:641–654

    CAS  Google Scholar 

  • Terfie TA, Asfaw SL (2015) Evaluation of selected wetland plants for removal of chromium from tannery wastewater in constructed wetlands, Ethiopia. Afr J Environ Sci Technol 9(5):420–427

    CAS  Google Scholar 

  • Tiwari S, Dixit S, Verma N (2007) An effective means of biofiltration of heavy metal contaminated water bodies using aquatic weed Eichhornia crassipes. Environ Monit Assess 129:253–256

    CAS  Google Scholar 

  • Ton SS, Lee MW, Yang YH, Hoi SK, Cheng WC, Wang KS, Chang HH, Chang SH (2015) Effects of reductants on phytoextraction of chromium(VI) by Ipomoea aquatica. Int J Phytoremediation 17:429–436

    CAS  Google Scholar 

  • Tripathi RD, Rai UN, Gupta M, Yunus M, Chandra P (1995) Cadmium transport in submerged macrophyte Ceratophyllum demersum L. in presence of various metabolic inhibitors and calcium channel blockers. Chemosphere 31:3783–3791

    CAS  Google Scholar 

  • Tsao DT (2003) Overview of phytotechnologies. In: Scheper T, Tsao DT (eds) Advances in biochemical engineering biotechnology, vol 78. Springer, Berlin, pp 1–50

    Google Scholar 

  • Turgut C, Pepe MK, Cutright TJ (2004) The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ Pollut 131:147–154

    CAS  Google Scholar 

  • Upadhyay AR, Tripathi BD (2007) Principle and process of biofiltration of Cd, Cr Co, Ni & Pb from tropical opencast coalmine effluent. Water Air Soil Pollut 180:213–223

    CAS  Google Scholar 

  • Upadhyay AK, Singh NK, Rai UN (2014) Comparative metal accumulation potential of Potamogeton pectinatus L. and Potamogeton crispus L.: role of enzymatic and non-enzymatic antioxidants in tolerance and detoxification of metals. Aquat Bot 117:27–32

    CAS  Google Scholar 

  • Vajpayee P, Tripathi RD, Rai UN, Ali MB, Singh SN (2000) Chromium(VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere 41:1075–1082

    CAS  Google Scholar 

  • Vajpayee RD, Rai UN, Ali MB, Tripati RD, Singh SN (2001) Chromium—induced physiologic changes in Vallisneria spiralis L. and its role in phytoremediation of tannery effluents. Bull Environ Contam Toxicol 67:246–256

    CAS  Google Scholar 

  • Vamerali T, Marchiol L, Bandiera M, Fellet G, Dickinson N, Lucchini P, Mosca G, Zerbi G (2012) Advances in agronomic management of phytoremediation: methods and results from a 10-year study of metal-polluted soils. Ital J Agron 7:323–330

    Google Scholar 

  • Van Hullebusch ED, Lens PNL, Tabak HH (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides. 3. Influence of chemical speciation and bioavailability on contaminants immobilization/mobilization bio-processes. Rev Environ Sci Biotechnol 4:185–212

    Google Scholar 

  • Vardanyan LG, Ingole BS (2006) Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems. Environ Int 32:208–218

    CAS  Google Scholar 

  • Vernay LP, Gauthier-Moussard C, Hitmi A (2007) Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne. Chemosphere 68:1563–1575

    CAS  Google Scholar 

  • Victor KK, Seka Y, Norbert KK, Sanogo TA, Celestin AB (2016) Phytoremediation of wastewater toxicity using water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes). Int J Phytoremediation 18:949–955

    CAS  Google Scholar 

  • Vymazal J, Brezinová T (2015) Heavy metals in plants in constructed and natural wetlands: concentration, accumulation and seasonality. Water Sci Technol 71:268–276

    CAS  Google Scholar 

  • Vymazal J, Brezinová T (2016) Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: a review. Chem Eng J 290:232–242

    CAS  Google Scholar 

  • Vymazal J, Brix H, Cooper P, Heberl R, Peler R, Laber J (1998) Removal mechanisms and types of constructed wetlands. In: Vymazal J, Brix H, Cooper PF, Green MB, Haberl R (eds) Constructed wetlands for wastewater treatment in Europe. Backuys Publishers, Laiden, pp 17–66

    Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700

    CAS  Google Scholar 

  • Witters N, Mendelsohn RO, Slycken SV, Weyens N, Schreurs E, Meers E, Tack F, Carleer R, Vangronsveld J (2012) Phytoremediation, a sustainable remediation technology? Conclusions from a case study. I: energy production and carbon dioxide abatement. Biomass Bioenergy 39:454–469

    CAS  Google Scholar 

  • Xu XR, Li HB, Gu JD, Li XY (2005) Kinetics of the reduction of chromium(VI) by vitamin C. Environ Toxicol Chem 24:1310–1314

    CAS  Google Scholar 

  • Xu B, Yu S, Ding J, Wu S, Ma J (2015) Metal-dependent root iron plaque effects on distribution and translocation of chromium and nickel in yellow flag (Iris pseudacorus L.). Int J Phytoremediation 17:175–181

    CAS  Google Scholar 

  • Yadav S, Chandra R (2011) Heavy metals accumulation and ecophysiological effect on Typha angustifolia L. and Cyperus esculentus L. growing in distillery and tannery effluent polluted natural wetland site, Unnao, India. Environ Earth Sci 62:1235–1243

    CAS  Google Scholar 

  • Yadav S, Shukla OP, Rai UN (2005) Chromium pollution and bioremediation. Arch Environ News Newsl ISEB India 11(1):3–4

    Google Scholar 

  • Yadav AK, Kumar N, Sreekrishna TR, Satya S, Bishnoi NR (2010) Removal of chromium and nickel from aqueous solution in constructed wetland: mass balance, adsorption–desorption and FTIR study. Chem Eng J 160:122–128

    CAS  Google Scholar 

  • Yadav KK, Gupta N, Kumar A, Reece LM, Singh N, Rezania S, Khan SA (2018) Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Eco Eng 120:274–298

    Google Scholar 

  • Yapoga S, Ossey YB, Kouame V (2013) Phytoremediation of zinc, cadmium, copper and chrome from industrial wastewater by Eichhornia crassipes. Int J Conserv Sci 4:81–86

    CAS  Google Scholar 

  • Yu XZ, Gu JD (2008) The role of EDTA in phytoextraction of hexavalent and trivalent chromium by two willow trees. Ecotoxicology 17:143–152

    CAS  Google Scholar 

  • Yu XZ, Gu JD, Huang SZ (2007) Hexavalent chromium induced stress and metabolic responses in hybrid willows. Ecotoxicology 16:299–309

    CAS  Google Scholar 

  • Yu XZ, Gu JD, Xing LQ (2008) Differences in uptake and translocation of hexavalent and trivalent chromium by two species of willows. Ecotoxicology 17:747–755

    CAS  Google Scholar 

  • Zaccheo P, Cocucci M, Cocucci S (1985) Effects of Cr on proton extrusion, potassium uptake and transmembrane electric potential in maize root segments. Plant Cell Environ 8:721–726

    CAS  Google Scholar 

  • Zayed AM, Terry N (2003) Chromium in environment: factors affecting biological remediation. Plant Soil 249:139–156

    CAS  Google Scholar 

  • Zayed AM, Lytle CM, Qian JH, Terry N (1998) Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 206:293–299

    CAS  Google Scholar 

  • Zhang XH, Liu J, Huang HT, Chen J, Zhu YN, Wang DQ (2007) Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Chemosphere 27:1138–1143

    Google Scholar 

  • Zhang X, Liu J, Wang D, Zhu Y, Hu C, Sun J (2009) Bioaccumulation and chemical form of chromium in Leersia hexandra Swartz. Bull Environ Contam Toxicol 82:358–362

    CAS  Google Scholar 

  • Zurayk R, Sukkariyah B, Baalbaki R (2001) Common hydrophytes as bioindicators of nickel, chromium and cadmium pollution. Water Air Soil Pollut 127:373–388

    CAS  Google Scholar 

Download references

Acknowledgements

The first author (PM) gratefully acknowledges the financial support provided by Department of Biotechnology (DBT), Government of India in the form of research project and also Raman Fellowship for Post Doctoral studies in USA given by University Grants Commission (UGC), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyush Malaviya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malaviya, P., Singh, A. & Anderson, T.A. Aquatic phytoremediation strategies for chromium removal. Rev Environ Sci Biotechnol 19, 897–944 (2020). https://doi.org/10.1007/s11157-020-09552-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-020-09552-y

Keywords

Navigation