Skip to main content

Advertisement

Log in

Biosynthesis of polyesters and polyamide building blocks using microbial fermentation and biotransformation

  • Review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Biopolymers can be a green alternative to fossil-based polymers and can contribute to environmental protection because they are produced using renewable raw materials. Biopolymers are composed of various small subunits (building blocks) that are the intermediates or end products of major metabolic pathways. Most building blocks are secreted directly outside of cells, making downstream processes easier and more economic. These molecules can be extracted from fermentation broth and polymerized to produce a variety of biopolymers, e.g., polybutylene terephthalate, polyethylene terephthalate, polytrimethylene terephthalate, nylon-5,4 and nylon-4,6, with applications in medicine, pharmaceuticals, and textiles. Microbes are unable to naturally produce these types of polymers; thus, the production of building blocks and their polymerization is a fascinating approach for the production of these polymers. In comparison to naturally occurring biopolymers, synthesized polymers have improved and controlled structures and higher purity. The production of monomer units provides a new direction for polymer science because new classes of polymers with unique properties that were not previously possible can be prepared. Furthermore, the engineering of microbes for building-block production is an easy process compared to engineering an entire biopolymer synthesis pathway in a single microbe. Polyesters and polyamide polymers have become an important part of human life, and their demand is increasing daily. In this review, recent approaches and technology are discussed for the production of polyester/polyamide building blocks, i.e., 2-hydroxyisobutyric acid, 3-hydroxypropionic acid, mandelic acid, itaconic acid, adipic acid, terephthalic acid, succinic acid, 1,3-propanediol, 2,3-butanediol, 1,4-butanediol, 1,3-butanediol, cadaverine, and putrescine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abubackar HN, Veiga MC, Kennes C (2015) Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid. Bioresour Technol 186:122–127. doi:10.1016/j.biortech.2015.02.113

    Article  CAS  Google Scholar 

  • Adkins J, Pugh S, McKenna R, Nielsen DR (2012) Engineering microbial chemical factories to produce renewable ‘biomonomers’. Front Microbiol 3:313. doi:10.3389/fmicb.2012.00313

    Article  Google Scholar 

  • Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121. doi:10.1016/j.jare.2013.07.006

    Article  CAS  Google Scholar 

  • Ali U, Karim KJBA, Buang NA (2015) A review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym Rev 55:678–705. doi:10.1080/15583724.2015.1031377

    Article  CAS  Google Scholar 

  • Aoki S, Fukui A (1998) Poly(itaconic acid) derivatives as thermal stabilizers for polystyrene and poly(methyl methacrylate). Polym J 30:295–299. doi:10.1295/polymj.30.295

    Article  CAS  Google Scholar 

  • Ashok S, Sankaranarayanan M, Ko Y, Jae KE, Ainala SK, Kumar V, Park S (2013) Production of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae Delta dhaT Delta yqhD which can produce vitamin B(1)(2) naturally. Biotechnol Bioeng 110:511–524. doi:10.1002/bit.24726

    Article  CAS  Google Scholar 

  • Ates O (2015) Systems biology of microbial exopolysaccharides production. Front Bioeng Biotechnol 3:200. doi:10.3389/fbioe.2015.00200

    Article  Google Scholar 

  • Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26:89–105. doi:10.1016/j.biotechadv.2007.09.002

    Article  CAS  Google Scholar 

  • Barton NR et al (2015) An integrated biotechnology platform for developing sustainable chemical processes. J Ind Microbiol Biotechnol 42:349–360. doi:10.1007/s10295-014-1541-1

    Article  CAS  Google Scholar 

  • Bastidas-Oyanedel J-R, Bonk F, Thomsen MH, Schmidt JE (2015) Dark fermentation biorefinery in the present and future (bio)chemical industry. Rev Environ Sci Bio/Technol 14:473–498. doi:10.1007/s11157-015-9369-3

    Article  CAS  Google Scholar 

  • Bayer S, Birkemeyer C, Ballschmiter M (2011) A nitrilase from a metagenomic library acts regioselectively on aliphatic dinitriles. Appl Microbiol Biotechnol 89:91–98. doi:10.1007/s00253-010-2831-9

    Article  CAS  Google Scholar 

  • Becker J, Zelder O, Hafner S, Schroder H, Wittmann C (2011) From zero to hero—design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab Eng 13:159–168. doi:10.1016/j.ymben.2011.01.003

    Article  CAS  Google Scholar 

  • Berg IA, Kockelkorn D, Buckel W, Fuchs G (2007) A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea. Science 318:1782–1786. doi:10.1126/science.1149976

    Article  CAS  Google Scholar 

  • Betancourt T, Pardo J, Soo K, Peppas NA (2010) Characterization of pH-responsive hydrogels of poly(itaconic acid-g-ethylene glycol) prepared by UV-initiated free radical polymerization as biomaterials for oral delivery of bioactive agents. J Biomed Mater Res A 93:175–188. doi:10.1002/jbm.a.32510

    Google Scholar 

  • Bhatia SK, Mehta PK, Bhatia RK, Bhalla TC (2013) An isobutyronitrile-induced bienzymatic system of Alcaligenes sp. MTCC 10674 and its application in the synthesis of alpha-hydroxyisobutyric acid. Bioprocess Biosyst Eng 36:613–625. doi:10.1007/s00449-012-0817-y

    Article  CAS  Google Scholar 

  • Bhatia SK, Mehta PK, Bhatia RK, Bhalla TC (2014a) Purification and characterization of arylacetonitrile-specific nitrilase of Alcaligenes sp. MTCC 10675. Biotechnol Appl Biochem 61(4):459–465. doi:10.1002/bab.1192

    Article  CAS  Google Scholar 

  • Bhatia SK, Mehta PK, Bhatia RK, Bhalla TC (2014b) Optimization of arylacetonitrilase production from Alcaligenes sp. MTCC 10675 and its application in mandelic acid synthesis. Appl Microbiol Biotechnol 98:83–94. doi:10.1007/s00253-013-5288-9

    Article  CAS  Google Scholar 

  • Bhatia SK et al (2015a) Biotransformation of lysine into cadaverine using barium alginate-immobilized Escherichia coli overexpressing CadA. Bioprocess Biosyst Eng 38:2315–2322. doi:10.1007/s00449-015-1465-9

    Article  CAS  Google Scholar 

  • Bhatia SK et al (2015b) Starch based polyhydroxybutyrate production in engineered Escherichia coli. Bioprocess Biosyst Eng 38:1479–1484. doi:10.1007/s00449-015-1390-y

    Article  CAS  Google Scholar 

  • Bhatia SK et al (2016) Medium engineering for enhanced production of undecylprodigiosin antibiotic in Streptomyces coelicolor using oil palm biomass hydrolysate as a carbon source. Bioresour Technol 217:141–149. doi:10.1016/j.biortech.2016.02.055

    Article  CAS  Google Scholar 

  • Biebl H, Menzel K, Zeng AP, Deckwer WD (1999) Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol 52:289–297

    Article  CAS  Google Scholar 

  • Billiet L, Fournier D, Du Prez F (2009) Step-growth polymerization and ‘click’ chemistry: the oldest polymers rejuvenated. Polymer 50:3877–3886. doi:10.1016/j.polymer.2009.06.034

    Article  CAS  Google Scholar 

  • Blazeck J, Hill A, Jamoussi M, Pan A, Miller J, Alper HS (2015) Metabolic engineering of Yarrowia lipolytica for itaconic acid production. Metab Eng 32:66–73. doi:10.1016/j.ymben.2015.09.005

    Article  CAS  Google Scholar 

  • Blomqvist K et al (1993) Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes. J Bacteriol 175:1392–1404

    CAS  Google Scholar 

  • Borodina I et al (2015) Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine. Metab Eng 27:57–64. doi:10.1016/j.ymben.2014.10.003

    Article  CAS  Google Scholar 

  • Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem. doi:10.1039/b922014c

    Google Scholar 

  • Bradfield MFA et al (2015) Continuous succinic acid production by Actinobacillus succinogenes on xylose-enriched hydrolysate. Biotechnol Biofuel 8:1–17. doi:10.1186/s13068-015-0363-3

    Article  Google Scholar 

  • Bramucci MG, McCutchen CM, Singh M, Thomas SM, Larsen BS, Buckholz J, Nagarajan V (2002) Pure bacterial isolates that convert p-xylene to terephthalic acid. Appl Microbiol Biotechnol 58:255–259. doi:10.1007/s00253-001-0879-2

    Article  CAS  Google Scholar 

  • Brunner CT, Baran ET, Pinho ED, Reis RL, Neves NM (2011) Performance of biodegradable microcapsules of poly(butylene succinate), poly(butylene succinate-co-adipate) and poly(butylene terephthalate-co-adipate) as drug encapsulation systems. Colloids Surf B Biointerfaces 84:498–507. doi:10.1016/j.colsurfb.2011.02.005

    Article  CAS  Google Scholar 

  • Burgard A, Burk MJ, Osterhout R, Van Dien S, Yim H (2016) Development of a commercial scale process for production of 1,4-butanediol from sugar. Curr Opin Biotechnol 42:118–125. doi:10.1016/j.copbio.2016.04.016

    Article  CAS  Google Scholar 

  • Cameron DC, Altaras NE, Hoffman ML, Shaw AJ (1998) Metabolic engineering of propanediol pathways. Biotechnol Prog 14:116–125. doi:10.1021/bp9701325

    Article  CAS  Google Scholar 

  • Cao Y, Zhang R, Sun C, Cheng T, Liu Y, Xian M (2013) Fermentative succinate production: an emerging technology to replace the traditional petrochemical processes. BioMed Res Int 2013:12. doi:10.1155/2013/723412

    Google Scholar 

  • Carvalho M, Roca C, Reis MAM (2016) Improving succinic acid production by Actinobacillus succinogenes from raw industrial carob pods. Bioresour Technol 218:491–497. doi:10.1016/j.biortech.2016.06.140

    Article  CAS  Google Scholar 

  • Chen C, Ding S, Wang D, Li Z, Ye Q (2014) Simultaneous saccharification and fermentation of cassava to succinic acid by Escherichia coli NZN111. Bioresour Technol 163:100–105. doi:10.1016/j.biortech.2014.04.020

    Article  CAS  Google Scholar 

  • Cheng HN, Gu QM, Maslanka WW (2004) Enzyme-catalyzed polyamides and compositions and processes of preparing and using the same. Google Patents. https://www.google.com/patents/US6677427

  • Cheng K-K, Zhang J-A, Liu D-H, Sun Y, Liu H-J, Yang M-D, Xu J-M (2007) Pilot-scale production of 1,3-propanediol using Klebsiella pneumoniae. Process Biochem 42:740–744. doi:10.1016/j.procbio.2007.01.001

    Article  CAS  Google Scholar 

  • Cheng KK, Zhao XB, Zeng J, Zhang JA (2012) Biotechnological production of succinic acid: current state and perspectives. Biofuels, Bioprod Biorefin 6:302–318. doi:10.1002/bbb.1327

    Article  CAS  Google Scholar 

  • Cheng Z, Jiang J, Wu H, Li Z, Ye Q (2016) Enhanced production of 3-hydroxypropionic acid from glucose via malonyl-CoA pathway by engineered Escherichia coli. Bioresour Technol 200:897–904. doi:10.1016/j.biortech.2015.10.107

    Article  CAS  Google Scholar 

  • Cho S, Kim T, Woo HM, Kim Y, Lee J, Um Y (2015) High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1. Biotechnol Biofuel 8:1–12. doi:10.1186/s13068-015-0336-6

    Article  CAS  Google Scholar 

  • Choi D, Chipman DC, Bents SC, Brown RC (2010) A techno-economic analysis of polyhydroxyalkanoate and hydrogen production from syngas fermentation of gasified biomass. Appl Biochem Biotechnol 160:1032–1046. doi:10.1007/s12010-009-8560-9

    Article  CAS  Google Scholar 

  • Chuah HH (2004) Synthesis, properties and applications of poly(trimethylene terephthalate). In: Modern polyesters: chemistry and technology of polyesters and copolyesters. Wiley, New York, pp 361–397. doi:10.1002/0470090685.ch11

  • Collias DI, Harris AM, Nagpal V, Cottrell IW, Schultheis MW (2014) Biobased terephthalic acid technologies: a literature review. Indus Biotechnol 10:91–105. doi:10.1089/ind.2014.0002

    Article  CAS  Google Scholar 

  • Culbertson BM (2006) New polymeric materials for use in glass-ionomer cements. J Dent 34:556–565. doi:10.1016/j.jdent.2005.08.008

    Article  CAS  Google Scholar 

  • da Silva GP, de Lima CJB, Contiero J (2015) Production and productivity of 1,3-propanediol from glycerol by Klebsiella pneumoniae GLC29. Catal Today 257(Part 2):259–266. doi:10.1016/j.cattod.2014.05.016

    Article  CAS  Google Scholar 

  • de Oliveira RR, Nicholson WL (2016) Synthetic operon for (R,R)-2,3-butanediol production in Bacillus subtilis and Escherichia coli. Appl Microbiol Biotechnol 100:719–728. doi:10.1007/s00253-015-7030-2

    Article  CAS  Google Scholar 

  • Draths KM, Frost JW (1994) Environmentally compatible synthesis of adipic acid from d-glucose. J Am Chem Soc 116:399–400. doi:10.1021/ja00080a057

    Article  CAS  Google Scholar 

  • Drozdzynska A, Pawlicka J, Kubiak P, Kosmider A, Pranke D, Olejnik-Schmidt A, Czaczyk K (2014) Conversion of glycerol to 1,3-propanediol by Citrobacter freundii and Hafnia alvei—newly isolated strains from the Enterobacteriaceae. New Biotechnol 31:402–410. doi:10.1016/j.nbt.2014.04.002

    Article  CAS  Google Scholar 

  • Du C, Sabirova J, Soetaert W, Ki Carol Lin S (2012) Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr Chem Biol 6:14–25. doi:10.2174/2212796811206010014

    CAS  Google Scholar 

  • Duca D, Rose DR, Glick BR (2014) Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. strain UW4 that converts indole-3-acetonitrile to indole-3-acetic acid. Appl Environ Microbiol 80:4640–4649. doi:10.1128/AEM.00649-14

    Article  CAS  Google Scholar 

  • Dwiarti L, Otsuka M, Miura S, Yaguchi M, Okabe M (2007) Itaconic acid production using sago starch hydrolysate by Aspergillus terreus TN484-M1. Bioresour Technol 98:3329–3337. doi:10.1016/j.biortech.2006.03.016

    Article  CAS  Google Scholar 

  • Eggeling L, Bott M (2015) A giant market and a powerful metabolism: l-lysine provided by Corynebacterium glutamicum. Appl Microbiol Biotechnol 99:3387–3394. doi:10.1007/s00253-015-6508-2

    Article  CAS  Google Scholar 

  • Fan M-h, Deng S-m, Wang T-j, Li Q-x (2014) Production of BTX through catalytic depolymerization of lignin. Chin J Chem Phys 27:221–226. doi:10.1063/1674-0068/27/02/221-226

    Article  CAS  Google Scholar 

  • Feder D, Gross RA (2010) Exploring chain length selectivity in HIC-catalyzed polycondensation reactions. Biomacromolecules 11:690–697. doi:10.1021/bm901272r

    Article  CAS  Google Scholar 

  • Garcia Linares G, Baldessari A (2013) Lipases as efficient catalysts in the synthesis of monomers and polymers with biomedical applications. Curre Org Chem 17:719–743. doi:10.2174/1385272811317070007

    Article  Google Scholar 

  • Gaspar P, Neves AR, Gasson MJ, Shearman CA, Santos H (2011) High yields of 2,3-butanediol and mannitol in Lactococcus lactis through engineering of NAD(+) cofactor recycling. Appl Environ Microbiol 77:6826–6835. doi:10.1128/AEM.05544-11

    Article  CAS  Google Scholar 

  • Gong JS, Lu ZM, Li H, Shi JS, Zhou ZM, Xu ZH (2012) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Fact 11:1475–2859. doi:10.1186/1475-2859-11-142

    Article  CAS  Google Scholar 

  • Gross RA, Ganesh M, Lu W (2010) Enzyme-catalysis breathes new life into polyester condensation polymerizations. Trends Biotechnol 28:435–443. doi:10.1016/j.tibtech.2010.05.004

    Article  CAS  Google Scholar 

  • Guettler MV, Rumler D, Jain MK (1999) Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. Int J Syst Bacteriol 1:207–216. doi:10.1099/00207713-49-1-207

    Article  Google Scholar 

  • Gunnarsson IB, Karakashev D, Angelidaki I (2014) Succinic acid production by fermentation of Jerusalem artichoke tuber hydrolysate with Actinobacillus succinogenes 130Z. Ind Crop Prod 62:125–129. doi:10.1016/j.indcrop.2014.08.023

    Article  CAS  Google Scholar 

  • Haldimann M, Alt A, Blanc A, Brunner K, Sager F, Dudler V (2013) Migration of antimony from PET trays into food simulant and food: determination of Arrhenius parameters and comparison of predicted and measured migration data. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 30:587–598. doi:10.1080/19440049.2012.751631

    Article  CAS  Google Scholar 

  • Hao J, Wang W, Tian J, Li J, Liu D (2008) Decrease of 3-hydroxypropionaldehyde accumulation in 1,3-propanediol production by over-expressing dhaT gene in Klebsiella pneumoniae TUAC01. J Ind Microbiol Biotechnol 35:735–741. doi:10.1007/s10295-008-0340-y

    Article  CAS  Google Scholar 

  • Heinrich D, Madkour MH, Al-Ghamdi MA, Shabbaj II, Steinbüchel A (2012) Large scale extraction of poly(3-hydroxybutyrate) from Ralstonia eutropha H16 using sodium hypochlorite. AMB Express 2:59. doi:10.1186/2191-0855-2-59

    Article  CAS  Google Scholar 

  • Hemalatha T, Yadav S, Krithiga G, Sastry TP (2016) Chitosan as a matrix for grafting methyl methacrylate: synthesis, characterization and evaluation of grafts for biomedical applications. Polym Bull. doi:10.1007/s00289-016-1644-0

    Google Scholar 

  • Herold BC et al (2002) Mandelic acid condensation polymer: novel candidate microbicide for prevention of human immunodeficiency virus and herpes simplex virus entry. J Virol 76:11236–11244. doi:10.1128/JVI.76.22.11236-11244.2002

    Article  CAS  Google Scholar 

  • Holmes PA (1985) Applications of PHB—a microbially produced biodegradable thermoplastic. Phys Technol 16:32. doi:10.1088/0305-4624/16/1/305

    Article  CAS  Google Scholar 

  • Holo H (1989) Chloroflexus aurantiacus secretes 3-hydroxypropionate, a possible intermediate in the assimilation of CO2 and acetate. Arch Microbiol 151:252–256. doi:10.1007/bf00413138

    Article  CAS  Google Scholar 

  • Honda S, Toraya T, Fukui S (1980) In situ reactivation of glycerol-inactivated coenzyme B12-dependent enzymes, glycerol dehydratase and diol dehydratase. J Bacteriol 143:1458–1465

    CAS  Google Scholar 

  • Houck M, Huff R, Lowe P, Menold R (2001) Poly (trimethylene terephthalate): a “new” type of polyester fibre. Forensic Sci Commun 3:217–221

    Google Scholar 

  • Huang Y, Li Z, Shimizu K, Ye Q (2012) Simultaneous production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol by a recombinant strain of Klebsiella pneumoniae. Bioresour Technol 103:351–359. doi:10.1016/j.biortech.2011.10.022

    Article  CAS  Google Scholar 

  • Hunsen M, Azim A, Mang H, Wallner SR, Ronkvist A, Xie W, Gross RA (2007) A cutinase with polyester synthesis activity. Macromolecules 40:148–150. doi:10.1021/ma062095g

    Article  CAS  Google Scholar 

  • Ikeda N, Miyamoto M, Adachi N, Nakano M, Tanaka T, Kondo A (2013) Direct cadaverine production from cellobiose using β-glucosidase displaying Escherichia coli. AMB Express 3:67. doi:10.1186/2191-0855-3-67

    Article  CAS  Google Scholar 

  • Jacquel N, Saint-Loup R, Pascault J-P, Rousseau A, Fenouillot F (2015) Bio-based alternatives in the synthesis of aliphatic–aromatic polyesters dedicated to biodegradable film applications. Polymer 59:234–242. doi:10.1016/j.polymer.2014.12.021

    Article  CAS  Google Scholar 

  • Jia K, Cao R, Hua DH, Li P (2016) Study of Class I and class III polyhydroxyalkanoate (PHA) synthases with substrates containing a modified side chain. Biomacromolecules 17:1477–1485. doi:10.1021/acs.biomac.6b00082

    Article  CAS  Google Scholar 

  • Jiang Y, Loos K (2016) Enzymatic synthesis of biobased polyesters and polyamides. Polymer 8:243. doi:10.3390/polym8070243

    Article  CAS  Google Scholar 

  • Jiang Y, Marang L, Tamis J, van Loosdrecht MC, Dijkman H, Kleerebezem R (2012) Waste to resource: converting paper mill wastewater to bioplastic. Water Res 46:5517–5530. doi:10.1016/j.watres.2012.07.028

    Article  CAS  Google Scholar 

  • Jiang W, Wang S, Wang Y, Fang B (2016) Key enzymes catalyzing glycerol to 1,3-propanediol. Biotechnol Biofuel 9:1–19. doi:10.1186/s13068-016-0473-6

    Article  Google Scholar 

  • Jing F et al (2016) Direct dehydration of 1,3-butanediol into butadiene over aluminosilicate catalysts. Catal Sci Technol 6(5830):5840. doi:10.1039/c5cy02211h

    Google Scholar 

  • Jo JE, Mohan Raj S, Rathnasingh C, Selvakumar E, Jung WC, Park S (2008) Cloning, expression, and characterization of an aldehyde dehydrogenase from Escherichia coli K-12 that utilizes 3-hydroxypropionaldehyde as a substrate. Appl Microbiol Biotechnol 81:51–60. doi:10.1007/s00253-008-1608-x

    Article  CAS  Google Scholar 

  • Jung MY, Mazumdar S, Shin SH, Yang KS, Lee J, Oh MK (2014) Improvement of 2,3-butanediol yield in Klebsiella pneumoniae by deletion of the pyruvate formate-lyase gene. Appl Environ Microbiol 80:6195–6203. doi:10.1128/AEM.02069-14

    Article  CAS  Google Scholar 

  • Jung HM, Jung MY, Oh MK (2015) Metabolic engineering of Klebsiella pneumoniae for the production of cis, cis-muconic acid. Appl Microbiol Biotechnol 99:5217–5225. doi:10.1007/s00253-015-6442-3

    Article  CAS  Google Scholar 

  • Kaplan O, Vejvoda V, Charvatova-Pisvejcova A, Martinkova L (2006) Hyperinduction of nitrilases in filamentous fungi. J Ind Microbiol Biotechnol 33:891–896. doi:10.1007/s10295-006-0161-9

    Article  CAS  Google Scholar 

  • Kataoka N, Vangnai AS, Tajima T, Nakashimada Y, Kato J (2013) Improvement of (R)-1,3-butanediol production by engineered Escherichia coli. J Biosci Bioeng 115:475–480. doi:10.1016/j.jbiosc.2012.11.025

    Article  CAS  Google Scholar 

  • Kaul P, Banerjee A, Banerjee UC (2006) Stereoselective nitrile hydrolysis by immobilized whole-cell biocatalyst. Biomacromolecules 7:1536–1541. doi:10.1021/bm0507913

    Article  CAS  Google Scholar 

  • Kikuchi Y, Kojima H, Tanaka T, Takatsuka Y, Kamio Y (1997) Characterization of a second lysine decarboxylase isolated from Escherichia coli. J Bacteriol 179:4486–4492

    CAS  Google Scholar 

  • Kim K, Kim S-K, Park Y-C, Seo J-H (2014) Enhanced production of 3-hydroxypropionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli. Bioresour Technol 156:170–175. doi:10.1016/j.biortech.2014.01.009

    Article  CAS  Google Scholar 

  • Kim HJ et al (2015) Optimization of direct lysine decarboxylase biotransformation for cadaverine production with whole-cell biocatalysts at high lysine concentration. J Microbiol Biotechnol 25:1108–1113. doi:10.4014/jmb.1412.12052

    Article  CAS  Google Scholar 

  • Kind S, Jeong WK, Schröder H, Wittmann C (2010a) Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab Eng 12:341–351. doi:10.1016/j.ymben.2010.03.005

    Article  CAS  Google Scholar 

  • Kind S, Jeong WK, Schroder H, Zelder O, Wittmann C (2010b) Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Appl Environ Microbiol 76:5175–5180. doi:10.1128/AEM.00834-10

    Article  CAS  Google Scholar 

  • Kind S, Kreye S, Wittmann C (2011) Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum. Metab Eng 13:617–627. doi:10.1016/j.ymben.2011.07.006

    Article  CAS  Google Scholar 

  • Kind S et al (2014) From zero to hero—production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metab Eng 25:113–123. doi:10.1016/j.ymben.2014.05.007

    Article  CAS  Google Scholar 

  • Kircher M (2006) White biotechnology: ready to partner and invest in. Biotechnol J 1:787–794. doi:10.1002/biot.200600087

    Article  CAS  Google Scholar 

  • Kobayashi S (2009) Recent developments in lipase-catalyzed synthesis of polyesters. Macromol Rapid Commun 30:237–266. doi:10.1002/marc.200800690

    Article  CAS  Google Scholar 

  • Kraus GA (2008) Synthetic methods for the preparation of 1,3-propanediol. CLEAN Soil Air Water 36:648–651. doi:10.1002/clen.200800084

    Article  CAS  Google Scholar 

  • Kwak S, Park YC, Seo JH (2013) Biosynthesis of 3-hydroxypropionic acid from glycerol in recombinant Escherichia coli expressing Lactobacillus brevis dhaB and dhaR gene clusters and E. coli K-12 aldH. Bioresour Technol 135:432–439. doi:10.1016/j.biortech.2012.11.063

    Article  CAS  Google Scholar 

  • Kyzas GZ, Siafaka PI, Lambropoulou DA, Lazaridis NK, Bikiaris DN (2014) Poly(itaconic acid)-grafted chitosan adsorbents with different cross-linking for Pb(II) and Cd(II) uptake. Langmuir 30:120–131. doi:10.1021/la402778x

    Article  CAS  Google Scholar 

  • Lammens TM, Le Notre J, Franssen MC, Scott EL, Sanders JP (2011) Synthesis of biobased succinonitrile from glutamic acid and glutamine. ChemSusChem 4:785–791. doi:10.1002/cssc.201100030

    Article  CAS  Google Scholar 

  • Latif H, Zeidan AA, Nielsen AT, Zengler K (2014) Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms. Curr Opin Biotechnol. doi:10.1016/j.copbio.2013.12.001

    Google Scholar 

  • Lee PC, Lee WG, Lee SY, Chang HN (2001) Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnol Bioeng 72:41–48. doi:10.1002/1097-0290(20010105)72:1<41:AID-BIT6>3.0.CO;2-N

    Article  CAS  Google Scholar 

  • Lee PC, Lee SY, Hong SH, Chang HN (2002) Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Appl Microbiol Biotechnol 58:663–668. doi:10.1007/s00253-002-0935-6

    Article  CAS  Google Scholar 

  • Lee SH, Park SJ, Park OJ, Cho J, Rhee JW (2009) Production of 3-hydroxypropionic acid from acrylic acid by newly isolated Rhodococcus erythropolis LG12. J Microbiol Biotechnol 19:474–481. doi:10.4014/jmb.0808.473

    Article  CAS  Google Scholar 

  • Lengalova A, Vesel A, Feng Y, Sencadas V (2016) Biodegradable polymers for medical applications. Int J Poly Sci 2016:2. doi:10.1155/2016/6047284

    Google Scholar 

  • Li R, Zhang H, Qi Q (2007) The production of polyhydroxyalkanoates in recombinant Escherichia coli. Bioresour Technol 98:2313–2320. doi:10.1016/j.biortech.2006.09.014

    Article  CAS  Google Scholar 

  • Li H, Chen X, Ren J, Deng H, Peng F, Sun R (2015) Functional relationship of furfural yields and the hemicellulose-derived sugars in the hydrolysates from corncob by microwave-assisted hydrothermal pretreatment. Biotechnol Biofuel 8:1–12. doi:10.1186/s13068-015-0314-z

    Article  CAS  Google Scholar 

  • Lin YH, Li YF, Huang MC, Tsai YC (2004) Intracellular expression of Vitreoscilla hemoglobin in Aspergillus terreus to alleviate the effect of a short break in aeration during culture. Biotechnol Lett 26:1067–1072. doi:10.1023/B:BILE.0000032964.15178.7c

    Article  CAS  Google Scholar 

  • Liu H, Lu T (2015) Autonomous production of 1,4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli. Metab Eng 29:135–141. doi:10.1016/j.ymben.2015.03.009

    Article  CAS  Google Scholar 

  • Lopes Ferreira N, Malandain C, Fayolle-Guichard F (2006) Enzymes and genes involved in the aerobic biodegradation of methyl tert-butyl ether (MTBE). Appl Microb Biotechnol 72:252–262. doi:10.1007/s00253-006-0494-3

    Article  CAS  Google Scholar 

  • Luman NR, Kim T, Grinstaff MW (2004) Dendritic polymers composed of glycerol and succinic acid: synthetic methodologies and medical applications. Pure Appl Chem 76:1375–1385. doi:10.1351/pac200476071375

    Article  CAS  Google Scholar 

  • Luo LH et al (2012) Production of 3-hydroxypropionic acid through propionaldehyde dehydrogenase PduP mediated biosynthetic pathway in Klebsiella pneumoniae. Bioresour Technol 103:1–6. doi:10.1016/j.biortech.2011.09.099

    Article  CAS  Google Scholar 

  • Ma W, Cao W, Zhang B, Chen K, Liu Q, Li Y, Ouyang P (2015) Engineering a pyridoxal 5′-phosphate supply for cadaverine production by using Escherichia coli whole-cell biocatalysis. Sci Rep. doi:10.1038/srep15630

    Google Scholar 

  • Mallonee DH, Speckman RA (1988) Development of a mutant strain of Bacillus polymyxa showing enhanced production of 2,3-butanediol. Appl Environ Microbiol 54:168–171

    CAS  Google Scholar 

  • Martínez V, Herencias C, Jurkevitch E, Prieto MA (2016) Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery: the case of the polyhydroxyalkanoates. Sci Rep 6:24381. doi:10.1038/srep24381

    Article  CAS  Google Scholar 

  • Matsuyama A, Yamamoto H, Kawada N, Kobayashi Y (2001) Industrial production of (R)-1,3-butanediol by new biocatalysts. J Mol Catal B Enzym 11:513–521. doi:10.1016/S1381-1177(00)00032-1

    Article  CAS  Google Scholar 

  • Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF (2013a) Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microb Biotechnol 6:131–140. doi:10.1111/1751-7915.12001

    Article  CAS  Google Scholar 

  • Meiswinkel TM, Rittmann D, Lindner SN, Wendisch VF (2013b) Crude glycerol-based production of amino acids and putrescine by Corynebacterium glutamicum. Bioresour Technol 145:254–258

    Article  CAS  Google Scholar 

  • Meng D-C, Wang Y, Wu L-P, Shen R, Chen J-C, Wu Q, Chen G-Q (2015) Production of poly(3-hydroxypropionate) and poly(3-hydroxybutyrate-co-3-hydroxypropionate) from glucose by engineering Escherichia coli. Metab Eng 29:189–195. doi:10.1016/j.ymben.2015.03.015

    Article  CAS  Google Scholar 

  • Miller KK, Zhang P, Nishizawa-Brennen Y, Frost JW (2014) Synthesis of biobased terephthalic acid from cycloaddition of isoprene with acrylic acid. ACS Sustain Chem Eng 2:2053–2056. doi:10.1021/sc5003038

    Article  CAS  Google Scholar 

  • Mimitsuka T, Sawai H, Hatsu M, Yamada K (2007) Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem 71:2130–2135. doi:10.1271/bbb.60699

    Article  CAS  Google Scholar 

  • Mishra SK, Tripathi SN, Choudhary V, Gupta BD (2014) SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization. Sens Actuator B Chem 199:190–200. doi:10.1016/j.snb.2014.03.109

    Article  CAS  Google Scholar 

  • Moon TS, Yoon S-H, Lanza AM, Roy-Mayhew JD, Prather KLJ (2009) Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli. Appl Environ Microbiol 75:589–595. doi:10.1128/aem.00973-08

    Article  CAS  Google Scholar 

  • Myers AG, Siegel DR, Buzard DJ, Charest MG (2001) Synthesis of a broad array of highly functionalized, enantiomerically pure cyclohexanecarboxylic acid derivatives by microbial dihydroxylation of benzoic acid and subsequent oxidative and rearrangement reactions. Org Lett 3:2923–2926. doi:10.1021/ol010151m

    Article  CAS  Google Scholar 

  • Naerdal I, Pfeifenschneider J, Brautaset T, Wendisch VF (2015) Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains. Microb Biotechnol 8:342–350. doi:10.1111/1751-7915.12257

    Article  CAS  Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14:578–597. doi:10.1016/j.rser.2009.10.003

    Article  CAS  Google Scholar 

  • Nguyen AQ, Schneider J, Wendisch VF (2015) Elimination of polyamine N-acetylation and regulatory engineering improved putrescine production by Corynebacterium glutamicum. J Biotechnol 201:75–85. doi:10.1016/j.jbiotec.2014.10.035

    Article  CAS  Google Scholar 

  • Niu W, Draths KM, Frost JW (2002) Benzene-free synthesis of adipic acid. Biotechnol Prog 18:201–211. doi:10.1021/bp010179x

    Article  CAS  Google Scholar 

  • Noordover BAJ et al (2006) Co- and terpolyesters based on isosorbide and succinic acid for coating applications: synthesis and characterization. Biomacromolecules 7:3406–3416. doi:10.1021/bm060713v

    Article  CAS  Google Scholar 

  • Nuyken O, Pask SD (2013) Ring-opening polymerization—an introductory review. Polymer 5:361–403. doi:10.3390/polym5020361

    Article  CAS  Google Scholar 

  • Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microb Biotechnol 81:459–464. doi:10.1007/s00253-008-1668-y

    Article  CAS  Google Scholar 

  • Oliver JWK, Machado IMP, Yoneda H, Atsumi S (2013) Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc Natl Acad Sci 110:1249–1254. doi:10.1073/pnas.1213024110

    Article  CAS  Google Scholar 

  • Omer M, Kamal T, Cho H-H, Kim D-K, Park S-Y (2012) Preparation and structure of nylon 4/6 random-copolymer nanofibers. Macromol Res 20:810–815. doi:10.1007/s13233-012-0121-3

    Article  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2009) Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica. Lipid Technol 21:83–87. doi:10.1002/lite.200900017

    Article  CAS  Google Scholar 

  • Papanikolaou S et al (2008) Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: production of 1,3-propanediol, citric acid and single cell oil. Biomass Bioenerg 32:60–71. doi:10.1016/j.biombioe.2007.06.007

    Article  CAS  Google Scholar 

  • Park YS, Itida M, Ohta N, Okabe M (1994) Itaconic acid production using an air-lift bioreactor in repeated batch culture of Aspergillus terreus. J Ferment Bioeng 77:329–331. doi:10.1016/0922-338X(94)90245-3

    Article  CAS  Google Scholar 

  • Petitdemange E, Dürr C, Andaloussi SA, Raval G (1995) Fermentation of raw glycerol to 1,3-propanediol by new strains of Clostridium butyricum. J Ind Microbiol 15:498–502. doi:10.1007/bf01570021

    Article  CAS  Google Scholar 

  • Petrov K, Petrova P (2009) High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Appl Microbiol Biotechnol 84:659–665. doi:10.1007/s00253-009-2004-x

    Article  CAS  Google Scholar 

  • Polen T, Spelberg M, Bott M (2013) Toward biotechnological production of adipic acid and precursors from biorenewables. J Biotechnol 167:75–84. doi:10.1016/j.jbiotec.2012.07.008

    Article  CAS  Google Scholar 

  • Przybylski D, Rohwerder T, Dilßner C, Maskow T, Harms H, Müller RH (2015) Exploiting mixtures of H2, CO2, and O2 for improved production of methacrylate precursor 2-hydroxyisobutyric acid by engineered Cupriavidus necator strains. Appl Microbiol Biotechnol 99:2131–2145. doi:10.1007/s00253-014-6266-6

    Article  CAS  Google Scholar 

  • Przystałowska H, Zeyland J, Szymanowska-Powałowska D, Szalata M, Słomski R, Lipiński D (2015) 1,3-Propanediol production by new recombinant Escherichia coli containing genes from pathogenic bacteria. Microbiol Res 171:1–7. doi:10.1016/j.micres.2014.12.007

    Article  CAS  Google Scholar 

  • Qian ZG, Xia XX, Lee SY (2011) Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnol Bioeng 108:93–103. doi:10.1002/bit.22918

    Article  CAS  Google Scholar 

  • Rados D, Carvalho AL, Wieschalka S, Neves AR, Blombach B, Eikmanns BJ, Santos H (2015) Engineering Corynebacterium glutamicum for the production of 2,3-butanediol. Microb Cell Fact 14:015–0362. doi:10.1186/s12934-015-0362-x

    Article  Google Scholar 

  • Rafi MM (2014) Production of itaconic acid by Ustilago maydis from agro wastes in solid state fermentation. J BioSci Biotechnol 2:163–168. http://www.jbb.uni-plovdiv.bg/documents/27807/352486/jbb_2014-3(2)-pages_163-168.pdf

  • Rathnasingh C, Raj SM, Lee Y, Catherine C, Ashok S, Park S (2012) Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. J Biotechnol 157:633–640. doi:10.1016/j.jbiotec.2011.06.008

    Article  CAS  Google Scholar 

  • Rehm BHA (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578–592. doi:10.1038/nrmicro2354

    Article  CAS  Google Scholar 

  • Ren L, Wang Y, Ge J, Lu D, Liu Z (2015) Enzymatic synthesis of high-molecular-weight poly (butylene succinate) and its copolymers. Macromol Chem Phys 216:636–640. doi:10.3390/polym8070243

    Article  CAS  Google Scholar 

  • Resch S, Gruber K, Wanner G, Slater S, Dennis D, Lubitz W (1998) Aqueous release and purification of poly (β-hydroxybutyrate) from Escherichia coli. J Biotechnol 65:173–182

    Article  CAS  Google Scholar 

  • Ricci MA, Russo A, Pisano I, Palmieri L, de Angelis M, Agrimi G (2015) Improved 1,3-propanediol synthesis from glycerol by the robust Lactobacillus reuteri strain DSM 20016. J Microbiol Biotechnol 25:893–902. doi:10.4014/jmb.1411.11078

    Article  CAS  Google Scholar 

  • Richardson Y, Blin J, Julbe A (2012) A short overview on purification and conditioning of syngas produced by biomass gasification: catalytic strategies, process intensification and new concepts. Prog Energ Combust Sci 38:765–781. doi:10.1016/j.pecs.2011.12.001

    Article  CAS  Google Scholar 

  • Riedel SL, Brigham CJ, Budde CF, Bader J, Rha C, Stahl U, Sinskey AJ (2013) Recovery of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from Ralstonia eutropha cultures with non-halogenated solvents. Biotechnol Bioeng 110:461–470. doi:10.1002/bit.24713

    Article  CAS  Google Scholar 

  • Rohwerder T, Breuer U, Benndorf D, Lechner U, Muller RH (2006) The alkyl tert-butyl ether intermediate 2-hydroxyisobutyrate is degraded via a novel cobalamin-dependent mutase pathway. Appl Environ Microbiol 72:4128–4135. doi:10.1128/AEM.00080-06

    Article  CAS  Google Scholar 

  • Saito Y, Doi Y (1994) Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Comamonas acidovorans. Int J Biol Macromol 16:99–104

    Article  CAS  Google Scholar 

  • Salvachúa D et al (2016) Succinic acid production on xylose-enriched biorefinery streams by Actinobacillus succinogenes in batch fermentation. Biotechnol Biofuel 9:1–15. doi:10.1186/s13068-016-0425-1

    Article  Google Scholar 

  • Samori C, Abbondanzi F, Galletti P, Giorgini L, Mazzocchetti L, Torri C, Tagliavini E (2015) Extraction of polyhydroxyalkanoates from mixed microbial cultures: impact on polymer quality and recovery. Bioresour Technol 189:195–202. doi:10.1016/j.biortech.2015.03.062

    Article  CAS  Google Scholar 

  • Sandrolini F, Motori A, Saccani A (1992) Electrical properties of poly (butylene terephthalate). J Appl Poly Sci 44:765–771. doi:10.1002/app.1992.070440503

    Article  CAS  Google Scholar 

  • Savakis PE, Angermayr SA, Hellingwerf KJ (2013) Synthesis of 2,3-butanediol by Synechocystis sp. PCC6803 via heterologous expression of a catabolic pathway from lactic acid- and enterobacteria. Metab Eng 20:121–130. doi:10.1016/j.ymben.2013.09.008

    Article  CAS  Google Scholar 

  • Sawisit A, Jantama SS, Kanchanatawee S, Jantama K (2015) Efficient utilization of cassava pulp for succinate production by metabolically engineered Escherichia coli KJ122. Bioprocess Biosyst Eng 38:175–187. doi:10.1007/s00449-014-1257-7

    Article  CAS  Google Scholar 

  • Saxena RK, Anand P, Saran S, Isar J (2009) Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnol Adv 27:895–913. doi:10.1016/j.biotechadv.2009.07.003

    Article  CAS  Google Scholar 

  • Schneider J, Wendisch VF (2010) Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 88:859–868. doi:10.1007/s00253-010-2778-x

    Article  CAS  Google Scholar 

  • Schneider J, Wendisch VF (2011) Biotechnological production of polyamines by bacteria: recent achievements and future perspectives. Appl Microbiol Biotechnol 91:17–30. doi:10.1007/s00253-011-3252-0

    Article  CAS  Google Scholar 

  • Schneider J, Eberhardt D, Wendisch VF (2012) Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system. Appl Microbiol Biotechnol 95:169–178. doi:10.1007/s00253-012-3956-9

    Article  CAS  Google Scholar 

  • Scott E, Peter F, Sanders J (2007) Biomass in the manufacture of industrial products—the use of proteins and amino acids. Appl Microbiol Biotechnol 75:751–762. doi:10.1007/s00253-007-0932-x

    Article  CAS  Google Scholar 

  • Seyfried M, Daniel R, Gottschalk G (1996) Cloning, sequencing, and overexpression of the genes encoding coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii. J Bacteriol 178:5793–5796. doi:10.1007/s10529-013-1346-8

    CAS  Google Scholar 

  • Shin JH, Lee SY (2014) Metabolic engineering of microorganisms for the production of l-arginine and its derivatives. Microb Cell Fact 13:014–0166. doi:10.1186/s12934-014-0166-4

    Article  CAS  Google Scholar 

  • Smit MS, Mokgoro MM, Setati E, Nicaud JM (2005) alpha, omega-dicarboxylic acid accumulation by acyl-CoA oxidase deficient mutants of Yarrowia lipolytica. Biotechnol Lett 27:859–864. doi:10.1007/s10529-005-6719-1

    Article  CAS  Google Scholar 

  • Song H, Lee SY (2006) Production of succinic acid by bacterial fermentation. Enzyme Microb Technol. doi:10.1016/j.enzmictec.2005.11.043

    Google Scholar 

  • Stanojević M, Krušić MK, Filipović J, Parojčić J, Stupar M (2006) An investigation into the influence of hydrogel composition on swelling behavior and drug release from poly (acrylamide-co-itaconic acid) hydrogels in various media. Drug Deliv 13:1–7. doi:10.1080/10717540500313034

    Article  CAS  Google Scholar 

  • Sun LH, Wang XD, Dai JY, Xiu ZL (2009) Microbial production of 2,3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae. Appl Microbiol Biotechnol. doi:10.1007/s00253-008-1823-5

    Google Scholar 

  • Sun Z et al (2011) Metabolic engineering of the l-phenylalanine pathway in Escherichia coli for the production of S- or R-mandelic acid. Microb Cell Fact 10:1–13. doi:10.1186/1475-2859-10-71

    Article  CAS  Google Scholar 

  • Sung J-S, Sung YK (2006) Recent advances of biodegradable polymers for medical applications. Biomet Res 3:104–109

    Google Scholar 

  • Szymanowska-Powałowska D (2014) 1,3-Propanediol production from crude glycerol by Clostridium butyricum DSP1 in repeated batch. Electron J Biotechnol 17:322–328. doi:10.1016/j.ejbt.2014.10.001

    Article  CAS  Google Scholar 

  • Tabor CW, Tabor H (1985) Polyamines in microorganisms. Microbiol Rev 49:81–99

    CAS  Google Scholar 

  • Tachibana Y, Kimura S, Kasuya K (2015) Synthesis and verification of biobased terephthalic acid from furfural. Sci Rep. doi:10.1038/srep08249

    Google Scholar 

  • Tai Y, Wang L, Gao J, Amer WA, Ding W, Yu H (2011) Synthesis of Fe3O4@poly(methylmethacrylate-co-divinylbenzene) magnetic porous microspheres and their application in the separation of phenol from aqueous solutions. J Colloid Int Sci 360:731–738. doi:10.1016/j.jcis.2011.04.096

    Article  CAS  Google Scholar 

  • Tai Y-S, Xiong M, Jambunathan P, Wang J, Wang J, Stapleton C, Zhang K (2016) Engineering nonphosphorylative metabolism to generate lignocellulose-derived products. Nat Chem Biol 12:247–253. doi:10.1038/nchembio.2020

    Article  CAS  Google Scholar 

  • Tang X, Tan Y, Zhu H, Zhao K, Shen W (2009) Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of Escherichia coli. Appl Environ Microbiol. doi:10.1128/aem.02376-08

    Google Scholar 

  • Tateno T, Okada Y, Tsuchidate T, Tanaka T, Fukuda H, Kondo A (2009) Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing alpha-amylase and lysine decarboxylase. Appl Microbiol Biotechnol 82:115–121. doi:10.1007/s00253-008-1751-4

    Article  CAS  Google Scholar 

  • Tong IT, Cameron DC (1992) Enhancement of 1,3-propanediol production by cofermentation in Escherichia coli expressing Klebsiella pneumoniae dha regulon genes. Appl Biochem Biotechnol 35:149–159

    Article  Google Scholar 

  • Tran AV, Chambers RP (1987) The dehydration of fermentative 2,3-butanediol into methyl ethyl ketone. Biotechnol Bioeng 29:343–351

    Article  CAS  Google Scholar 

  • Tsai C-J, Chang W-C, Chen C-H, Lu H-Y, Chen M (2008) Synthesis and characterization of polyesters derived from succinic acid, ethylene glycol and 1,3-propanediol. Eur Polym J 44:2339–2347. doi:10.1016/j.eurpolymj.2008.05.002

    Article  CAS  Google Scholar 

  • Van der Werf MJ, Guettler MV, Jain MK, Zeikus JG (1997) Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z. Arch Microbiol 167:332–342

    Article  Google Scholar 

  • Vardon DR et al (2016) cis, cis-Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization. Green Chem 18:3397–3413. doi:10.1039/c5gc02844b

    Article  CAS  Google Scholar 

  • Vuoristo KS, Mars AE, Sangra JV, Springer J, Eggink G, Sanders JPM, Weusthuis RA (2015) Metabolic engineering of the mixed-acid fermentation pathway of Escherichia coli for anaerobic production of glutamate and itaconate. AMB Express 5:1–11. doi:10.1186/s13568-015-0147-y

    Article  CAS  Google Scholar 

  • Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14. doi:10.1042/BJ20031327

    Article  CAS  Google Scholar 

  • Wang X, Padgett JM, De la Cruz FB, Barlaz MA (2011) Wood biodegradation in laboratory-scale landfills. Environ Sci Technol 45:6864–6871. doi:10.1021/es201241g

    Article  CAS  Google Scholar 

  • Wang H, Fan H, Sun H, Zhao L, Wei D (2015) Process development for the production of (R)-(−)-mandelic acid by recombinant Escherichia coli cells harboring nitrilase from Burkholderia cenocepacia J2315. Org Process Res Dev 19:2012–2016. doi:10.1021/acs.oprd.5b00269

    Article  CAS  Google Scholar 

  • Weber C, Bruckner C, Weinreb S, Lehr C, Essl C, Boles E (2012) Biosynthesis of cis, cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae. Appl Environ Microbiol 78:8421–8430. doi:10.1128/AEM.01983-12

    Article  CAS  Google Scholar 

  • Willetts A (1985) Butane 2,3-diol production by immobilized Aeromonas hydrophila. Biotechnol Lett 7:261–266. doi:10.1007/bf01042374

    Article  CAS  Google Scholar 

  • Yahiro K, Takahama T, Park YS, Okabe M (1995) Breeding of Aspergillus terreus mutant TN-484 for itaconic acid production with high yield. J Ferment Bioeng 79:506–508. doi:10.1016/0922-338X(95)91272-7

    Article  CAS  Google Scholar 

  • Yahiro K, Takahama T, S-r Jai, Park Y, Okabe M (1997) Comparison of air-lift and stirred tank reactors for itaconic acid production by Aspergillus terreus. Biotechnol Lett 19:619–621. doi:10.1023/a:1018374428391

    Article  CAS  Google Scholar 

  • Yang G, Tian J, Li J (2007) Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Appl Microbiol Biotechnol 73:1017–1024. doi:10.1007/s00253-006-0563-7

    Article  CAS  Google Scholar 

  • Yang Y, Lu W, Zhang X, Xie W, Cai M, Gross RA (2010) Two-step biocatalytic route to biobased functional polyesters from omega-carboxy fatty acids and diols. Biomacromolecules 11:259–268. doi:10.1021/bm901112m

    Article  CAS  Google Scholar 

  • Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol—a byproduct of biodiesel production. Biotechnol Biofuel. doi:10.1186/1754-6834-5-13

    Google Scholar 

  • Yang T, Man Z, Rao Z, Xu M, Zhang X, Xu Z (2014) Asymmetric reduction of 4-hydroxy-2-butanone to (R)-1,3-butanediol with absolute stereochemical selectivity by a newly isolated strain of Pichia jadinii. J Ind Microbiol Biotechnol 41:1743–1752. doi:10.1007/s10295-014-1521-5

    Article  CAS  Google Scholar 

  • Yang T, Rao Z, Zhang X, Xu M, Xu Z, Yang S-T (2015a) Enhanced 2,3-butanediol production from biodiesel-derived glycerol by engineering of cofactor regeneration and manipulating carbon flux in Bacillus amyloliquefaciens. Microb Cell Fact 14:1–11. doi:10.1186/s12934-015-0317-2

    Article  CAS  Google Scholar 

  • Yang Y-H et al (2015b) Application of a non-halogenated solvent, methyl ethyl ketone (MEK) for recovery of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(HB-co-HV)] from bacterial cells. Biotechnol Bioprocess Eng 20:291–297. doi:10.1007/s12257-014-0546-y

    Article  CAS  Google Scholar 

  • Yoon KR, Hong S-P, Kong B, Choi IS (2012) Polycondensation of sebacic acid with primary and secondary hydroxyl groups containing diols catalyzed by Candida antarctica lipase B. Synth Commun 42:3504–3512. doi:10.1080/00397911.2011.585267

    Article  CAS  Google Scholar 

  • Yu C, Cao Y, Zou H, Xian M (2011) Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols. Appl Microbiol Biotechnol 89:573–583. doi:10.1007/s00253-010-2970-z

    Article  CAS  Google Scholar 

  • Zare Y (2015) Estimation of material and interfacial/interphase properties in clay/polymer nanocomposites by yield strength data. Appl Clay Sci 115:61–66. doi:10.1016/j.clay.2015.07.021

    Article  CAS  Google Scholar 

  • Zhang Z-J, Xu J-H, He Y-C, Ouyang L-M, Liu Y-Y, Imanaka T (2010) Efficient production of (R)-(−)-mandelic acid with highly substrate/product tolerant and enantioselective nitrilase of recombinant Alcaligenes sp. Process Biochem 45:887–891. doi:10.1016/j.procbio.2010.02.011

    Article  CAS  Google Scholar 

  • Zhao Y-N, Chen G, Yao S-J (2006) Microbial production of 1,3-propanediol from glycerol by encapsulated Klebsiella pneumoniae. Biochem Eng J 32:93–99. doi:10.1016/j.bej.2006.09.007

    Article  CAS  Google Scholar 

  • Zheng RC, Ge Z, Qiu ZK, Wang YS, Zheng YG (2012) Asymmetric synthesis of (R)-1,3-butanediol from 4-hydroxy-2-butanone by a newly isolated strain Candida krusei ZJB-09162. Appl Microbiol Biotechnol 94:969–976. doi:10.1007/s00253-012-3942-2

    Article  CAS  Google Scholar 

  • Zuber M, Tabasum S, Jamil T, Shahid M, Hussain R, Feras KS, Bhatti KP (2014) Biocompatibility and microscopic evaluation of polyurethane–poly(methyl methacrylate)–titnanium dioxide based composites for dental applications. J Appl Polym Sci 131:1–9. doi:10.1002/app.39806

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the KU research Professor Program of Konkuk University, Seoul, South Korea, for providing financial support to Dr. Shashi Kant Bhatia and the UGC-RGNF Post-Doctoral Fellowship Program, India, for providing financial support to Dr. Ravi Kant. The study was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1A2A2A04006014) and (NRF-2015M1A5A1037196). This study is also partially supported by Advanced Production Technology Development Program, Ministry of Agriculture, Food and Rural Affairs, Republic of Korea (1201349190011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Hun Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, S.K., Bhatia, R.K. & Yang, YH. Biosynthesis of polyesters and polyamide building blocks using microbial fermentation and biotransformation. Rev Environ Sci Biotechnol 15, 639–663 (2016). https://doi.org/10.1007/s11157-016-9415-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-016-9415-9

Keywords

Navigation