Skip to main content
Log in

Utilization of iron sulfides for wastewater treatment: a critical review

  • review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Acid mine drainage due to weathering of iron sulfide minerals is one of the biggest global environmental issues. However, due to the unique physicochemical properties of natural and synthesized iron sulfides (i.e. pyrite, pyrrhotite, and mackinawite), they can be effectively used for wastewater treatment. These properties, such as ≡SH functional groups as Lewis bases, reducibility of surface Fe and S species, dissolved Fe2+ as a catalyst, and dissolved S2− as an electron donor, are extensively reviewed in this article. The target water pollutants include toxic metals (i.e. lead, mercury, cadmium, and hexavalent chromium) and metalloid (i.e. arsenic), radionuclides (i.e. uranium and selenium), organic contaminants (i.e. chlorinated organic pollutants, benzene and polycyclic aromatic hydrocarbons), and nutrients (i.e. nitrogen and phosphorus). The dominant interaction mechanisms between iron sulfides and these contaminants, and the removal efficiencies are elucidated. This article focuses on the role of iron sulfides as functional materials for wastewater treatment. A recent development of nanostructured pyrrhotite with a high specific surface area for wastewater treatment is also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

(adapted from Oturan et al. 2008)

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AMD:

Acid mine drainage

BET:

Brunauer, Emmett, and Teller

HRT:

Hydraulic retention time

PADB:

Pyrrhotite autotrophic denitrification biofilter

PAH:

Polycyclic aromatic hydrocarbon

SEM:

Scanning electron microscopy

SRB:

Sulfate reducing bacteria

SSA:

Specific surface area

XANES:

X-ray absorption near-edge spectroscopy

EXAFS:

Extended X-ray absorption fine structure

NaCl:

Sodium chloride

Na2S:

Sodium sulfide

NiAs:

Nickel arsenic

References

  • Ammar S, Oturan MA, Labiadh L, Guersalli A, Abdelhedi R, Oturan N, Brillas E (2015) Degradation of tyrosol by a novel electro-Fenton process using pyrite as heterogeneous source of iron catalyst. Water Res 74:77–87. doi:10.1016/j.watres.2015.02.006

    Article  CAS  Google Scholar 

  • Andersson KJ, Ogasawara H, Nordlund D, Brown GE, Nilsson A (2014) Preparation, structure, and orientation of pyrite FeS2{100} surfaces: anisotropy, sulfur monomers, dimer vacancies, and a possible FeS surface phase. J Phys Chem C 118:21896–21903. doi:10.1021/jp5005924

    Article  CAS  Google Scholar 

  • ATSDR (2015) The priority list of hazardous substances. Agency for Toxic Substances and Disease Registry. https://www.atsdr.cdc.gov/spl/resources/

  • Bae S, Kim D, Lee W (2013) Degradation of diclofenac by pyrite catalyzed Fenton oxidation. Appl Catal B 134–135:93–102. doi:10.1016/j.apcatb.2012.12.031

    Article  CAS  Google Scholar 

  • Baken S, Salaets P, Desmet N, Seuntjens P, Vanlierde E, Smolders E (2015) Oxidation of iron causes removal of phosphorus and arsenic from streamwater in groundwater-fed lowland catchments. Environ Sci Technol 49:2886–2894. doi:10.1021/es505834y

    Article  CAS  Google Scholar 

  • Bebie J, Schoonen MAA, Fuhrmann M, Strongin DR (1998) Surface charge development on transition metal sulfides: an electrokinetic study. Geochim Cosmochim Acta 62:633–642. doi:10.1016/S0016-7037(98)00058-1

    Article  CAS  Google Scholar 

  • Behra P, Bonnissel-Gissinger P, Alnot M, Revel R, Ehrhardt JJ (2001) XPS and XAS study of the sorption of Hg(II) onto pyrite. Langmuir 17:3970–3979

    Article  CAS  Google Scholar 

  • Belzile N, Chen Y-W, Cai M-F, Li Y (2004) A review on pyrrhotite oxidation. J Geochem Explor 84:65–76. doi:10.1016/j.gexplo.2004.03.003

    Article  CAS  Google Scholar 

  • Bissey LL, Smith JL, Watts RJ (2006) Soil organic matter-hydrogen peroxide dynamics in the treatment of contaminated soils and groundwater using catalyzed H2O2 propagations (modified Fenton’s reagent). Water Res 40:2477–2484. doi:10.1016/j.watres.2006.05.009

    Article  CAS  Google Scholar 

  • Bonnissel-Gissinger P, Alnot M, Ehrhardt J-J, Behra P (1998) Surface oxidation of pyrite as a function of pH. Environ Sci Technol 32:2839–2845

    Article  CAS  Google Scholar 

  • Borah D, Senapati K (2006) Adsorption of Cd(II) from aqueous solution onto pyrite. Fuel 85:1929–1934. doi:10.1016/j.fuel.2006.01.012

    Article  CAS  Google Scholar 

  • Bosch J, Lee KY, Jordan G, Kim KW, Meckenstock RU (2012) Anaerobic, nitrate-dependent oxidation of pyrite nanoparticles by Thiobacillus denitrificans. Environ Sci Technol 46:2095–2101. doi:10.1021/es2022329

    Article  CAS  Google Scholar 

  • Bostick BC, Fendorf S (2003) Arsenite sorption on troilite (FeS) and pyrite (FeS2). Geochim Cosmochim Acta 67:909–921. doi:10.1016/s0016-7037(02)01170-5

    Article  CAS  Google Scholar 

  • Bostick BC, Fendorf M, Fendorf S (2000) Disulfide disproportionation and CdS formation upon cadmium sorption on FeS2. Geochim Cosmochim Acta 64:247–255

    Article  CAS  Google Scholar 

  • Boursiquot S, Mullet M, Ehrhardt JJ (2002) XPS study of the reaction of chromium(VI) with mackinawite (FeS). Surf Interface Anal 34:293–297. doi:10.1002/sia.1303

    Article  CAS  Google Scholar 

  • Bower J, Savage KS, Weinman B, Barnett MO, Hamilton WP, Harper WF (2008) Immobilization of mercury by pyrite (FeS2). Environ Pollut 156:504–514. doi:10.1016/j.envpol.2008.01.011

    Article  CAS  Google Scholar 

  • Breynaert E, Bruggeman C, Maes A (2008) XANES-EXAFS analysis of se solid-phase reaction products formed upon contacting Se(IV) with FeS2 and FeS. Environ Sci Technol 42:3595–3601. doi:10.1021/es071370r

    Article  CAS  Google Scholar 

  • Brown JR, Bancroft GM, Fyfe WS, RaN McLean (1979) Mercury removal from water by iron sulfide minerals. An electron spectroscopy for chemical analysis (ESCA) study. Environ Sci Technol 13:1142–1144. doi:10.1021/es60157a013

    Article  CAS  Google Scholar 

  • Bruggeman C, Maes A, Vancluysen J, Vandemussele P (2005) Selenite reduction in Boom clay: effect of FeS(2), clay minerals and dissolved organic matter. Environ Pollut (Barking, Essex: 1987) 137:209–221. doi:10.1016/j.envpol.2005.02.010

    Article  CAS  Google Scholar 

  • Bulut G, Yenial Ü, Emiroğlu E, Sirkeci AA (2013) Arsenic removal from aqueous solution using pyrite. J Clean Prod. doi:10.1016/j.jclepro.2013.08.018

    Google Scholar 

  • Butler EC, Hayes KF (1997) Effects of solution composition on the reductive dechlorination of hexachloroethane by iron sulfide. Environ Sci Technol 37:113–115

    Google Scholar 

  • Butler EC, Hayes KF (1999) Trichloroethylene and tetrachloroethylene by iron sulfide. Environ Sci Technol 33:2021–2027

    Article  CAS  Google Scholar 

  • Chandra AP, Gerson AR (2010) The mechanisms of pyrite oxidation and leaching: a fundamental perspective. Surf Sci Rep 65:293–315. doi:10.1016/j.surfrep.2010.08.003

    Article  CAS  Google Scholar 

  • Chandra AP, Gerson AR (2011) Redox potential (Eh) and anion effects of pyrite (FeS2) leaching at pH 1. Geochim Cosmochim Acta 75:6893–6911. doi:10.1016/j.gca.2011.09.020

    Article  CAS  Google Scholar 

  • Che H, Lee W (2011) Selective redox degradation of chlorinated aliphatic compounds by Fenton reaction in pyrite suspension. Chemosphere 82:1103–1108. doi:10.1016/j.chemosphere.2010.12.002

    Article  CAS  Google Scholar 

  • Che H, Bae S, Lee W (2011) Degradation of trichloroethylene by Fenton reaction in pyrite suspension. J Hazard Mater 185:1355–1361. doi:10.1016/j.jhazmat.2010.10.055

    Article  CAS  Google Scholar 

  • Chen T, Yang Y, Chen D, Li P, Shi Y, Zhu X (2013) Structural evolution of heat-treated colloidal pyrite under inert atmosphere and its application for the removal of Cu(II) ion from wastewater. Environ Eng Manag J 12:1411–1416

    CAS  Google Scholar 

  • Chen T, Yang Y, Li P, Liu H, Xie J, Xie Q, Zhan X (2014a) Performance and characterization of calcined colloidal pyrite used for copper removal from aqueous solutions in a fixed bed column. Int J Miner Process 130:82–87. doi:10.1016/j.minpro.2014.05.004

    Article  CAS  Google Scholar 

  • Chen TH, Wang JZ, Wang J, Xie JJ, Zhu CZ, Zhan XM (2014b) Phosphorus removal from aqueous solutions containing low concentration of phosphate using pyrite calcinate sorbent. Int J Environ Sci Technol 12:885–892. doi:10.1007/s13762-013-0450-6

    Article  CAS  Google Scholar 

  • Chen H, Zhang Z, Yang Z, Yang Q, Li B, Bai Z (2015) Heterogeneous fenton-like catalytic degradation of 2,4-dichlorophenoxyacetic acid in water with FeS. Chem Eng J 273:481–489. doi:10.1016/j.cej.2015.03.079

    Article  CAS  Google Scholar 

  • Chen T, Shi Y, Liu H, Chen D, Li P, Yang Y, Zhu X (2016) A novel way to prepare pyrrhotite and its performance on removal of phosphate from aqueous solution. Desalination Water Treat 57:1–9. doi:10.1080/19443994.2016.1141712

    Article  CAS  Google Scholar 

  • Chin PP, Ding J, Yi JB, Liu BH (2005) Synthesis of FeS2 and FeS nanoparticles by high-energy mechanical milling and mechanochemical processing. J Alloy Compd 390:255–260. doi:10.1016/j.jallcom.2004.07.053

    Article  CAS  Google Scholar 

  • Chiriţă P, Rimstidt JD (2014) Pyrrhotite dissolution in acidic media. Appl Geochem 41:1–10. doi:10.1016/j.apgeochem.2013.11.013

    Article  CAS  Google Scholar 

  • Chiriţă P, Schlegel ML (2015) Oxidative dissolution of iron monosulfide (FeS) in acidic conditions: the effect of solid pretreatment. Int J Miner Process 135:57–64. doi:10.1016/j.minpro.2015.02.001

    Article  CAS  Google Scholar 

  • Chiriţă P, Descostes M, Schlegel ML (2008) Oxidation of FeS by oxygen-bearing acidic solutions. J Colloid Interface Sci 321:84–95. doi:10.1016/j.jcis.2008.01.024

    Article  CAS  Google Scholar 

  • Choi J, Choi K, Lee W (2009) Effects of transition metal and sulfide on the reductive dechlorination of carbon tetrachloride and 1,1,1-trichloroethane by FeS. J Hazard Mater 162:1151–1158. doi:10.1016/j.jhazmat.2008.06.007

    Article  CAS  Google Scholar 

  • Choi K, Bae S, Lee W (2014a) Degradation of off-gas toluene in continuous pyrite Fenton system. J Hazard Mater 280:31–37. doi:10.1016/j.jhazmat.2014.07.054

    Article  CAS  Google Scholar 

  • Choi K, Bae S, Lee W (2014b) Degradation of pyrene in cetylpyridinium chloride-aided soil washing wastewater by pyrite Fenton reaction. Chem Eng J 249:34–41. doi:10.1016/j.cej.2014.03.090

    Article  CAS  Google Scholar 

  • Couture R-M, Rose J, Kumar N, Mitchell K, Wallschläger D, Van Cappellen P (2013) Sorption of arsenite, arsenate, and thioarsenates to iron oxides and iron sulfides: a kinetic and spectroscopic investigation. Environ Sci Technol 47:5652–5659. doi:10.1021/es3049724

    Article  CAS  Google Scholar 

  • Curti E, Aimoz L, Kitamura A (2013) Selenium uptake onto natural pyrite. J Radioanal Nucl Chem 295:1655–1665. doi:10.1007/s10967-012-1966-9

    Article  CAS  Google Scholar 

  • Davison W (1991) The solubility of iron sulphides in synthetic and natural waters at ambient temperature. Aquat Sci 53:309–329. doi:10.1007/bf00877139

    Article  Google Scholar 

  • Demoisson F, Mullet M, Humbert B (2007) Investigation of pyrite oxidation by hexavalent chromium: solution species and surface chemistry. J Colloid Interface Sci 316:531–540. doi:10.1016/j.jcis.2007.08.011

    Article  CAS  Google Scholar 

  • Descostes M, Schlegel ML, Eglizaud N, Descamps F, Miserque F, Simoni E (2010) Uptake of uranium and trace elements in pyrite (FeS2) suspensions. Geochim Cosmochim Acta 74:1551–1562. doi:10.1016/j.gca.2009.12.004

    Article  CAS  Google Scholar 

  • Doyle CS, Kendelewicz T, Bostick BC, Brown GE (2004) Soft X-ray spectroscopic studies of the reaction of fractured pyrite surfaces with Cr(VI)-containing aqueous solutions. Geochim Cosmochim Acta 68:4287–4299. doi:10.1016/j.gca.2004.02.015

    Article  CAS  Google Scholar 

  • Erdem M, Ozverdi A (2006) Kinetics and thermodynamics of Cd(II) adsorption onto pyrite and synthetic iron sulphide. Sep Purif Technol 51:240–246. doi:10.1016/j.seppur.2006.02.004

    Article  CAS  Google Scholar 

  • Farquhar ML, Charnock JM, Livens FR, Vaughan DJ (2002) Mechanisms of arsenic uptake from aqueous solution by interaction with goethite, lepidocrocite, mackinawite, and pyrite: an X-ray absorption spectroscopy study. Environ Sci Technol 36:1757–1762. doi:10.1021/es010216g

    Article  CAS  Google Scholar 

  • Finck N, Dardenne K, Bosbach D, Geckeis H (2012) Selenide retention by mackinawite. Environ Sci Technol 46:10004–10011. doi:10.1021/es301878y

    CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418. doi:10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  • Gallegos TJ, Sung PH, Hayes KF (2007) Spectroscopic investigation of the uptake of arsenite from solution by synthetic mackinawite. Environ Sci Technol 41:7781–7786. doi:10.1021/es070613c

    Article  CAS  Google Scholar 

  • Gallegos TJ, Y-s Han, Hayes KF, Hayes KIMF (2008) Model predictions of realgar precipitation by reaction of As(III) with synthetic mackinawite under anoxic conditions model predictions of realgar precipitation by reaction of As(III) with synthetic mackinawite under anoxic conditions. Environ Sci Technol 42:9338–9343

    Article  CAS  Google Scholar 

  • Garrels R, Thompson M (1960) Oxidation of pyrite by iron sulfate solutions. Am J Sci 258(1960):57–67

    Google Scholar 

  • Gil-Lozano C, Losa-Adams E, Alfonso F, Gago-Duport L (2014) Pyrite nanoparticles as a Fenton-like reagent for in situ remediation of organic pollutants. Beilstein J Nanotechnol 5:855–864

    Article  CAS  Google Scholar 

  • Gong Y, Liu Y, Xiong Z, Zhao D (2014) Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles: reaction mechanisms and effects of stabilizer and water chemistry. Environ Sci Technol 48:3986–3994. doi:10.1021/es404418a

    Article  CAS  Google Scholar 

  • Gong Y, Tang J, Zhao D (2016) Application of iron sulfide particles for groundwater and soil remediation: a review. Water Res 89:309–320. doi:10.1016/j.watres.2015.11.063

    Article  CAS  Google Scholar 

  • Ha JK, Cho KK, Kim KW, Kim JU, Kim YY (2006) Structure and electrochemical properties of FeSx nanoparticles synthesized by chemical vapor condensation process. Mater Sci Forum 510–511:950–953. doi:10.4028/www.scientific.net/MSF.510-511.950

    Article  Google Scholar 

  • Haaijer SCM, Lamers LPM, Smolders AJP, Jetten MSM, Camp HJMOd (2007) Iron sulfide and pyrite as potential electron donors for microbial nitrate reduction in freshwater wetlands. Geomicrobiol J 24:391–401. doi:10.1080/01490450701436489

    Article  CAS  Google Scholar 

  • Han DS, Song JK, Batchelor B, Abdel-Wahab A (2013) Removal of arsenite(As(III)) and arsenate(As(V)) by synthetic pyrite (FeS2): synthesis, effect of contact time, and sorption/desorption envelopes. J Colloid Interface Sci 392:311–318. doi:10.1016/j.jcis.2012.09.084

    Article  CAS  Google Scholar 

  • Hu G, Dam-Johansen K, Wedel S, Hansen JP (2006) Decomposition and oxidation of pyrite. Prog Energy Combust Sci 32:295–314. doi:10.1016/j.pecs.2005.11.004

    Article  CAS  Google Scholar 

  • Hua B, Deng B (2008) Reductive immobilization of uranium(VI) by amorphous iron sulfide. Environ Sci Technol 42:8703–8708. doi:10.1021/es801225z

    Article  CAS  Google Scholar 

  • Hyun SP, Ja Davis, Sun K, Hayes KF (2012) Uranium(VI) reduction by iron(II) monosulfide mackinawite. Environ Sci Technol 46:3369–3376. doi:10.1021/es203786p

    Article  CAS  Google Scholar 

  • Janzen MP, Nicholson RV, Scharer JM (2000) Pyrrhotite reaction kinetics: reaction rates for oxidation by oxygen, ferric iron, and for nonoxidative dissolution. Geochim Cosmochim Acta 64:1511–1522

    Article  CAS  Google Scholar 

  • Jean GE, Bancroft GM (1986) Heavy metal adsorption by sulphide mineral surfaces. Geochim Cosmochim Acta 50:1455–1463

    Article  CAS  Google Scholar 

  • Jeong HY, Hayes KF (2007) Reductive dechlorination of tetrachloroethylene and trichloroethylene by mackinawite (FeS) in the presence of metals: reaction rates. Environ Sci Technol 41:6390–6396. doi:10.1021/es0706394

    Article  CAS  Google Scholar 

  • Jeong HY, Klaue B, Blum JD, Hayes KF (2007) Sorption of mercuric ion by synthetic nanocrystalline mackinawite (FeS). Environ Sci Technol 41:7699–7705

    Article  CAS  Google Scholar 

  • Jeong HY, Lee JH, Hayes KF (2008) Characterization of synthetic nanocrystalline mackinawite: crystal structure, particle size, and specific surface area. Geochim Cosmochim Acta 72:493–505. doi:10.1016/j.gca.2007.11.008

    Article  CAS  Google Scholar 

  • Jeong HY, Han YS, Hayes K (2010a) X-ray absorption and X-ray photoelectron spectroscopic study of arsenic mobilization during mackinawite (FeS) oxidation. Environ Sci Technol 44:955–961. doi:10.1021/es902577y

    Article  CAS  Google Scholar 

  • Jeong HY, Sun K, Hayes KF (2010b) Microscopic and spectroscopic characterization of Hg(II) immobilization by Mackinawite (FeS). Environ Sci Technol 44:7476–7483

    Article  CAS  Google Scholar 

  • Jørgensen CJ, Jacobsen OS, Elberling B, Aamand J (2009) Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment. Environ Sci Technol 43:4851–4857

    Article  CAS  Google Scholar 

  • Kang M, Chen F, Wu S, Yang Y, Bruggeman C, Charlet L (2011) Effect of pH on aqueous Se(IV) reduction by pyrite. Environ Sci Technol 45:2704–2710. doi:10.1021/es1033553

    Article  CAS  Google Scholar 

  • Kantar C, Ari C, Keskin S (2015a) Comparison of different chelating agents to enhance reductive Cr(VI) removal by pyrite treatment procedure. Water Res 76:66–75. doi:10.1016/j.watres.2015.02.058

    Article  CAS  Google Scholar 

  • Kantar C, Ari C, Keskin S, Dogaroglu ZG, Karadeniz A, Alten A (2015b) Cr(VI) removal from aqueous systems using pyrite as the reducing agent: batch, spectroscopic and column experiments. J Contam Hydrol 174:28–38. doi:10.1016/j.jconhyd.2015.01.001

    Article  CAS  Google Scholar 

  • Kim EJ, Murugesan K, Kim JH, Tratnyek PG, Chang YS (2013) Remediation of trichloroethylene by FeS-coated iron nanoparticles in simulated and real groundwater: effects of water chemistry. Ind Eng Chem Res 52:9343–9350

    Article  CAS  Google Scholar 

  • Kirsch R et al (2011) Oxidation state and local structure of plutonium reacted with magnetite, mackinawite, and chukanovite. Environ Sci Technol 45:7267–7274

    Article  CAS  Google Scholar 

  • Koenig A, Liu LH (2001) Kinetic model of autotrophic denitrification in sulphur packed-bed reactors. Water Res 35:1969–1978

    Article  CAS  Google Scholar 

  • Kong Z, Li L, Feng C, Dong S, Chen N (2016) Comparative investigation on integrated vertical-flow biofilters applying sulfur-based and pyrite-based autotrophic denitrification for domestic wastewater treatment. Bioresour Technol 211:125–135. doi:10.1016/j.biortech.2016.03.083

    Article  CAS  Google Scholar 

  • Labiadh L, Oturan MA, Panizza M, Hamadi NB, Ammar S (2015) Complete removal of AHPS synthetic dye from water using new electro-fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst. J Hazard Mater 297:34–41. doi:10.1016/j.jhazmat.2015.04.062

    Article  CAS  Google Scholar 

  • Li JP, Healy MG, Zhan XM, Rodgers M (2008) Nutrient removal from slaughterhouse wastewater in an intermittently aerated sequencing batch reactor. Biores Technol 99:7644–7650. doi:10.1016/j.biortech.2008.02.001

    Article  CAS  Google Scholar 

  • Li Y, Lu A, Ding H, Wang X, Wang C, Zeng C, Yan Y (2010) Microbial fuel cells using natural pyrrhotite as the cathodic heterogeneous Fenton catalyst towards the degradation of biorefractory organics in landfill leachate. Electrochem Commun 12:944–947. doi:10.1016/j.elecom.2010.04.027

    Article  CAS  Google Scholar 

  • Liu B et al (2012) Nitrogen and phosphorus removal method by using pyrite as biochemical filling. China patent

  • Li R, Kelly C, Keegan R, Xiao L, Morrison L, Zhan X (2013a) Phosphorus removal from wastewater using natural pyrrhotite. Colloids Surf A 427:13–18. doi:10.1016/j.colsurfa.2013.02.066

    Article  CAS  Google Scholar 

  • Li RH, Niu JM, Zhan XM, Liu B (2013b) Simultaneous removal of nitrogen and phosphorous from wastewater by means of FeS-based autotrophic denitrification. Water Sci Technol 67:2761–2767. doi:10.2166/wst.2013.200

    Article  CAS  Google Scholar 

  • Li R, Hu JS, Sun XX, Zhang XM, Liu Z, Zhan XM, Li AM (2014a) Natural pyrrhotite biological filter and method for synchronously removing nitrate nitrogen and phosphorus out of water by using natural pyrrhotite biological filter. China patent

  • Li R, Yuan Y, Zhan X, Liu B (2014b) Phosphorus removal in a sulfur-limestone autotrophic denitrification (SLAD) biofilter. Environ Sci Pollut Res Int 21:972–978. doi:10.1007/s11356-013-1966-5

    Article  CAS  Google Scholar 

  • Li R, Morrison L, Collins G, Li A, Zhan X (2016) Simultaneous nitrate and phosphate removal from wastewater lacking organic matter through microbial oxidation of pyrrhotite coupled to nitrate reduction. Water Res 96:32–41. doi:10.1016/j.watres.2016.03.034

    Article  CAS  Google Scholar 

  • Lin Y-T, Huang C-P (2008) Reduction of chromium(VI) by pyrite in dilute aqueous solutions. Sep Purif Technol 63:191–199. doi:10.1016/j.seppur.2008.05.001

    Article  CAS  Google Scholar 

  • Liu J, Valsaraj KT, Devai I, DeLaune RD (2008a) Immobilization of aqueous Hg(II) by mackinawite (FeS). J Hazard Mater 157:432–440. doi:10.1016/j.jhazmat.2008.01.006

    Article  CAS  Google Scholar 

  • Liu Y, Terry J, Jurisson S (2008b) Pertechnetate immobilization with amorphous iron sulfide. Radiochim Acta 96:823–833. doi:10.1524/ract.2008.1528

    CAS  Google Scholar 

  • Liu H, Chen T, Frost RL (2014) An overview of the role of goethite surfaces in the environment. Chemosphere 103:1–11. doi:10.1016/j.chemosphere.2013.11.065

    Article  CAS  Google Scholar 

  • Liu Y, Mou H, Chen L, Mirza ZA, Liu L (2015) Cr(VI)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material: environmental factors and effectiveness. J Hazard Mater 298:83–90. doi:10.1016/j.jhazmat.2015.05.007

    Article  CAS  Google Scholar 

  • Liu H, Zhu Y, Xu B, Li P, Sun Y, Chen T (2016a) Mechanical investigation of U(VI) on pyrrhotite by batch, EXAFS and modeling techniques. J Hazard Mater. doi:10.1016/j.jhazmat.2016.10.015

    Google Scholar 

  • Liu R, Yang Z, He Z, Wu L, Hu C, Wu W, Qu J (2016b) Treatment of strongly acidic wastewater with high arsenic concentrations by ferrous sulfide (FeS): inhibitive effects of S(0)-enriched surfaces. Chem Eng J 304:986–992. doi:10.1016/j.cej.2016.05.109

    Article  CAS  Google Scholar 

  • Livens FR et al (2004) X-ray absorption spectroscopy studies of reactions of technetium, uranium and neptunium with mackinawite. J Environ Radioact 74:211–219. doi:10.1016/j.jenvrad.2004.01.012

    Article  CAS  Google Scholar 

  • Lu A, Zhong S, Chen J, Shi J, Tang J, Lu X (2006) Removal of Cr(VI) and Cr(III) from aqueous solutions and industrial wastewaters by natural clino-pyrrhotite. Environ Sci Technol 40:3064–3069. doi:10.1021/es052057x

    Article  CAS  Google Scholar 

  • Ma B, Kang M, Zheng Z, Chen F, Xie J, Charlet L, Liu C (2014) The reductive immobilization of aqueous Se(IV) by natural pyrrhotite. J Hazard Mater 276:422–432. doi:10.1016/j.jhazmat.2014.05.066

    Article  CAS  Google Scholar 

  • Morse JW, Rickard D (2004) Peer reviewed: chemical dynamics of sedimentary acid volatile sulfide. Environ Sci Technol 38:131A–136A. doi:10.1021/es040447y

    Article  CAS  Google Scholar 

  • Moyes LN, Parkman RH, Charnock JM, Vaughan DJ, Livens FR, Hughes CR, Braithwaite A (2000) Uranium uptake from aqueous solution by interaction with goethite, lepidocrocite, muscovite, and mackinawite: an x-ray absorption spectroscopy study. Environ Sci Technol 34:1062–1068. doi:10.1021/es990703k

    Article  CAS  Google Scholar 

  • Moyes LN et al (2002) An X-ray absorption spectroscopy, study of neptunium(V) reactions with mackinawite (FeS). Environ Sci Technol 36:179–183. doi:10.1021/es0100928

    Article  CAS  Google Scholar 

  • Mullet M, Boursiquot S, Abdelmoula M, Génin J-M, Ehrhardt J-J (2002) Surface chemistry and structural properties of mackinawite prepared by reaction of sulfide ions with metallic iron. Geochim Cosmochim Acta 66:829–836

    Article  CAS  Google Scholar 

  • Mullet M, Boursiquot S, Ehrhardt J-J (2004) Removal of hexavalent chromium from solutions by mackinawite, tetragonal FeS. Colloids Surf A 244:77–85. doi:10.1016/j.colsurfa.2004.06.013

    Article  CAS  Google Scholar 

  • Murphy R, Strongin D (2009) Surface reactivity of pyrite and related sulfides. Surf Sci Rep 64:1–45. doi:10.1016/j.surfrep.2008.09.002

    Article  CAS  Google Scholar 

  • Naveau A, Monteil-Rivera F, Guillon E, Dumonceau J (2007) Interactions of aqueous selenium (-II) and (IV) with metallic sulfide surfaces. Environ Sci Technol 41:5376–5382. doi:10.1021/es0704481

    Article  CAS  Google Scholar 

  • Nicholson RV, Scharer JM (1994) Laboratory studies of pyrrhotite oxidation kinetics. In: ACS symposium series. American Chemical Society, Washington, DC, pp 14–30

  • Nicol M, Miki H, Basson P (2013) The effects of sulphate ions and temperature on the leaching of pyrite. 2. Dissolution rates. Hydrometallurgy 133:182–187. doi:10.1016/j.hydromet.2013.01.009

    Article  CAS  Google Scholar 

  • Oasmaa A, Elliott DC, Mu S (2009) XPS analysis of sorption of selenium(IV) and selenium(VI) to mackinawite (FeS). Environ Prog 28:404–409. doi:10.1002/ep.10609

    CAS  Google Scholar 

  • Oturan MA, Guivarch E, Oturan N, Sirés I (2008) Oxidation pathways of malachite green by Fe3+-catalyzed electro-Fenton process. Appl Catal B 82:244–254. doi:10.1016/j.apcatb.2008.01.016

    Article  CAS  Google Scholar 

  • Ozverdi A, Erdem M (2006) Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide. J Hazard Mater 137:626–632. doi:10.1016/j.jhazmat.2006.02.051

    Article  CAS  Google Scholar 

  • Patterson RR, Fendorf S, Fendorf M (1997) Reduction of hexavalent chromium by amorphous iron sulfide. Environ Sci Technol 31:2039–2044. doi:10.1021/es960836v

    Article  CAS  Google Scholar 

  • Pu J et al (2014) Pyrite-based autotrophic denitrification for remediation of nitrate contaminated groundwater. Biores Technol 173:117–123. doi:10.1016/j.biortech.2014.09.092

    Article  CAS  Google Scholar 

  • Renock D, Gallegos T, Utsunomiya S, Hayes K, Ewing RC, Becker U (2009) Chemical and structural characterization of As immobilization by nanoparticles of mackinawite (FeSm). Chem Geol 268:116–125. doi:10.1016/j.chemgeo.2009.08.003

    Article  CAS  Google Scholar 

  • Rickard D, Luther GW (2007) Chemistry of iron sulfides. Chem Rev 107:514–562. doi:10.1021/cr0503658

    Article  CAS  Google Scholar 

  • Rimstidt JD, Vaughan DJ (2003) Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim Cosmochim Acta 67:873–880. doi:10.1016/s0016-7037(02)01165-1

    Article  CAS  Google Scholar 

  • Sahoo PK, Tripathy S, Panigrahi MK, Equeenuddin SM (2013) Inhibition of acid mine drainage from a pyrite-rich mining waste using industrial by-products: role of neo-formed phases water. Air Soil Pollut. doi:10.1007/s11270-013-1757-0

    Google Scholar 

  • Scheinost AC, Charlet L (2008) Selenite reduction by mackinawite, magnetite and siderite: XAS characterization of nanosized redox products. Environ Sci Technol 42:1984–1989. doi:10.1021/es071573f

    Article  CAS  Google Scholar 

  • Schippers A, Jørgensen BB (2002) Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments. Geochim Cosmochim Acta 66:85–92. doi:10.1016/S0016-7037(01)00745-1

    Article  CAS  Google Scholar 

  • Scott TB, Riba Tort O, Allen GC (2007) Aqueous uptake of uranium onto pyrite surfaces; reactivity of fresh versus weathered material. Geochim Cosmochim Acta 71:5044–5053. doi:10.1016/j.gca.2007.08.017

    Article  CAS  Google Scholar 

  • Shao MF, Zhang T, Fang HHP (2010) Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Appl Microbiol Biotechnol 88:1027–1042. doi:10.1007/s00253-010-2847-1

    Article  CAS  Google Scholar 

  • Shi X, Sun K, Balogh LP, Baker JR Jr (2006) Synthesis, characterization, and manipulation of dendrimer-stabilized iron sulfide nanoparticles. Nanotechnology 17:4554–4560

    Article  CAS  Google Scholar 

  • Smith BA, Teel AL, Watts RJ (2004) Identification of the reactive oxygen species responsible for carbon tetrachloride degradation in modified Fenton’s systems. Environ Sci Technol 38:5465–5469. doi:10.1021/es0352754

    Article  CAS  Google Scholar 

  • Snowball I, Torri M (1999) 6 - Incidence and significance of magnetic iron sulphides in Quaternary sediments. In: Maher BA, Thompson R (eds) Quaternary climates, environments and magnetism. Cambridge University Press, pp 199–230. doi:10.1017/CBO9780511535635.007

  • Steger HF (1982) Oxidation of sulfide minerals: VII. Effect of temperature and relative humidity on the oxidation of pyrrhotite. Chem Geol 35:281–295. doi:10.1016/0009-2541(82)90006-7

    Article  CAS  Google Scholar 

  • Sun H, Chen M, Zou L, Shu R, Ruan R (2015) Study of the kinetics of pyrite oxidation under controlled redox potential. Hydrometallurgy 155:13–19. doi:10.1016/j.hydromet.2015.04.003

    Article  CAS  Google Scholar 

  • Teel AL, Watts RJ (2002) Degradation of carbon tetrachloride by modified Fenton’s reagent. J Hazard Mater 94:179–189. doi:10.1016/S0304-3894(02)00068-7

    Article  CAS  Google Scholar 

  • Tetsuro K, Shuzo T (2012) Biological removal and recovery of toxic heavy metals in water environment. Crit Rev Environ Sci Technol 42:1007–1057. doi:10.1080/10643389.2011.651343

    Article  CAS  Google Scholar 

  • Thomas JE, Smart RSC, Skinner WM (2000) Kinetic factors for oxidative and non-oxidative dissolution of iron sulfides. Miner Eng 13:1149–1159. doi:10.1016/S0892-6875(00)00098-4

    Article  CAS  Google Scholar 

  • Todd EC, Sherman DM, Purton JA (2003) Surface oxidation of pyrite under ambient atmospheric and aqueous (pH = 2 to 10) conditions: electronic structure and mineralogy from X-ray absorption spectroscopy. Geochim Cosmochim Acta 67:881–893. doi:10.1016/S0016-7037(02)00957-2

    Article  CAS  Google Scholar 

  • Tong S, Rodriguez-Gonzalez LC, Feng C, Ergas SJ (2017) Comparison of particulate pyrite autotrophic denitrification (PPAD) and sulfur oxidizing denitrification (SOD) for treatment of nitrified wastewater. Water Sci Technol 75:239–246. doi:10.2166/wst.2016.502

    Article  Google Scholar 

  • Torrentó C, Cama J, Urmeneta J, Otero N, Soler A (2010) Denitrification of groundwater with pyrite and Thiobacillus denitrificans. Chem Geol 278:80–91. doi:10.1016/j.chemgeo.2010.09.003

    Article  CAS  Google Scholar 

  • Torrentó C, Urmeneta J, Otero N, Soler A, Viñas M, Cama J (2011) Enhanced denitrification in groundwater and sediments from a nitrate-contaminated aquifer after addition of pyrite. Chem Geol 287:90–101. doi:10.1016/j.chemgeo.2011.06.002

    Article  CAS  Google Scholar 

  • Veeramani H et al (2013) Abiotic reductive immobilization of U(VI) by biogenic mackinawite. Environ Sci Technol 47:2361–2369. doi:10.1021/es304025x

    Article  CAS  Google Scholar 

  • Wang H, Salveson I (2005) A review on the mineral chemistry of the non-stoichiometric iron sulphide, Fe1 − x S (0 ≤ x ≤ 0.125): polymorphs, phase relations and transitions, electronic and magnetic structures. Phase Transitions 78:547–567

    Article  CAS  Google Scholar 

  • Watson JHP, Ellwood DC, Deng Q, Mikhalovsky S, Haytert CE, Evanst J (1995) Heavy metal adsorption on bacterially producted FeS. Miner Eng 8:1097–1108

    Article  CAS  Google Scholar 

  • Watson JHP, Cressey BA, Roberts AP, Ellwood DC, Charnock JM, Soper AK (2000) Structural and magnetic studies on heavy-metal-adsorbing iron sulphide nanoparticles produced by sulphate-reducing bacteria. J Magn Magn Mater 214:13–30. doi:10.1016/S0304-8853(00)00025-1

    Article  CAS  Google Scholar 

  • Wersin P, Hochella MF, Persson P, Redden G, Leckie JO, Harris DW (1994) Interaction between aqueous uranium (VI) and sulfide minerals: spectroscopic evidence for sorption and reduction. Geochim Cosmochim Acta 58:2829–2843. doi:10.1016/0016-7037(94)90117-1

    Article  CAS  Google Scholar 

  • Wharton MJ, Atkins B, Charnockab JM, Livens FR, Pattrick RAD, Collison D (2000) An X-ray absorption spectroscopy study of the coprecipitation of Tc and Re with mackinawite (FeS). Appl Geochem 15:347–354. doi:10.1016/S0883-2927(99)00045-1

    Article  CAS  Google Scholar 

  • Widlera AM, Seward TM (2002) The adsorption of gold(I) hydrosulphide complexes by iron sulphide surfaces. Geochim Cosmochim Acta 66:383–402

    Article  Google Scholar 

  • Wolthers M, Charlet L, van Der Linde PR, Rickard D, van Der Weijden CH (2005a) Surface chemistry of disordered mackinawite (FeS). Geochim Cosmochim Acta 69:3469–3481. doi:10.1016/j.gca.2005.01.027

    Article  CAS  Google Scholar 

  • Wolthers M, Charlet L, van Der Weijden CH, van der Linde PR, Rickard D (2005b) Arsenic mobility in the ambient sulfidic environment: sorption of arsenic(V) and arsenic(III) onto disordered mackinawite. Geochim Cosmochim Acta 69:3483–3492. doi:10.1016/j.gca.2005.03.003

    Article  CAS  Google Scholar 

  • Xiong Z, He F, Zhao D, Barnett MO (2009) Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles. Water Res 43:5171–5179. doi:10.1016/j.watres.2009.08.018

    Article  CAS  Google Scholar 

  • Yang Y (2017) Utilization of nanostructured iron sulfides to remove metals and nutrients from wastewater. PhD thesis, National University of Ireland, Galway

  • Yang Y, Chen TH, Chen D, Li P, Shi YD, Zhu X (2012) Copper removal from aqueous solution using colloidal pyrite calcined under inert atmosphere: effect factors. Acta Minalogica Sinica S1:198–199

    Google Scholar 

  • Yang Y, Chen T, Li P, Liu H, Xie J, Xie Q, Zhan X (2014a) Removal and recovery of Cu and Pb from single-metal and Cu–Pb–Cd–Zn multimetal solutions by modified pyrite: fixed-bed columns. Ind Eng Chem Res 53:18180–18188. doi:10.1021/ie503828f

    Article  CAS  Google Scholar 

  • Yang Z, Kang M, Ma B, Xie J, Chen F, Charlet L, Liu C (2014b) Inhibition of U(VI) reduction by synthetic and natural pyrite. Environ Sci Technol 48:10716–10724. doi:10.1021/es502181x

    Article  CAS  Google Scholar 

  • Yang Y, Chen T, Li P, Qing C, Xie Q, Zhan X (2016) Immobilization of copper under an acid leach of colloidal pyrite waste rocks by a fixed-bed column. Environ Earth Sci 75:1–8. doi:10.1007/s12665-015-4991-5

    Article  Google Scholar 

  • Zhang Y, Zhang K, Dai C, Zhou X, Si H (2014) An enhanced Fenton reaction catalyzed by natural heterogeneous pyrite for nitrobenzene degradation in an aqueous solution. Chem Eng J 244:438–445. doi:10.1016/j.cej.2014.01.088

    Article  CAS  Google Scholar 

  • Zhang Y, Tran HP, Hussain I, Zhong Y, Huang S (2015) Degradation of p-chloroaniline by pyrite in aqueous solutions. Chem Eng J 279:396–401. doi:10.1016/j.cej.2015.03.016

    Article  CAS  Google Scholar 

  • Zhu Y, Liu H, Chen T, Xu B, Li P (2016) Kinetics and thermodynamics of Eu(III) adsorption onto synthetic monoclinic pyrrhotite. J Mol Liq 218:565–570. doi:10.1016/j.molliq.2016.01.100

    Article  CAS  Google Scholar 

  • Zouboulis AI, Kydros KA, Matis KA (1995) Removal of hexavalent chromium anions from solutions by pyrite fines. Water Res 29:1755–1760. doi:10.1016/0043-1354(94)00319-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by NSF of China (41130206, 41072035, and 41402029) and the China Scholarship Council (Grant No. 201306690001). The authors are thankful for the networking opportunities provided by the European Cooperation in Science and Technology (COST) Actions 1205 and 1302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinmin Zhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Chen, T., Sumona, M. et al. Utilization of iron sulfides for wastewater treatment: a critical review. Rev Environ Sci Biotechnol 16, 289–308 (2017). https://doi.org/10.1007/s11157-017-9432-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-017-9432-3

Keywords

Navigation