Skip to main content

Advertisement

Log in

Abandoned metalliferous mines: ecological impacts and potential approaches for reclamation

  • review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

The lack of awareness for timely management of the environment surrounding a metal mine site results in several adverse consequences such as rampant business losses, abandoning the bread-earning mining industry, domestic instability and rise in ghost towns, increased environmental pollution, and indirect long-term impacts on the ecosystem. Although several abandoned mine lands (AMLs) exist globally, information on these derelict mines has not been consolidated in the literature. We present here the state-of-the-art on AMLs in major mining countries with emphasis on their impact towards soil health and biodiversity, remediation methods, and laws governing management of mined sites. While reclamation of metalliferous mines by phytoremediation is still a suitable option, there exist several limitations for its implementation. However, many issues of phytoremediation at the derelict mines can be resolved following phytostabilization, a technology that is effective also at the modern operational mine sites. The use of transgenic plant species in phytoremediation of metals in contaminated sites is also gaining momentum. In any case, monitoring and efficacy testing for bioremediation of mined sites is essential. The approaches for reclamation of metalliferous mines such as environmental awareness, effective planning and assessment of pre- and post-mining activities, implementation of regulations, and a safe and good use of phytostabilizers among the native plants for revegetation and ecological restoration are discussed in detail in the present review. We also suggest the use of microbially-enhanced phytoremediation and nanotechnology for efficient reclamation of AMLs, and identify future work warranted in this area of research. Further, we believe that the integration of science of remediation with mining policies and regulations is a reliable option which when executed can virtually balance economic development and environmental destruction for safer future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbott DE, Essington ME, Mullen MD, Ammons JT (2001) Fly ash and lime-stabilized biosolid mixtures in mine spoil reclamation. J Environ Qual 30:608–616

    Article  CAS  Google Scholar 

  • Abdleouas A (2006) Uranium mill tailings: geochemistry, mineralogy, and environmental impact. Elements 2:335–341

    Article  Google Scholar 

  • Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142

    Article  CAS  Google Scholar 

  • Alloway BJ (2013) Introduction. In: Alloway BJ (ed) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Environmental pollution. Springer Science, Berlin, pp 3–9

    Chapter  Google Scholar 

  • Al-Saad K, Amr M, Al-Kinani A, Helal A (2012) Phytoremediation of depleted uranium from contaminated soil and sediments. Arab J Nucl Sci Appl 45:315–326

    Google Scholar 

  • An J, Kim JY, Kim KW, Park JY, Lee JS, Jang M (2011) Natural attenuation of arsenic in the wetland system around abandoned mining area. Environ Geochem Health 33:71–80

    Article  CAS  Google Scholar 

  • Andow DA, Zwahlen C (2006) Assessing environmental risks of transgenic plants. Ecol Lett 9:196–214

    Article  CAS  Google Scholar 

  • Anspaugh L (2008) Environmental consequences of the Chernobyl accident and their remediation: 20 years of experience. Cherrnobyl

  • Antunes SC, De Figueiredo DR, Marques SM, Castro BB, Pereira R, Gonçalves F (2007) Evaluation of water column and sediment toxicity from an abandoned uranium mine using a battery of bioassays. Sci Total Environ 374:252–259

    Article  CAS  Google Scholar 

  • Archer MJG, Caldwell RA (2004) Response of six Australian plant species to heavy metal contamination at an abandoned mine site. Water Air Soil Pollut 157:257–267

    Article  CAS  Google Scholar 

  • Ashley PM, Lottermoser BG, Chubb AJ (2003) Environmental geochemistry of the Mt Perry copper mines area, SE Queensland, Australia. Geochem Explor Environ Anal 3:345–357

    Article  CAS  Google Scholar 

  • Aslibekian O, Moles R (2000) Environmental risk assessment of metals contaminated soils at silver mines abandoned mine site, Co Tipperary, Ireland. Environ Geochem Health 25:247–266

    Article  Google Scholar 

  • Aykol A, Budakoglu M, Kumral M, Gultekin AH, Turhan M, Esenli V, Yavuz F, Orgun Y (2003) Heavy metal pollution and acid drainage from the abandoned Balya Pb-Zn sulfide mine, NW Anatolia, Turkey. Environ Geol 45:198–208

  • Bacchetta G, Cappai G, Carucci A, Tamburini E (2015) Use of native plants for the remediation of abandoned mine sites in Mediterranean semiarid environments. Bull Environ Contam Toxicol 94:326–333

    Article  CAS  Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycl 11:41–49

    Article  Google Scholar 

  • Basu N, Clarke E, Green A, Calys-Tagoe B, Chan L, Dzodzomenyo M, Fobil J, Long RN, Neitzel RL, Obiri S, Odei E (2015) Integrated assessment of artisanal and small-scale gold mining in Ghana—Part 1: human health review. Int J Environ Res Public Health 12:5143–5176

    Article  CAS  Google Scholar 

  • Batty LC (2005) The potential importance of mine sites for biodiversity. Mine Water Environ 24:101–103

    Article  Google Scholar 

  • Bayless ER, Olyphant GA (1993) Acid-generating salts and their relationship to the chemistry of groundwater and storm runoff at an abandoned mine site in southwestern Indiana, USA. J Contam Hydrol 12:313–328

    Article  CAS  Google Scholar 

  • Beane SJ, Comber SD, Rieuwerts J, Long P (2016) Abandoned metal mines and their impact on receiving waters: a case study from Southwest England. Chemosphere 153:294–306

    Article  CAS  Google Scholar 

  • Bempah CK, Ewusi A (2016) Heavy metals contamination and human health risk assessment around Obuasi gold mine in Ghana. Environ Monit Assess 188:1–3

    Article  CAS  Google Scholar 

  • Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EA (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32:432–440

    Article  CAS  Google Scholar 

  • Bhuiyan MA, Parvez L, Islam MA, Dampare SB, Suzuki S (2010) Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J Hazard Mater 173:384–392

    Article  CAS  Google Scholar 

  • Boominathan R, Doran PM (2003) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccunulator Thlaspi caerulescens. Biotechnol Bioeng 83:158–167

    Article  CAS  Google Scholar 

  • Bradshaw AD, Chadwick MJ (1980) The restoration of land: the ecology and reclamation of derelict and degraded land. University of California Press, Berkeley, pp 10–282

    Google Scholar 

  • Brattin W, Ruby MVS (1999) Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environ Sci Technol 33:3697–3705

    Article  CAS  Google Scholar 

  • Brebbia CA, Kungolos A (2007) Water resources management IV. WIT Press, Southampton, pp 1–720

    Book  Google Scholar 

  • Brown SL, Chaney RL (2016) Use of amendments to restore ecosystem function to metal mining-impacted sites: tools to evaluate efficacy. Curr Pollut Rep 1–12. doi:10.1007/s40726-016-0029-1

  • Burchart-Korol D, Fugiel A, Czaplicka-Kolarz K, Turek M (2016) Model of environmental life cycle assessment for coal mining operations. Sci Tot Environ 562:61–72

    Article  CAS  Google Scholar 

  • Bycroft BM, Coller BAW, Deacon GB, Coleman DJ, Lake PS (1982) Mercury contamination of the Lerderberg River, Victoria, Australia, from an abandoned gold field. Environ Pollut A 28:135–147

    Article  CAS  Google Scholar 

  • Caboi R, Cidu R, Cristini A, Fanfani L, Massoli-Novelli R, Zuddas P (1993) The abandoned Pb-Zn mine of Ingurtosu, Sardinia (Italy). Eng Geol 34:211–218

    Article  Google Scholar 

  • Chang P, Kim JY, Kim KW (2005) Concentrations of arsenic and heavy metals in vegetation at two abandoned mine tailings in South Korea. Environ Geochem Health 27:109–119

    Article  CAS  Google Scholar 

  • Cherry DS, Currie RJ, Soucek DJ, Latimer HA, Trent GC (2001) An integrative assessment of a watershed impacted by abandoned mined land discharges. Environ Pollut 111:377–388

    Article  CAS  Google Scholar 

  • Ciszewski D, Kubsik U, Aleksander-Kwaterczak U (2012) Long-term dispersal of heavy metals in a catchment affected by historic lead and zinc mining. J Soil Sed 12:1445–1462

    Article  CAS  Google Scholar 

  • Clark J (2010) What happens to abandoned mines? 02 June 2008. http://science.howstuffworks.com/engineering/structural/abandoned-mine.htm. Accessed 07 November 2010

  • Clark MW, Walsh SR, Smith JV (2001) The distribution of heavy metals in an abandoned mining area; a case study of Strauss Pit, the Drake mining area, Australia: implications for the environmental management of mine sites. Environ Geol 40:655–663

    Article  CAS  Google Scholar 

  • Clarke LB (1995) Coal mining and water quality. IEA Coal Research, London

    Google Scholar 

  • Claveria R, De los Santos C, Teodoro K, Rellosa M, Vallera N (2010) The identification of metallophytes in the Fe and Cu enriched environments of Brookes Point, Palawan and Mankayan, Benguet and their implications to phytoremediation. Sci Diliman 21:1–12

    Google Scholar 

  • Coelho P, Silva S, Roma-Torres J, Costa C, Henriques A, Teixeira J, Mayan O (2007) Health impact of living near an abandoned mine—case study: Jales mines. Int J Hyg Environ Health 210:399–402

    Article  CAS  Google Scholar 

  • Concas A, Patteri C, Cincotti A, Cao G (2004) Metal contamination from abandoned mining sites: experimental investigation of possible remediation techniques. Land Contam Reclam 12:9–20

    Article  Google Scholar 

  • Connelly R, Rees B, Bowell R, Farrell L (2005) Rehabilitation planning for abandoned mines at silver mines, Tipperary, Ireland. In: Proceedings international mine water association, 2005

  • Cooke JA, Johnson MS (2002) Ecological restoration of land with particular reference to the mining of metals and industrial minerals: A review of theory and practice. Environ Rev 10:41–71

    Article  CAS  Google Scholar 

  • Copeland C (2007) Mountaintop mining: background on current controversies. Congressional Research Service, Library of Congress, Washington

    Google Scholar 

  • Cotter J, Brigden K (2006) Acid mine drainage: the case of the Lafayette mine, Rapu Rapu (Philippines). Greenpeace Research Laboratories Technical Note 09/2006, University of Exeter, Exeter UK, pp 1–4

  • Cotter-Howells J, Caporn S (1996) Remediation of contaminated land by formation of heavy metal phosphates. Appl Geochem 11:335–342

    Article  CAS  Google Scholar 

  • Craw D, Rufaut C, Haffert L, Paterson L (2007) Plant colonization and arsenic uptake on high arsenic mine wastes, New Zealand. Water Air Soil Pollut 179:351–364

    Article  CAS  Google Scholar 

  • Cunnigham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Biotechnol 13:393–397

    Google Scholar 

  • Dahmani-Muller H, van Oort F, Gelie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Pollut 109:231–238

    Article  CAS  Google Scholar 

  • Das M, Maiti SK (2007) Metal accumulation in Ammania baccifera growing naturally on abandoned copper tailings pond. Environ Monit Assess 127:119–125

    Article  CAS  Google Scholar 

  • Davis CE, Duffy RJ (2009) King coal vs. reclamation federal regulation of mountain top removal mining in Appalachia. Admin Soc 41:674–692

    Article  Google Scholar 

  • De S, Mitra AK (2004) Mobilization of heavy metals from mine spoils in a part of Raniganj coalfield, India: causes and effects. Environ Geosci 11:65–76

    Article  Google Scholar 

  • Dhankar R, Sainger PA, Sainger M (2012) Phytoextraction of zinc: physiological and molecular mechanism. Soil Sed Contam 21:115–133

    Article  CAS  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    Article  CAS  Google Scholar 

  • Donahue R, Hendry MJ, Landine P (2000) Distribution of arsenic and nickel in uranium mill tailings, Rabbit Lake, Saskatchewan, Canada. Appl Geochem 15:1097–1119

    Article  CAS  Google Scholar 

  • Doran PM (2009) Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol Bioeng 103:60–76

    Article  CAS  Google Scholar 

  • Doupé RG, Lymbery AJ (2005) Environmental risks associated with beneficial end uses of mine lakes in southwestern Australia. Mine Water Environ 24:134–138

    Article  CAS  Google Scholar 

  • Duque JM, Pedraza J, Díez A, Sanz MA, Carrasco RM (1998) A geomorphological design for the rehabilitation of an abandoned sand quarry in central Spain. Landsc Urban Plan 42:1–4

    Article  Google Scholar 

  • Eapen S, D’souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114

    Article  CAS  Google Scholar 

  • Edmondson JC (1989) Mining in the later Roman Empire and beyond continuity or disruption? J Roman Stud 79:84–102

    Article  Google Scholar 

  • Ellis RW, Eslick L (1979) Variation and range of mercury uptake into plants at a mercury-contaminated abandoned mine site. Bull Environ Contam Toxicol 59:763–769

    Article  Google Scholar 

  • Ernst WHO (1996) Bioavailability of heavy metals and decontamination of soils by plants. Appl Geochem 11:163–167

    Article  CAS  Google Scholar 

  • Erry BV, Macnair MR, Meharg AA, Shore RF (2000) Arsenic contamination in wood mice (Apodemus sylvaticus) and bank voles (Clethrionomys glareolus) on abandoned mine sites in southwest Britain. Environ Pollut 110:179–187

    Article  CAS  Google Scholar 

  • Fellet G, Marchiol L, Delle Vedove G, Peressotti A (2011) Application of biochar on mine tailings: effects and perspectives for land reclamation. Chemosphere 83:1262–1267

    Article  CAS  Google Scholar 

  • Fernández-Caliani JC, Barba-Brioso C, González I, Galán E (2009) Heavy metal pollution in soils around the abandoned mine sites of the Iberian Pyrite Belt (Southwest Spain). Water Air Soil Pollut 200:211–226

    Article  CAS  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albercht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    Article  CAS  Google Scholar 

  • Freitas EV, Nascimento CW, Souza A, Silva FB (2013) Citric acid-assisted phytoextraction of lead: a field experiment. Chemosphere 92:213–217

    Article  CAS  Google Scholar 

  • Ghose M (2001) Management of topsoil for geo-environmental reclamation of coal mining areas. Environ Geol 40:1405–1410

    Article  CAS  Google Scholar 

  • Gore DB, Preston NJ, Fryirs KA (2007) Post-rehabilitation environmental hazard of Cu, Zn, As and Pb at the derelict Conrad Mine, eastern Australia. Environ Pollut 148:491–500

    Article  CAS  Google Scholar 

  • Grant CD, Campbell CJ, Charnock NR (2002) Selection of species suitable for derelict mine site rehabilitation in New South Wales, Australia. Water Air Soil Pollut 139:215–235

    Article  CAS  Google Scholar 

  • Gratão PL, Prasad MNV, Cardoso PF, Lea PJ, Azevedo RA (2005) Phytoremediation: green technology for the clean-up of toxic metals in the environment. Braz J Plant Physiol 17:53–64

    Article  Google Scholar 

  • Gray NF, Delaney E (2008) Comparison of benthic macroinvertebrate indices for the assessment of the impact of acid mine drainage on an Irish river below an abandoned CuS mine. Environ Pollut 155:31–40

    Article  CAS  Google Scholar 

  • Gray JE, Theodorakos PM, Bailey EA, Turner RR (2000) Distribution, speciation, and transport of mercury in stream-sediment, stream-water, and fish collected near abandoned mercury mines in southwestern Alaska, USA. Sci Total Environ 260:21–33

    Article  CAS  Google Scholar 

  • Gray JE, Crock JG, Fey DL (2002) Environmental geochemistry of abandoned mercury mines in West-Central Nevada, USA. Appl Geochem 17:1069–1079

    Article  CAS  Google Scholar 

  • Grout JA, Levings CD (2001) Effects of acid mine drainage from an abandoned copper mine, Britannia mines, Howe Sound, British Columbia, Canada, on transplanted blue mussels (Mytilus edulis). Mar Environ Res 51:265–288

    Article  CAS  Google Scholar 

  • Gunduz O, Simsek C, Hasozbek A (2010) Arsenic pollution in the groundwater of Simav Plain, Turkey: its impact on water quality and human health. Water Air Soil Pollut 205:43–62

    Article  CAS  Google Scholar 

  • Guo Z, Megharaj M, Beer M, Ming H, Rahman MM, Wu W, Naidu R (2009) Heavy metal impact on bacterial biomass based on DNA analyses and uptake by wild plants in the abandoned copper mine soils. Bioresour Technol 100:3831–3836

    Article  CAS  Google Scholar 

  • Gupta S, Herren T, Wenger K, Krebs R, Hari T (2000) In situ gentle remediation measures for heavy metal-polluted soils. In: Banuelos G, Terry N (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 303–322

    Google Scholar 

  • Haffert L, Craw D (2008) Mineralogical controls on environmental mobility of arsenic from historic mine processing residues, New Zealand. Appl Geochem 23:1467–1483

    Article  CAS  Google Scholar 

  • Hernández AJ, Pastor J (2008) Relationship between plant biodiversity and heavy metal bioavailability in grasslands overlying an abandoned mine. Environ Geochem Health 30:127–133

    Article  CAS  Google Scholar 

  • Hettiarachchi GM, Pierzynski GM, Ransom MD (2001) In situ stabilization of soil lead using phosphorus. J Environ Qual 30:1214–1221

    Article  CAS  Google Scholar 

  • Hibma J (2013) Soil health. Countrys Small Stock J 97:52–54. http://search.proquest.com/docview/1267149198

  • Huang JW, Chen J, Cunnigham SD (1997) Phytoextraction of lead from contaminated soils. In: Kruger EL, Anderson TA, Coats JR (eds) Phytoremediation of soil and water contaminants. American Chemical Society, Washington, 664:283–298

  • Iavazzo P, Adamo P, Boni M, Hillier S, Zampella M (2012) Mineralogy and chemical forms of lead and zinc in abandoned mine wastes and soils: an example from Morocco. J Geochem Explor 113:56–67

    Article  CAS  Google Scholar 

  • Ireland MP (1983) Heavy metal uptake and tissue distribution in earthworms. In: Satchell JE (ed) earthworm ecology: from Darwin to vermiculture. Chapman & Hall, London

    Google Scholar 

  • Jang M, Hwang JS, Choi SI (2007) Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines. Chemosphere 66:8–17

    Article  CAS  Google Scholar 

  • Jenkins DA, Johnson DB, Freeman C (2000) Mynydd Parys copper/lead/zinc mines: mineralogy, microbiology and acid mine drainage. In: Cotter-Howells JD, Campbell LS, Valsami-Jones E, Batchelder M (eds) Environmental mineralogy: microbial interactions, anthropogenic influences, contaminated land and waste management. The Mineralogical Society of Great Britain and Ireland, London, pp 161–179

    Google Scholar 

  • Ji Z, Fu M, Zhang J (2011) Partition and reclamation of rural settlements in mining areas: a case study of Cishan Town, Wu’an in China. Proc Eng 26:2428–2433

    Article  Google Scholar 

  • Ji K, Kima J, Leea M, Parka S, Kwond H-J, Cheonge H-K, Jang J-Y, Kimc D-S, Yuc S, Kimg Y-W, Lee K-Y, Yangi S-O, Jhung IJ, Yang W-H, Paek D-H, Hong Y-C, Choi K (2013) Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea. Environ Pollut 178:322–328

    Article  CAS  Google Scholar 

  • Johnson MS, McNeilly T, Putwain PD (1997) Revegetation of metalliferous mine spoil contaminated by lead and zinc. Environ Pollut 12:261–277

    Article  Google Scholar 

  • Kärenlampi S, Schat H, Vangronsveld J, Verkleij JA, van der Lelie D, Mergeay M, Tervahauta AI (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ Pollut 107:225–231

    Article  Google Scholar 

  • Khalil A, Hanich L, Bannari A, Zouhri L, Pourret O, Hakkou R (2013) Assessment of soil contamination around an abandoned mine in a semi-arid environment using geochemistry and geostatistics: pre-work of geochemical process modeling with numerical models. J Geochem Explor 125:117–129

    Article  CAS  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  CAS  Google Scholar 

  • Kim JG, Dixon JB (2002) Oxidation and fate of chromium in soils. Soil Sci Plant Nutri 48:483–490

    Article  CAS  Google Scholar 

  • Kim JY, Kim KW, Ahn JS, Ko I, Lee CH (2005) Investigation and risk assessment modeling of As and other heavy metals contamination around five abandoned metal mines in Korea. Environ Geochem Health 27:193–203

    Article  CAS  Google Scholar 

  • Kim S, Kwon HJ, Cheong HK, Choi K, Jang JY, Jeong WC, Hong YC (2008) Investigation on health effects of an abandoned metal mine. J Korean Med Sci 23:452–458

    Article  CAS  Google Scholar 

  • Kim SM, Suh J, Oh S, Son J, Hyun CU, Park HD, Shin SH, Choi Y (2016) Assessing and prioritizing environmental hazards associated with abandoned mines in Gangwon-do, South Korea: the Total Mine Hazards Index. Environ Earth Sci 75:1–4

    Article  Google Scholar 

  • Kitula AGN (2006) The environmental and socio–economic impacts of mining on local livelihoods in Tanzania: a case study of Geita District. J Clean Prod 14:405–414

    Article  Google Scholar 

  • KME (Korean Ministry of Environment) (2005) Final report of environmental investigation for abandoned mine in Korea

  • Kossoff D, Hudson-Edwards KA, Howard AJ, Knight D (2016) Industrial mining heritage and the legacy of environmental pollution in the Derbyshire Derwent catchment: quantifying contamination at a regional scale and developing integrated strategies for management of the wider historic environment. J Archaeol Sci Rep 6:190–199

    Google Scholar 

  • Krishna AK, Mohan KR, Murthy NN (2010) Monitored natural attenuation as a remediation tool for heavy metal contamination in soils in an abandoned gold mine area. Curr Sci (India) 99:628–635

    CAS  Google Scholar 

  • Kumar P, Baul G (2010) Recombinant DNA technology for bioremediation of pollutants. In: Fulekar MH (ed) Bioremediation technology. Springer, Germany, pp 245–265

    Chapter  Google Scholar 

  • Kumar A, Raghuwanshi R, Upadhyay RS (2010) Arbuscular mycorrhizal technology in reclamation and revegetation of coal mine spoils under various revegetation models. Engineering 2:683–689

    Article  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments–a review. Waste Manage 28:215–225

    Article  CAS  Google Scholar 

  • Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K, Naidu R (2016a) In-situ remediation approaches for the management of contaminated sites: a comprehensive overview. Rev Environ Contam Toxicol 206:1–115

    Google Scholar 

  • Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K, Naidu R (2016b) Ex-situ remediation technologies for environmental pollutants: a critical perspective. Rev Environ Contam Toxicol 206:117–192

    Google Scholar 

  • Lai HY, Chen ZS (2009) In-situ selection of suitable plants for the phytoremediation of multi-metals–contaminated sites in central Taiwan. Int J Phytoremed 11:235–250

    Article  CAS  Google Scholar 

  • Lal N, Srivastava N (2010) Phytoremediation of toxic explosives. In: Ashraf M (ed) Plant adaptation and phytoremediation. Springer Netherlands, Dordrecht, 18:383–397

  • Lange K, Rowe RK, Jamieson H (2010) The potential role of geosynthetic clay liners in mine water treatment systems. Geotext Geomembr 28:199–205

    Article  Google Scholar 

  • Larney FJ, Akinremi OO, Lemke RL, Klaassen VE, Janzen HH (2003) Crop response to topsoil replacement depth and organic amendment on abandoned natural gas wellsites. Can J Soil Sci 83:415–423

    Article  Google Scholar 

  • Latawiec AE, Simmons P, Reid BJ (2010) Decision-makers’ perspectives on the use of bioaccessibility for risk-based regulation of contaminated land. Environ Int 36:383–389

    Article  CAS  Google Scholar 

  • Laurence D (2011) Establishing a sustainable mining operation: an overview. J Clean Product 9:278–284

    Article  Google Scholar 

  • Laurinolli M, Bendell-Young LI (1996) Copper, zinc, and cadmium concentrations in Peromyscus maniculatus sampled near an abandoned copper mine. Arch Environ Contam Toxicol 30:481–486

    Article  CAS  Google Scholar 

  • LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, AbdelSamie M, Chiang CY, Tagmount A, Neuhierl B (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383

    Article  CAS  Google Scholar 

  • Lee S (2006) Geochemistry and partitioning of trace metals in paddy soils affected by metal mine tailings in Korea. Geoderma 135:26–37

    Article  CAS  Google Scholar 

  • Lee JS, Yi JM, Chon HT (2003) Environmental contamination and chemical speciation of arsenic in the water system from some abandoned Au–Ag mines, Korea. J Phys IV (Proc) 107:761–763

    CAS  Google Scholar 

  • Lee JS, Chon HT, Jung MC (2004) Toxic risk assessment and environmental contamination of heavy metals around abandoned metal mine sites in Korea. Key Eng Mater 277:542–547

    Google Scholar 

  • Lee JS, Chon HT, Kim KW (2005a) Human risk assessment of As, Cd, Cu and Zn in the abandoned metal mine site. Environ Geochem Health 27:185–191

    Article  CAS  Google Scholar 

  • Lee JY, Choi JC, Yi MJ, Kim JW, Cheon JY, Choi YK, Lee KK (2005b) Potential groundwater contamination with toxic metals in and around an abandoned Zn mine, Korea. Water Air Soil Pollut 165:167–185

    Article  CAS  Google Scholar 

  • Lee SW, Lee BT, Kim JY, Kim KW, Lee JS (2006) Human risk assessment for heavy metals and as contamination in the abandoned metal mine areas, Korea. Environ Monit Assess 119:233–244

    Article  CAS  Google Scholar 

  • Lee M, Paik IS, Do W, Kim I, Lee Y, Lee S (2007) Soil washing of As-contaminated stream sediments in the vicinity of an abandoned mine in Korea. Environ Geochem Health 29:319–329

    Article  CAS  Google Scholar 

  • Lee JS, Lee SW, Chon HT, Kim KW (2008) Evaluation of human exposure to arsenic due to rice ingestion in the vicinity of abandoned Myungbong Au–Ag mine site, Korea. J Geochem Explor 96:231–235

    Article  CAS  Google Scholar 

  • Lei Z, Hui Z (2011) The study of an assessment of land use security in mining area: a case study of Wu’an in China. Proc Engineer 26:311–320

    Article  Google Scholar 

  • Lelie DVD, Schwitzguebel JP, Glass DJ, Vangronsveld J, Baker A (2001) Peer reviewed: assessing phytoremediation’s progress in the United States and Europe. Environ Sci Technol 35:446A–452A

    Article  Google Scholar 

  • Levy DB, Custis KH, Casey WH, Rock PAA (1997) Comparison of metal attenuation in mine residue and overburden material from an abandoned copper mine. Appl Geochem 12:203–211

    Article  CAS  Google Scholar 

  • Li MS (2006) Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: a review of research and practice. Sci Tot Environ 357:38–53

    Article  CAS  Google Scholar 

  • Li MS, Luo YP, Su ZY (2007) Heavy metal concentrations in soils and plant accumulation in a restored manganese mine land in Guangxi, South China. Environ Pollut 147:168–175

    Article  CAS  Google Scholar 

  • Lindenmayer D, Salt D (2008) Is revegetation good for biodiversity?. Land & Water Australia, Braddon

    Google Scholar 

  • Liu R, Lal R (2012) Nanoenhanced materials for reclamation of mine lands and other degraded soils: a review. J Nanotech 2012:18. doi:10.1155/2012/461468

    Google Scholar 

  • Liu CP, Luo CL, Gao Y, Li FB, Lin LW, Wu CA, Li XD (2010) Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China. Environ Pollut 158:820–826

    Article  CAS  Google Scholar 

  • Loredo J, Pereira A, Ordóñez A (2003) Untreated abandoned mercury mining works in a scenic area of Asturias (Spain). Environ Int 29:481–491

    Article  CAS  Google Scholar 

  • Lottermoser B (2010) Mine wastes: characterization, treatment and environmental impacts. Springer, Germany, pp 1–262

    Book  Google Scholar 

  • Lottermoser BG, Ashley PM, Lawie DC (1999) Environmental geochemistry of the Gulf Creek copper mine area, north-eastern New South Wales, Australia. Environ Geol 39:61–74

    Article  CAS  Google Scholar 

  • Lupankwa K, Love D, Mapani BS, Mseka S (2004a) Impact of a base metal slimes dam on water systems, Madziwa Mine, Zimbabwe. Phys Chem Earth 29:1145–1151

    Article  Google Scholar 

  • Lupankwa K, Love D, Mapani BS, Mseka S, Smith V (2004b) Influence of the Trojan nickel mine rock dump on run-off quality, Mazowe Valley, Zimbabwe. In: Ext. Abs., 5th Water Net-WARFSA Symposium

  • Ma Z, Chen K, Li Z, Bi J, Huang L (2016) Heavy metals in soils and road dusts in the mining areas of Western Suzhou, China: a preliminary identification of contaminated sites. J Soil Sed 16:204–214

    Article  CAS  Google Scholar 

  • Maiti SK, Karmakar NC, Sinha IN (2002) Studies into some physical parameters aiding biological reclamation of mine spoil dump–a case study from Jharia coalfield. IME J 41:20–23

    Google Scholar 

  • Mann AW, Lintern M (1983) Heavy metal dispersion patterns from tailings dumps, Northampton District, Western Australia. Environ Pollut B 6:33–49

    Article  CAS  Google Scholar 

  • Maramba NP, Reyes JP, Francisco-Rivera AT, Panganiban LCR, Dioquino C, Dando N, Fuchigami Y (2006) Environmental and human exposure assessment monitoring of communities near an abandoned mercury mine in the Philippines: a toxic legacy. J Environ Manag 81:135–145

    Article  CAS  Google Scholar 

  • Maree JP, Hlabela P, Nengovhela AJ, Geldenhuys AJ, Mbhele N, Nevhullaudiz T, Waanders FB (2004) Treatment of mine water for sulphate and metal removal using barium sulphide. Mine Water Environ 23:195–203

    Article  CAS  Google Scholar 

  • Mayes WM, Johnston D, Potter HA, Jarvis AP (2009) A national strategy for identification, prioritisation and management of pollution from abandoned non-coal mine sites in England and Wales. I.: methodology development and initial results. Sci Tot Environ 407:5435–5447

    Article  CAS  Google Scholar 

  • Meck M, Love D, Mapani B (2006) Zimbabwean mine dumps and their impacts on river water quality—a reconnaissance study. Phys Chem Earth 31:797–803

    Article  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375

    Article  CAS  Google Scholar 

  • Mench M, Lepp N, Bert V, Schwitzguebel JP, Gawronski W, Schroder P, Vangronsveld J (2010) Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST action 859. J Soils Sediments 10:1039–1070

    Article  CAS  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology. Environ Health Perspect 116:278

    Article  CAS  Google Scholar 

  • Mendez MO, Neilson JW, Maier RM (2008) Characterization of a bacterial community in an abandoned semiarid lead-zinc mine tailing site. Appl Environ Microbiol 74:3899–3907

    Article  CAS  Google Scholar 

  • Miao Z, Marrs R (2000) Ecologicalrestoration and land reclamation in open-cast mines in Shanxi Province, China. J Environ Manag 59:205–215

    Article  Google Scholar 

  • Milton A, Cooke JA, Johnson MS (2003) Accumulation of lead, zinc, and cadmium in a wild population of Clethrionomys glareolus from an abandoned lead mine. Arch Environ Contam Toxicol 44:405–411

    Article  CAS  Google Scholar 

  • Mishra SK, Hitzhusen FJ, Sohngen BL, Guldmann JM (2012) Costs of abandoned coal mine reclamation and associated recreation benefits in Ohio. J Environ Manage 100:52–58

    Article  Google Scholar 

  • Misra V, Tiwari A, Shukla B, Seth CS (2009) Effects of soil amendments on the bioavailability of heavy metals from zinc mine tailings. Environ Monit Assess 155:467–475

    Article  CAS  Google Scholar 

  • Mkandawire M, Dudel EG (2005) Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Sci Total Environ 336:81–89

    Article  CAS  Google Scholar 

  • Mkandawire M, Dudel EG, Taubert B (2004) Accumulation of uranium in Lemna gibba L. in relation to milieu conditions of tailing waters in abandoned uranium mines in Germany. Mine Water Process Policy Prog 2:9–18

    Google Scholar 

  • Mohee R, Mudhoo A (eds) (2012) Methods for the remediation of xenobiotic compounds. In: Bioremediation and sustainability: research and applications. Wiley, Hoboken, NJ, pp 372–374

  • Monterroso C, Alvarez E, Fernández Marcos ML (1999) Evaluation of Mehlich 3 reagent as a multielement extractant in mine soils. Land Degrad Develop 10:35–47

    Article  Google Scholar 

  • Moreno FN, Anderson CWN, Robinson BH, Stewart RB (2004) Mercury analysis of plant and soil samples using the hydride-generation AAS method. In: Currie LD, Hanly JA (eds) Tools for nutrient and pollution management: applications to agriculture and environmental quality, Occasional Report No 17. Fertilizer and Lime Research Centre, Palmerston North, pp 25–33

    Google Scholar 

  • Moreno-Jiménez E, Peñalosa JM, Manzano R, Carpena-Ruiz RO, Gamarra R, Esteban E (2009) Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora. J Hazard Mater 162:854–859

    Article  CAS  Google Scholar 

  • Moreno-Jiménez E, Vazquez S, Carpena-Ruiz RO, Esteban E, Peñalosa JM (2011a) Using Mediterranean shrubs for phytoremediation of a soil impacted by pyritic wastes in southern Spain: a field experiment. J Environ Manag 92:1584–1590

    Article  Google Scholar 

  • Moreno-Jiménez E, García-Gómez C, Oropesa AL, Esteban E, Haro A, Carpena-Ruiz R, Tarazona JV, Peñalosa JM, Fernández MD (2011b) Screening risk assessment tools for assessing the environmental impact in an abandoned pyritic mine in Spain. Sci Tot Environ 409:692–703

    Article  CAS  Google Scholar 

  • Morrell WJ, Stewart RB, Gregg PEH, Bolan NS, Horne D (1996) An assessment of sulphide oxidation in abandoned base-metal tailings, TeAroha, New Zealand. Environ Pollut 94:217–225

    Article  CAS  Google Scholar 

  • Mudd GM, Patterson J (2010) Continuing pollution from the Rum Jungle U-Cu project: a critical evaluation of environmental monitoring and rehabilitation. Environ Pollut 158:1252–1260

    Article  CAS  Google Scholar 

  • Mudhoo A, Mohee R (eds) (2012) Elements of sustainability and bioremediation. In: Bioremediation and sustainability: Research and applications. Wiley, US, pp 1–41

    Chapter  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineer Geol 60:193–207

    Article  Google Scholar 

  • Mummey DL, Stahl PD, Buyer JS (2002) Microbial biomarkers as an indicator of ecosystem recovery following surface mine reclamation. Appl Soil Ecol 21:251–259

    Article  Google Scholar 

  • Naftz DL, Davis JA, Fuller CC, Morrison SJ, Freethey GW, Feltcorn EM, Wilhelm RG, Piana MJ, Joye J, Rowland RC (1999) Field demonstration of permeable reactive barriers to control radionuclide and trace-element contamination in ground water from abandoned mine lands. In: US Geological Survey Toxic Substances Hydrology Program, Proceedings of the technical meeting, pp 8–12

  • Naicker K, Cukrowska E, Mccarthy TS (2003) Acid mine drainage from gold mining activities in Johannesburg, South Africa and environs. Environ Pollut 122:29–40

    Article  CAS  Google Scholar 

  • Naidu R, Channey R, McConnell S, Johnston N, Semple KT, McGrath S, Dries V, Nathanail P, Harmsen J, Pruszinski A, Macmillan J, Palanisami T (2013) Towards bioavailability-based soil criteria: past, present and future perspectives. Environ Sci Pollut Res. doi:10.1007/s11356-013-1617-X

    Google Scholar 

  • Navarro MC, Pérez-Sirvent C, Martínez-Sánchez MJ, Vidal J, Marimón J (2006) Lead, cadmium and arsenic bioavailability in the abandoned mine site of Cabezo Rajao (Murcia, SE Spain). Chemosphere 63:484–489

    Article  CAS  Google Scholar 

  • Navarro MC, Pérez-Sirvent C, Martínez-Sánchez MJ, Vidal J, Tovar PJ, Bech J (2008) Abandoned mine sites as a source of contamination by heavy metals: a case study in a semi-arid zone. J Geochem Explor 96:183–193

    Article  CAS  Google Scholar 

  • Navarro A, Cañadas I, Rodríguez J (2014) Thermal treatment of mercury mine wastes using a rotary solar kiln. Minerals 4:37–51

    Article  Google Scholar 

  • Neves O, Matias MJ (2008) Assessment of groundwater quality and contamination problems ascribed to an abandoned uranium mine (Cunha Baixa region, Central Portugal). Environ Geol 53:1799–1810

    Article  CAS  Google Scholar 

  • Nichols OG, Grant CD (2007) Vertebrate fauna recolonization of restored bauxite mines—key findings from almost 30 years of monitoring and research. Restor Ecol 15:S116–S126

    Article  Google Scholar 

  • Nirola R, Megharaj M, Palanisami T, Aryal R, Venkateswarlu K, Naidu R (2015) Evaluation of metal uptake factors of native trees colonizing an abandoned copper mine–a quest for phytostabilization. J Sust Min 14:115–123

    Article  Google Scholar 

  • Nirola R, Megharaj M, Venkateswarlu K, Aryal R, Correll R, Naidu R (2016a) Assessment of metal toxicity and bioavailability in metallophyte leaf litters and metalliferous soils using Eisenia fetida in a microcosm study. Ecotoxicol Environ Saf 129:264–272

    Article  CAS  Google Scholar 

  • Nirola R, Megharaj M, Aryal R, Naidu R (2016b) Screening of metal uptake by plant colonizers growing on abandoned copper mine in Kapunda, South Australia. Int J Phytorem 18:399–405

    Article  CAS  Google Scholar 

  • Noret N, Meerts P, Vanhaelen M, Dos Santos A, Escarré J (2007) Do metal-rich plants deter herbivores? A field test of the defence hypothesis. Oecologia 152:92–100

    Article  Google Scholar 

  • Nouri M, Haddioui A (2016) Human and animal health risk assessment of metal contamination in soil and plants from Ait Ammar abandoned iron mine, Morocco. Environ Monit Assess 188:6–12

    Article  CAS  Google Scholar 

  • Ochieng GM, Seanego ES, Nkwonta OI (2010) Impacts of mining on water resources in South Africa: A review. Sci Res Essays 5:3351–3357

  • Oh SY, Yoon HS (2016) Biochar amendment for reducing leachability of nitro explosives and metals from contaminated soils and mine tailings. J Environ Qual. doi:10.2134/jeq2015.05.0222

    Google Scholar 

  • Olivares AR, Carrillo-González R, González-Chávez MDCA, Hernándezc RMS (2013) Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production. J Environ Manage 114:316–323

    Article  CAS  Google Scholar 

  • O’Neill C, Gray NF, Williams M (1998) Evaluation of the rehabilitation procedure of a pyritic mine tailings pond in Avoca, southeast Ireland. Land Degrad Dev 9:67–79

    Article  Google Scholar 

  • Otto M, Floyd M, Bajpai S (2008) Nanotechnology for site remediation. Remed J 19:99–108

    Article  Google Scholar 

  • Palmer MA, Bernhardt ES, Schlesinger WH, Eshleman KN, Foufoula-Georgiou E, Hendryx MS, Wilcock PR (2010) Mountaintop mining consequences. Science 327:148–149

    Article  CAS  Google Scholar 

  • Pang J, Chan GSY, Zhang J, Liang J, Wong MH (2003) Physiological aspects of vetiver grass for rehabilitation in abandoned metalliferous mine wastes. Chemosphere 52:1559–1570

    Article  CAS  Google Scholar 

  • Pankhurst C, Doube BM, Gupta VVSR (eds) (1997) Biological indicators of soil health. CAB International, Wallingford, pp 121–156

    Google Scholar 

  • Park BY, Lee JK, Ro HM, Kim YH (2011) Effects of heavy metal contamination from an abandoned mine on nematode community structure as an indicator of soil ecosystem health. Appl Soil Ecol 51:17–24

    Article  Google Scholar 

  • Pereira R, Ribeiro R, Gonçalves F (2004) Plan for an integrated human and environmental risk assessment in the S. Domingos Mine Area (Portugal). Hum Ecol Risk Assess 10:543–578

    Article  CAS  Google Scholar 

  • Pereira R, Sousa JP, Ribeiro R, Gonçalves F (2006) Microbial indicators in mine soils (S. Domingos Mine, Portugal). Soil Sediment Contam 15:147–167

    Article  CAS  Google Scholar 

  • Pereira R, Marques CR, Silva Ferreira MJ, Neves MFJV, Caetano AL, Antunes SC, Mendo S, Gonçalves F (2009) Phytotoxicity and genotoxicity of soils from an abandoned uranium mine area. Appl Soil Ecol 42:209–220

    Article  Google Scholar 

  • Pérez A, de Anta RC (1992) Soil pollution in copper sulphide mining areas in Galicia (NW Spain). Soil Technol 5:271–281

    Article  Google Scholar 

  • Pérez G, Valiente M (2005) Determination of pollution trends in an abandoned mining site by application of a multivariate statistical analysis to heavy metals fractionation using SM & T-SES. J Environ Monit 7:29–36

    Article  Google Scholar 

  • Pichtel JR, Dick WA, Sutton P (1994) Comparison of amendments and management practices for long-term reclamation of abandoned mine lands. J Environ Qual 23:766–772

    Article  CAS  Google Scholar 

  • Podda F, Zuddas P, Minacci A, PepiM Baldi F (2000) Heavy metal coprecipitation with hydrozincite [Zn5(CO3)2(OH)6] from mine waters caused by photosynthetic microorganisms. Appl Environ Microbiol 66:5092–5098

    Article  CAS  Google Scholar 

  • Pratas J, Prasad MN, Freitas H, Conde L (2005) Plants growing in abandoned mines of Portugal are useful for biogeochemical exploration of arsenic, antimony, tungsten and mine reclamation. J Geochem Explor 85:99–107

    Article  CAS  Google Scholar 

  • Qiu G, Feng X, Wang S, Shang L (2005) Mercury and methylmercury in riparian soil, sediments, mine-waste calcines, and moss from abandoned Hg mines in east Guizhou province, southwestern China. Appl Geochem 20:627–638

    Article  CAS  Google Scholar 

  • Rai UN, Pandey S, Sinha S, Singh A, Saxena R, Gupta DK (2004) Revegetating fly ash landfills with Prosopis juliflora L.: impact of different amendments and Rhizobium inoculation. Environ Int 30:293–300

    Article  CAS  Google Scholar 

  • Rapant S, Dietzová Z, Cicmanová S (2006) Environmental and health risk assessment in abandoned mining area, ZlataIdka, Slovakia. Environ Geol 51:387–397

    Article  CAS  Google Scholar 

  • Rashed MN (2010) Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt. J Hazard Mater 178:739–746

    Article  CAS  Google Scholar 

  • Ravengai S, Owen R, Love D (2004) Evaluation of seepage and acid generation potential from evaporation ponds, Iron Duke Pyrite Mine, Mazowe Valley, Zimbabwe. Phys Chem Earth A/B/C 29:1129–1134

    Article  Google Scholar 

  • Ravengai S, Love D, Mabvira-Meck M, Musiwa K, Moyce W (2005) Water quality in an abandoned gold mining belt, Beatrice, Sanyati Valley, Zimbabwe. Phys Chem Earth A/B/C 30:826–831

    Article  Google Scholar 

  • Reinikainen J, Sorvari J (2016) Promoting justified risk-based decisions in contaminated land management. Sci Tot Environ. doi:10.1016/j.scitotenv.2015.12.074

    Google Scholar 

  • Roberts RD, Johnson MS (1978) Dispersal of heavy metals from abandoned mine workings and their transference through terrestrial food chains. Environ Pollut 16:293–310

    Article  CAS  Google Scholar 

  • Rodríguez L, Ruiz E, Alonso-Azcárate J, Rincón J (2009) Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain. J Environ Manag 90:1106–1116

    Article  CAS  Google Scholar 

  • Ronday R, van Kammen-Polman AMM, Dekker A (1997) Persistence and toxicological effects of pesticides in top soil: use of the equilibrium partitioning theory. Environ Toxicol Chem 16:601–607

    Article  CAS  Google Scholar 

  • Rotteveel T, Al-Ahmad H, Gressel J (2006) Assessing risks and containing or mitigating gene flow of transgenic and non-transgenic phytoremediating plants. In: Mackova M, Dowling D, Macek T (eds) Phytoremediation rhizoremediation, Focus on Biotechnology. Springer, Dordrecht, pp 259–284

    Chapter  Google Scholar 

  • Roussel C, Néel C, Bril H (2000) Minerals controlling arsenic and lead solubility in an abandoned gold mine tailings. Sci Total Environ 263:209–219

    Article  CAS  Google Scholar 

  • Rowan JS, Barnes SJA, Hetherington SL, Lambers B, Parsons F (1995) Geomorphology and pollution: the environmental impacts of lead mining, Leadhills, Scotland. J Geochem Explor 52:57–65

    Article  CAS  Google Scholar 

  • Rowe OF, Sánchez-España J, Hallberg KB, Johnson DB (2007) Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environ Microbiol 9:1761–1771

    Article  CAS  Google Scholar 

  • Sánchez-Chardi A, Marques CC, Nadal J, da Luz Mathias M (2007) Metal bioaccumulation in the greater white-toothed shrew, Crocidura russula, inhabiting an abandoned pyrite mine site. Chemosphere 67:121–130

    Article  CAS  Google Scholar 

  • Schafer J, Blanc G (2002) Relationship between ore deposits in river catchments and geochemistry of suspended particulate matter from six rivers in southwest France. Sci Total Environ 298:103–118

    Article  CAS  Google Scholar 

  • Scholtz N, Scholtz OF, Potgieter GP (2005) Potential environmental impact resulting from inadequate remediation of uranium mining in the Karoo Uranium Province, South Africa. In: Merkel BJ, Hasche-Berger A (eds) Proceedings of the uranium mining and hydrogeology IV. Springer, Germany, pp 789–799

    Google Scholar 

  • Sellers K (1999) Fundamentals of hazardous waste site remediation. CRC Press, Boca Raton, pp 336

    Google Scholar 

  • Seth CS (2012) A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean-up. Bot Rev 78:32–62

    Article  Google Scholar 

  • Sheoran V, Sheoran SA (2009) Reclamation of abandoned mine land. J Min Metall A Min 45:13–32

    CAS  Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2010) Soil reclamation of abandoned mine land by revegetation: a review. Int J Soil Sed Water 3:1–20

    Google Scholar 

  • Shetty KG, Hetrick BAD, Figge DAH, Schwab AP (1994) Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoil. Environ Pollut 86:181–188

    Article  CAS  Google Scholar 

  • Shim D, Kim S, ChoiYI Song WY, Park J, Youk ES, Jeong SC, Martinoia E, Noh EW, Lee Y (2013) Transgenic poplar trees expressing yeast cadmium factor 1 exhibit the characteristics necessary for the phytoremediation of mine tailing soil. Chemosphere 90:1478–1486

    Article  CAS  Google Scholar 

  • Sprocati AR, Alisi C, Pinto V, Montereali MR, Marconi P, Tasso F, Turnau K, De Giudici G, Goralska K, Bevilacqua M, Marini F (2014) Assessment of the applicability of a “toolbox” designed for microbially assisted phytoremediation: the case study at Ingurtosu mining site (Italy). Environ Sci Pollut Res 21:6939–6951

    Article  CAS  Google Scholar 

  • Starke L (2006) Good practice guidance for mining and biodiversity. International Council on Mining and Metals 2006

  • Stoner N (2011) Improving EPA Review of Appalachian surface coal mining operations under the clean water Act, National environmental policy Act, and the Environmental justice executive order, U.S. Environmental Protection Agency, Memorandum 2011. http://water.epa.gov/lawsregs/guidance/wetlands/upload

  • Strickland C, Forbes M (2010) Field inventory of abandoned mine sites in Western Australia. Linkspoint white paper. http://www.linkspoint.com. Accessed on 12 November 2010

  • Sydnor ME, Redente EF (2002) Reclamation of high-elevation, acidic mine waste with organic amendments and topsoil. J Environ Qual 31:1528–1537

    Article  CAS  Google Scholar 

  • Taylor RW, Ibeabuchi IO, Sistani KR, Shuford JW (1992) Accumulation of some metals by legumes and their extractability from acid mine spoils. J Environ Qual 21:176–180

    Article  CAS  Google Scholar 

  • Taylor RW, Ibeabuchi IO, Sistani KR, Shuford JW (1993) Heavy metal concentration in forage grasses and extractability from some acid mine spoils. Water Air Soil Pollut 68:363–372

    Article  CAS  Google Scholar 

  • Tinto R (2008) Rio Tinto and biodiversity: achieving results on the ground. www.riotinto.com/documents/ReportsPublications/RTBidoversitystrategyfinal.pdf

  • Tropek R, Kadlec T, Hejda M, Kocarek P, Skuhrovec J, Malenovsky I, Vodka S, Spitzer L, Banar P, Konvicka M (2012) Technical reclamations are wasting the conservation potential of post-mining sites. A case study of black coal spoil dumps. Ecol Eng 43:13–18

    Article  Google Scholar 

  • US EPA (2004) U.S. Environmental Protection Agency. Abandoned mine lands team: reference notebook 2004. www.epa.gov/aml/tech/amlref.pdf. Accessed 30 Oct 2010

  • US EPA (2012) About remediation technologies. US EPA Office of Superfund Remediation and Technology Innovation (CLU-IN), Washington, DC

  • van Dame R, Hogan A, Harford A, Markich S (2008) Toxicity and metal speciation characterisation of waste water from an abandoned gold mine in tropical northern Australia. Chemosphere 73:305–313

    Article  CAS  Google Scholar 

  • Van den Brink PJ, Choung CB, Landis W, Mayer-Pinto M, Pettigrove V, Scanes P, Smith R, Stauber J (2016) New approaches to the ecological risk assessment of multiple stressors. Mar Freshwat Res 67:1–2

    Article  Google Scholar 

  • Van Nevel L, Mertens J, Oorts K, Verheyen K (2007) Phytoextraction of metals from soils: how far from practice? Environ Pollut 150:34–40

    Article  CAS  Google Scholar 

  • van Veen EM, Lottermoser BG, Parbhakar-Fox A, Fox N, Hunt J (2016) A new test for plant bioaccessibility in sulphidic wastes and soils: a case study from the wheal maid historic tailings repository in Cornwall, UK. Sci Tot Environ. doi:10.1016/j.scitotenv.2016.01.054

    Google Scholar 

  • Vangronsveld J, Cunningham SD (1998) Metal contaminated soils: in situ inactivation and phytorestoration. Springer and RG Landes Company, Berlin

    Google Scholar 

  • Vangronsveld J, Van Assche F, Clijsters H (1995) Reclamation of a bare industrial area contaminated by non-ferrous metals: in situ metal immobilization and revegetation. Environ Pollut 87:51–59

    Article  CAS  Google Scholar 

  • Verner JF, Ramsey MH, Helios-Rybicka E, Jeˆdrzejczyk B (1996) Heavy metal contamination of soils around a Pb–Zn smelter in Bukowno, Poland. Appl Geochem 11:11–16

    Article  CAS  Google Scholar 

  • Wang Q, Zhou D, Cang L, Li L, Zhu H (2009) Indication of soil heavy metal pollution with earthworms and soil microbial biomass carbon in the vicinity of an abandoned copper mine in Eastern Nanjing, China. Eur J Soil Biol 45:229–234

    Article  CAS  Google Scholar 

  • Wassenaar TD, Henschel JR, Pfaffenthaler MM, Mutota EN, Seely MK, Pallett J (2013) Ensuring the future of the Namib’s biodiversity: ecological restoration as a key management response to a mining boom. J Arid Environ 93:126–135

    Article  Google Scholar 

  • Wcisło E, Ioven D, Kucharski R, Szdzuj J (2002) Human health risk assessment case study: an abandoned metal smelter site in Poland. Chemosphere 47:507–515

    Article  Google Scholar 

  • WEHAB Working Group (2002) A framework for action on biodiversity and ecosystem management. New York: United Nations 2002. www.johannesburgsummit.org/html/documents/summit_docs/wehab_papers/wehab_biodiversity.pdf

  • Williams M (2001) Arsenic in mine waters: an international study. Environ Geol 40:267–278

    Article  CAS  Google Scholar 

  • Wilson B, Pyatt FB (2006) Bio-availability of tungsten in the vicinity of an abandoned mine in the English Lake District and some potential health implications. Sci Total Environ 370:401–408

    Article  CAS  Google Scholar 

  • Wilson NJ, Craw D, Hunter K (2004) Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand. Environ Pollut 129:257–266

    Article  CAS  Google Scholar 

  • Winterhalder K (1996) Environmental degradation and rehabilitation of the landscape around Sudbury, a major mining and smelting area. Environ Rev 4:185–224

    Article  CAS  Google Scholar 

  • Wolkersdorfer C (2008) Water management at abandoned flooded underground mines: fundamentals, tracer tests, modelling, water treatment. Springer, Germany, pp 129–336

    Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780

    Article  CAS  Google Scholar 

  • Wood PA (1997) Remediation methods for contaminated soils. In: Issues in environmental science and technology, pp 47–71. doi:10.1039/9781847550637-00047. http://pubs.rsc.org

  • Wu WM, Carley J, Gentry T, Ginder-Vogel MA, Fienen M, Mehlhorn T, Yan H, Caroll S, Pace MN, Nyman J (2006) Pilot-scale in situ bioremedation of uranium in a highly contaminated aquifer. 2. Reduction of U (VI) and geochemical control of U (VI) bioavailability. Environ Sci Technol 40:3986–3995

    Article  CAS  Google Scholar 

  • Yang JE, Skousen JG, Ok YS, Yoo KY, Kim HJ (2006) Reclamation of abandoned coal mine waste in Korea using lime cake by-products. Mine Water Environ 25:227–232

    Article  CAS  Google Scholar 

  • Yang JS, Lee JY, Baek K, Kwon TS, Choi J (2009) Extraction behavior of As, Pb, and Zn from mine tailings with acid and base solutions. J Hazard Mater 171:443–451

    Article  CAS  Google Scholar 

  • Yenilmez F, Kuter N, Emil MK, Aksoy A (2011) Evaluation of pollution levels at an abandoned coal mine site in Turkey with the aid of GIS. Int J Coal Geol 86:12–19

    Article  CAS  Google Scholar 

  • Young K (1988) Destruction of ecological habitats by mining activities. Agri Ecol 16:37–40

    Google Scholar 

  • Zhang ZQ, Shu WS, Lan CY, Wong MH (2001) Soil seed bank as an input of seed source in revegetation of lead/zinc mine tailings. Restorat Ecol 9:378–385

    Article  Google Scholar 

  • Zhou ML, Tang YX, Wu YM (2013) Plant hairy roots for remediation of aqueous pollutants. Plant Mol Biol Report 31:1–8

    Article  CAS  Google Scholar 

  • Zipper CE, Burger JA, Skousen JG, Angel PN, Barton CD, Davis V, Franklin JA (2011) Restoring forests and associated ecosystem services on Appalachian coal surface mines. Environ Manage 47:751–765

    Article  Google Scholar 

  • Zuddas P, Podda F (2005) Variations in physico-chemical properties of water associated with bio-precipitation of hydrozincite [Zn5(CO3)2(OH)6] in the waters of Rio Naracauli, Sardinia (Italy). Appl Geochem 20:507–517

    Article  CAS  Google Scholar 

Download references

Acknowledgments

KV thanks the Government of Australia (Department of Education, Employment and Workplace Relations) for the Endeavour Executive Award, and RN acknowledges UniSA, Adelaide for providing APA scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mallavarapu Megharaj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkateswarlu, K., Nirola, R., Kuppusamy, S. et al. Abandoned metalliferous mines: ecological impacts and potential approaches for reclamation. Rev Environ Sci Biotechnol 15, 327–354 (2016). https://doi.org/10.1007/s11157-016-9398-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-016-9398-6

Keywords

Navigation