Skip to main content

Advertisement

Log in

Rhizosphere: its structure, bacterial diversity and significance

  • Review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Sustainable agricultural practices are the answer to multifaceted problems that have resulted due to prolonged and indiscriminate use of chemical based agronomic tools to improve crop productions for the last many decades. The hunt for suitable ecofriendly options to replace the chemical fertilizers and pesticides has thus been aggravated. Owing to their versatile and unmatchable capacities microbial agents offer an attractive and feasible option to develop the biological tools to replace/supplement the chemicals. Exploring the microorganisms that reside in close proximity to the plant is thus a justified move in the direction to achieve this target. One of the most lucrative options is to look into the rhizosphere. Rhizosphere may be defined as the narrow zone of soil that surrounds and get influenced by the roots of the plants. It is rich in nutrients compared to the bulk soil and hence exhibit intense biological and chemical activities. A wide range of macro and microorganisms including bacteria, fungi, virus, protozoa, algae, nematodes and microarthropods co-exist in rhizosphere and show a variety of interactions between themselves as well as with the plant. Plant friendly bacteria residing in rhizosphere which exert beneficial affect on it are called as plant growth promoting rhizobacteria (PGPR). Here we review the structure and bacterial diversity of the rhizosphere. The major points discussed here are: (1) structure and composition of the rhizosphere (2) range of bacteria found in rhizosphere and their interactions with the plant with a particular emphasis on PGPR (3) mechanisms of plant growth promotion by the PGPR (4) rhizosphere competence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahemad M, Khan MS (2010a) Phosphate-solubilizing and plant-growth-promoting Pseudomonas aeruginosa PS1 improves green gram performance in quizalafop-p-ethyl and clodinafop amended soil. Arch Environ Contam Toxicol 58:361–372

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2010b) Influence of selective herbicides on plant growth promoting traits of phosphate solubilizing Enterobacter asburiae strain PS2. Res J Microbiol 5:849–857

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2010c) Insecticide-tolerant and plant-growth-promoting Rhizobium improves the growth of lentil (Lens esculentus) in insecticide-stressed soils. Pest Manag Sci 67:423–429

    Google Scholar 

  • Ahemad M, Khan MS (2011) Pseudomonas aeruginosa strain PS1 enhances growth parameters of green gram [Vigna radiata (L.) Wilczek] in insecticide-stressed soils. J Pest Sci 84:123–131

    Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 168:173–181

    Google Scholar 

  • Akhtar MS, Siddiqui ZA (2009) Use of plant growth-promoting rhizobacteria for the biocontrol of root-rot disease complex of chickpea. Australas Plant Pathol 38:44–50

    Google Scholar 

  • Aneja KR (2003) Experiments in microbiology, plant pathology and biotechnology. Age International (P) Limited Publishers, New Delhi

    Google Scholar 

  • Antoun H, Prevost D (2005) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Netherlands, pp 1–38

    Google Scholar 

  • Atlas RM, Bartha R (1993) Microbial ecology: fundamentals and applications. Benjamin/Cummings, Redwood City

    Google Scholar 

  • Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740

    CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    CAS  Google Scholar 

  • Barea JM (2000) Rhizosphere and mycorrhiza of field crops. In: Balazs E, Galante E, Lynch JM, Schepers JS, Toutant JP, Werner D, Werry PJ (eds) Biological resource management: connecting science and policy. Springer, New York, pp 110–125

    Google Scholar 

  • Bargabus-Larson RL, Jacobsen BJ (2007) Biocontrol elicited systemic resistance in sugar beet is salicylic acid independent and NPR1 dependent. J Sugar Beet Res 44:17–33

    Google Scholar 

  • Barriuso J, Solano BR, Lucas JA, Lobo AP, Villaraco AG, Manero FJG (2008) Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR). In: Ahmad I, Pichtel J, Hayat S (eds) Plant–bacteria interactions: strategies and techniques to promote plant growth. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, pp 1–17

    Google Scholar 

  • Belimov AA, Kojemiakov AP, Chuvarliyeva CV (1995) Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria. Plant Soil 173:29–37

    CAS  Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz K, Stepanok VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652

    CAS  Google Scholar 

  • Berg G (2000) Diversity of antifungal and plant-associated Serratia plymuthica strains. J Appl Microbiol 88:952–960

    CAS  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    CAS  Google Scholar 

  • Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338

    CAS  Google Scholar 

  • Berg G, Zachow C, Lottmann J, Gotz M, Costa R, Smalla K (2005) Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Appl Environ Microbiol 71:4203–4213

    CAS  Google Scholar 

  • Berg G, Opelt K, Zachow C, Lottmann J, Gotz M, Costa R, Smalla K (2006) The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiol Ecol 56:250–261

    CAS  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB (2000) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64:1644–1650

    CAS  Google Scholar 

  • Bolton HJ, Fredrickson JK, Elliott LF (1993) Microbial ecology of the rhizosphere. In: Metting FBJ (ed) Soil microbial ecology. Marcel Dekker, New York, pp 27–63

    Google Scholar 

  • Bottini R, Cassan F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    CAS  Google Scholar 

  • Bowen G, Rovira A (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102

    Google Scholar 

  • Brimecombe MJ, de Leij FA, Lynch JM (2001) The effect of root exudates on rhizosphere microbial populations. In: Pinto R, Varanini Z, Nannipierei P (eds) The rhizosphere. Marcel Dekker, New York, pp 95–141

    Google Scholar 

  • Brophy LS, Heichel GH (1989) Nitrogen release from roots of alfalfa and soybean grown in sand culture. Plant Soil 116:77–84

    CAS  Google Scholar 

  • Butler JL, Williams MA, Bottomley PJ, Myrold DD (2003) Microbial community dynamics associated with rhizosphere carbon flow. Appl Environ Microbiol 69:6793–6800

    CAS  Google Scholar 

  • Buyer JS, Roberts DP, Russek-Cohen E (2002) Soil and plant effects on microbial community structure. Can J Microbiol 48:955–964

    CAS  Google Scholar 

  • Cadena MB, Burelle NK, Lawrence KS, van Santen E, Kloepper JW (2008) Suppressiveness of root-knot nematodes mediated by rhizobacteria. Biol Control 47:55–59

    Google Scholar 

  • Cameron RK, Dixon R, Lamb C (1994) Biologically induced systemic acquired resistance in Arabidopsis thaliana. Plant J 5:715–725

    Google Scholar 

  • Cawoy H, Bettiol W, Fickers P, Ongena M (2011) Bacillus based biological control of plant diseases. In: Stoytcheva M (ed) Pesticides in the modern world—pesticides use and management. InTech, Rijeka, pp 273–302

    Google Scholar 

  • Chaiharn M, Chunhaleuchanon S, Lumyong S (2009) Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World J Microbiol Biotechnol 25:1919–1928

    Google Scholar 

  • Chanway CP, Holl FB (1992) Influence of soil biota on Douglas fir (Pseudotsuga menziesii) seedling growth: the role of rhizosphere bacteria. Can J Bot 70:1025–1031

    Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Google Scholar 

  • Cheng W, Gershenson A (2007) Carbon fluxes in the rhizosphere. In: Cardon ZG, Whitbeck JL (eds) The rhizosphere—an ecological perspective. Academic Press, San Diego, CA, pp 31–56

    Google Scholar 

  • Clark FE (1949) Soil microorganisms and plant roots. Adv Agron 1:241–288

    CAS  Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Critical Rev Microbiol 21:1–18

    Google Scholar 

  • Couillerot O, Prigent-Combaret C, Caballero-Mellado J, Moenne-Loccoz Y (2009) Pseudomonas fluorescens and closely-related fluorescent pseudomonads as biocontrol agents of soil-borne phytopathogens. Lett Appl Microbiol 48:505–512

    CAS  Google Scholar 

  • Cullimore DR, Woodbine M (1963) Rhizosphere effect of the pea root on soil algae. Nature 198:304–305

    Google Scholar 

  • Curl EA, Truelove B (1986) The rhizosphere. Springer, Berlin

    Google Scholar 

  • de Meyer G, Hofte M (1997) Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588–593

    Google Scholar 

  • de Weger LA, van der Vlugt CIM, Wijfjes AHM, Bakker PAHM, Schippers B, Lugtenberg BJJ (1987) Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J Bacteriol 169:2769–2773

    Google Scholar 

  • de Weger LA, Bakker PAHM, Schippers B, van Loosdrecht MCM, Lugtenberg BJJ (1989) Pseudomonas spp. with mutational changes in the O-antigenic side chain of their lipopolysaccharide are affected in their ability to colonize potato roots. In: Lugtenberg BJJ (ed) Signal molecules in plants and plant–microbe interactions. Springer, Berlin, pp 197–202

    Google Scholar 

  • Elad Y, Chet I (1987) Possible role of competition for nutrients in biocontrol of Pythium damping off by bacteria. Phytopathology 77:90–195

    Google Scholar 

  • Fang M, Kremer RJ, Motavalli PP, Davis G (2005) Bacterial diversity of rhizospheres of non-transgenic and transgenic corn. Appl Environ Microbiol 71:4132–4136

    CAS  Google Scholar 

  • Farrar J, Hawes M, Jones D et al (2003) How roots control the flux of carbon to the rhizosphere. Ecology 84:827–837

    Google Scholar 

  • Fernandez LA, Zalba P, Gomez MA, Sagardoy MA (2007) Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under green house conditions. Biol Fertil Soils 43:803–805

    Google Scholar 

  • Fischer SE, Fischer SI, Magris S, Mori GB (2006) Isolation and characterization of bacteria from the rhizosphere of wheat. World J Microbiol Biotechnol 23:895–903

    Google Scholar 

  • Foster RC (1988) Microenvironments of soil microorganisms. Biol Fertil Soils 6:189–203

    Google Scholar 

  • Frankenberger WTJ, Arshad M (1995) Phytohormones in soil: microbial production and function. Dekker, New York

    Google Scholar 

  • Fridlender M, Inbar J, Chet I (1993) Biological control of soilborne plant pathogens by a β-1, 3 glucanase-producing Pseudomonas cepacia. Soil Biol Biochem 25:1211–1221

    CAS  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270

    CAS  Google Scholar 

  • Garland JL (1996) Patterns of potential C source utilization by rhizosphere communities. Soil Biol Biochem 36:489–498

    Google Scholar 

  • Gholami A, Shahsavani S, Nezarat S (2009) The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. Int J Biol Life Sci 1:35–40

    Google Scholar 

  • Gillis M, Kersters K, Hoste B, Janssens D, Kroppenstedt RM, Stephan MP, Teixeira KRS, Dobereiner J, de Ley J (1989) Acetobacter diazotrophicus sp. nov., a nitrogen fixing acetic acid bacterium associated with sugarcane. Int J Syst Bacteriol 39:361–364

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth promotion by free living bacterial. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  • Gobat JM, Aragno M, Matthey W (2004) The living soil: fundamentals of soil science and soil biology. Science Publishers, USA

    Google Scholar 

  • Gomes NCM, Fagbola O, Costa R, Rumjanek NG, Buchner A, Mendona-Hagler L, Smalla K (2003) Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl Environ Microbiol 69:3758–3766

    CAS  Google Scholar 

  • Gow NAR, Campbell TA, Morris BM, Osborne MC, Reid B, Shepherd SJ, van West P (1999) Signals and interaction between phytopathogenic zoospores and plant roots. In: England R, Hobbs G, Bainton N, Roberts DMCL (eds) Microbial signaling and communication. University Press, Cambridge, pp 285–305

    Google Scholar 

  • Granero FM, Capdevila S, Contreras MS, Martyn M, Rivilla R (2005) Two site-specific recombinases are implicated in phenotypic variation and competitive rhizosphere colonization in Pseudomonas fluorescens. Microbiol 151:975–983

    Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412

    CAS  Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56

    Google Scholar 

  • Grayston SJ, Wang SQ, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    CAS  Google Scholar 

  • Greenberg BM, Huang XD, Gerwing P, Yu XM, Chang P, Wu SS, Gerhardt K, Nykamp J, Lu X, Glick B (2008) Phytoremediation of salt impacted soils: greenhouse and the field trials of plant growth promoting rhizobacteria (PGPR) to improve plant growth and salt phytoaccumulation. In: Proceeding of the 33rd AMOP technical seminar on environmental contamination and response. Environment Canada, Ottawa, ON, pp 627–637

  • Hadfield W (1960) Rhizosphere effect on soil algae. Nature 185:179–180

    Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Google Scholar 

  • Hiltner L (1904) About new experiences and problems in the field of Bodenbakteriologie. Works Ger Agric Soc 98:59–78

    Google Scholar 

  • Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol 168:293–303

    CAS  Google Scholar 

  • Hu X, Li W, Chen Q, Yang Y (2009) Early signal transduction linking the synthesis of jasmonic acid in plant. Plant Signal Behav 4:696–697

    CAS  Google Scholar 

  • Huang CJ, Wang TK, Chung SC, Chen CY (2005) Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. J Biochem Mol Biol 38:82–88

    CAS  Google Scholar 

  • Hwang BK, Ahn SJ, Moon SS (1994) Production, purification and antifungal activity of the antibiotic nucleoside, tubercidin, produced by Streptomyces violaceoniger. Can J Bot 72:480–485

    CAS  Google Scholar 

  • Ibekwe AM, Poss JA, Grattan SR, Grieve CM, Suarez D (2010) Bacterial diversity in cucumber (Cucumis sativus) rhizosphere in response to salinity, soil pH, and boron. Soil Biol Biochem 42:567–575

    CAS  Google Scholar 

  • Igual JM, Valverde A, Cervantes E, Velazquez E (2001) Phosphate-solubilizing bacteria as inoculants for agriculture: use of updated molecular techniques in their study. Agronomie 21:561–568

    Google Scholar 

  • Jaeger JH, Lindow SE, Miller S, Clark E, Firestone MK (1999) Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol 65:2685–2690

    CAS  Google Scholar 

  • Jangu OP, Sindhu SS (2011) Differential response of inoculation with indole acetic acid producing Pseudomonas sp. in green gram (Vigna radiata L.) and black gram (Vigna mungo L.). Microbiol J 1:159–173

    Google Scholar 

  • Jayaprakashvel M, Muthezhilan R, Srinivasan R, Hussain JA, Gobalakrishnan S, Bhagat J, Kaarthikeyan C, Muthulakshmi R (2010) Hydrogen cyanide mediated biocontrol potential of Pseudomonas sp. AMET1055 isolated from the rhizosphere of coastal sand dune vegetation. Adv Biotech 9:39–42

    Google Scholar 

  • Jeffery S, Gardi C, Jones A, Montanarella L, Marmo L, Miko L, Ritz K, Peres G, Roombke J, van der Putten WH (eds) (2010) The soil environment. In: European atlas of soil biodiversity, European Commission, Publications office of the European Union, Luxembourg, pp 17–48

  • Jeon JS, Lee SS, Kim HY, Ahn TS, Song HG (2003) Plant growth promotion in soil by some inoculated microorganisms. J Microbiol 41:271–276

    CAS  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    CAS  Google Scholar 

  • Joshi P, Bhatt AB (2010) Diversity and function of plant growth promoting rhizobacteria associated with wheat rhizosphere in north Himalayan region. Int J Environ Sci 1:1135–1144

    Google Scholar 

  • Joshi P, Tyagi V, Bhatt AB (2011) Characterization of rhizobacteria diversity isolated from Oryza sativa cultivated at different altitude in north Himalaya. Adv Appl Sci Res 2:208–216

    Google Scholar 

  • Kamensky M, Ovadis M, Chet I, Chernin L (2003) Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol Biochem 35:323–331

    CAS  Google Scholar 

  • Katznelson H, Lochhead AG, Timonin MI (1948) Soil microorganisms and the rhizosphere. Botan Rev 14:543–587

    Google Scholar 

  • Kim PI, Bai H, Bai D, Chae H, Chung S, Kim Y, Park R, Chi YT (2004) Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J Appl Microbiol 97:942–949

    CAS  Google Scholar 

  • Kloepper JW (1994) Plant growth-promoting rhizobacteria (other systems). In: Okon Y (ed) Azospirillum/plant associations. CRC Press, Boca Raton, FL, USA, pp 111–118

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Gilbert C (ed) Proceedings 4th international conference on plant pathogenic bacteria, Tours, France, pp 879–882

  • Kloepper JW, Zablotowick RM, Tipping EM, Lifshitz R (1991) Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 315–326

    Google Scholar 

  • Kloepper JW, Ubana RR, Zehnder GW, Murphy JF, Sikora E, Fernandez C (1999) Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Aust Plant Pathol 28:21–26

    Google Scholar 

  • Kochian L, Pineros M, Hoekenga O (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195

    CAS  Google Scholar 

  • Koo SY, Cho KS (2009) Isolation and characterization of a plant growth-promoting rhizobacterium, Serratia sp. SY5. J Microbiol Biotechnol 19:1431–1438

    CAS  Google Scholar 

  • Kreuzer K, Adamczyk J, Iijima M, Wagner M, Scheu S, Bonkowski M (2006) Grazing of a common species of soil protozoa (Acanthamoeba castellanii) affects rhizosphere bacterial community composition and root architecture of rice (Oryza sativa L.). Soil Biol Biochem 38:1665–1672

    CAS  Google Scholar 

  • Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78:366–371

    Google Scholar 

  • Lynch JM (1987) The rhizosphere. Wiley Interscience, Chichester

    Google Scholar 

  • Lynch JM (1990) Some consequences of microbial rhizosphere competence for plant and soil. In: Lynch JM (ed) The rhizosphere. Wiley Interscience, New York, pp 1–10

    Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10

    Google Scholar 

  • MacDonald LM, Paterson E, Dawson LA, McDonald AJS (2004) Short-term effects of defoliation on the soil microbial community associated with two contrasting Lolium perenne cultivars. Soil Biol Biochem 36:489–498

    CAS  Google Scholar 

  • Maurhofer M, Keel C, Haas D, Defago G (1994) Pyoluteorin production by Pseudomonas fluorescens strain CHA0 is involved in the suppression of Pythium damping-off of cress but not of cucumber. Eur J Plant Pathol 100:221–232

    CAS  Google Scholar 

  • Maurhofer M, Reimann C, Sacherer SP, Heebs S, Haas D, Defago G (1998) Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against necrosis virus. Phytopathology 88:678–684

    CAS  Google Scholar 

  • Mazzola M, Cook RJ, Thomashow LS, Weller DM, Pierson LS (1992) Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent Pseudomonads in soil habitats. Appl Environ Microbiol 58:2616–2624

    CAS  Google Scholar 

  • Morgan JAW, Whipps JM (2001) Methodological approaches to the study of rhizosphere carbon flow and microbial population dynamics. In: Pinton A, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 373–409

    Google Scholar 

  • Morgan JAW, Bending GD, White PJ (2005) Biological costs and benefits to plant–microbe interactions in the rhizosphere. J Exp Bot 56:1729–1739

    CAS  Google Scholar 

  • Murphy JF, Zehnder GW (2000) Plant growth-promoting rhizobacterial mediated protection in tomato against tomato mottle virus. Plant Dis 84:779–784

    Google Scholar 

  • Naik PR, Raman G, Narayanan KB, Sakthivel N (2008) Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiol 8:230–243

    Google Scholar 

  • Nandakumar R, Babu S, Raguchander T, Samiyappan R (2007) Chitinolytic activity of native Pseudomonas fluorescens strains. J Agri Sci Technol 9:61–68

    Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G, Valori F (2007) Microbial diversity and microbial activity in the rhizosphere. Ciencia del Suelo (Argentina) 25:89–97

    Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23:375–396

    CAS  Google Scholar 

  • Nie M, Zhang XD, Wang JQ et al (2009) Rhizosphere effects on soil bacterial abundance and diversity in the Yellow river deltaic ecosystem as influenced by petroleum contamination and soil salinization. Soil Biol Biochem 41:2535–2542

    CAS  Google Scholar 

  • Noel TC, Sheng C, Yost CK, Pharis RP, Hynes MF (1996) Rhizobium leguminosarum as a plant growth promoting rhizobacterium: direct growth promotion of canola and lettuce. Can J Microbiol 42:279–293

    CAS  Google Scholar 

  • Nowak J (1998) Benefits of in vitro ‘‘biotization’’ of plant tissue cultures with microbial inoculants. In vitro Cell Dev Biol Plant 34:122–130

    Google Scholar 

  • Parmar N, Dufresne J (2011) Beneficial interactions of plant growth promoting rhizosphere microorganisms. In: Singh A et al (eds) Bioaugmentation, biostimulation and biocontrol, soil biology, vol 28. Springer, Berlin, pp 27–42

    Google Scholar 

  • Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2007) Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol 173:600–610

    CAS  Google Scholar 

  • Phillips DA, Fox TC, King MD, Bhuvaneswar TV, Teuber LR (2004) Microbial products trigger amino acids exudation from plant roots. Plant Physiol 136:2887–2894

    CAS  Google Scholar 

  • Phillips DA, Fox TC, Six J (2006) Root exudation (net efflux of amino acids) may increase rhizodeposition under elevated CO2. Global Change Biol 12:561–567

    Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2001) The rhizosphere as a site of biochemical interactions among soil components, plants and microorganisms. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 1–17

    Google Scholar 

  • Rajkumar M, Freitas H (2008) Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71:834–842

    CAS  Google Scholar 

  • Rawat S, Izhari A, Khan A (2011) Bacterial diversity in wheat rhizosphere and their characterization. Adv Appl Sci Res 2:351–356

    Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    CAS  Google Scholar 

  • Rokhbakhsh-Zamin F, Sachdev D, Kazemi-Pour N, Engineer A, Pardesi KR, Zinjarde S, Dhakephalkar PK, Chopade BA (2011) Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J Microbiol Biotechnol 21:556–566

    Google Scholar 

  • Rouatt JW, Katznelson H, Payne TMB (1960) Statistical evaluation of the rhizosphere effect. Soil Sci Soc Amer Proc 24:271–273

    Google Scholar 

  • Rougier M, Chaboud A (1989) Biological functions of mucilages secreted by roots. Symp Soc Exp Biol 43:449–454

    CAS  Google Scholar 

  • Rovira AD (1956) Plant root excretions in relation to the rhizosphere effect I. Plant Soil 7:178–194

    Google Scholar 

  • Sahu GK, Sindhu SS (2011) Disease control and plant growth promotion of green gram by siderophore producing Pseudomonas sp. Res J Microbiol 6:735–749

    Google Scholar 

  • Sessitsch A, Coenye T, Sturz AV, Vandamme P, Barka EA, Salles JF, van Elsas D, Faure JD, Reiter B, Glick BR, Pruski GW, Nowak J (2005) Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Sys Evol Microbiol 55:1187–1192

    CAS  Google Scholar 

  • Shetty KG, Hetrick BAD, Figge DAH, Schwab AP (1994) Effects of mycorrhizae and other soil microbes on revegetation of heavy metal contaminated mine spoil. Environ Poll 86:181–188

    CAS  Google Scholar 

  • Slusarenko AJ, Epperlein M, Wood RKS (1983) Agglutination of plant pathogenic and certain other bacteria by pectic polysaccharides from various plant species. Phytopathology 106:337–343

    Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751

    CAS  Google Scholar 

  • Smit G, Kijne JW, Lugtenberg BJJ (1986) Correlation between extracellular fibrils and attachment of Rhizobium leguminosarum to pea root hair tips. J Bacteriol 168:821–827

    CAS  Google Scholar 

  • Sobral JK, Araujo WL, Mendes R, Geraldi IO, Kleiner AAP, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Google Scholar 

  • Soltani AA, Khavazi K, Rahmani HA, Omidvari M, Dahaji PA, Mirhoseyni H (2010) Plant growth promoting characteristics in some Flavobacterium spp. isolated from soils of Iran. J Agri Sci 2:106–115

    Google Scholar 

  • Steer J, Harris JA (2000) Shifts in the microbial community in rhizosphere and non-rhizosphere soils during the growth of Agrostis stolonifera. Soil Biol Biochem 32:869–878

    CAS  Google Scholar 

  • Teixeira LCRS, Peixoto RS, Cury JC, Sul WJ, Pellizari VH, Tiedje J, Rosado AS (2010) Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. ISME J 4:989–1001

    Google Scholar 

  • Thomashow LS, Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508

    CAS  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK, Johri BN (2005) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    CAS  Google Scholar 

  • Trevors JT, van Elas JD (1997) Microbial interaction in soil. In: van Elas JD, Trevars JT, Wellington EMH (eds) Modern soil microbiology. Marcel Dekker, New York, pp 215–243

    Google Scholar 

  • Uren NC (2001) Types, amounts and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 19–40

    Google Scholar 

  • van Loon LC (2007) Plant responses to plant growth promoting bacteria. Eur J Plant Pathol 119:243–254

    Google Scholar 

  • Velineni S, Brahmaprakash GP (2011) Survival and phosphate solubilizing ability of Bacillus megaterium in liquid inoculants under high temperature and desiccation stress. J Agr Sci Tech 13:795–802

    CAS  Google Scholar 

  • Vesper SJ (1987) Production of pili (fimbriae) by Pseudomonas fluorescens and correlation with attachment to corn roots. Appl Environ Microbiol 53:1397–1405

    CAS  Google Scholar 

  • Vesper SJ, Bauer WD (1986) Role of pili (fimbriae) in attachment of Bradyrhizobium japonicum to soybean roots. Appl Environ Microbiol 52:134–141

    CAS  Google Scholar 

  • Viveros OM, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Google Scholar 

  • Wacquant JP, Ouknider M, Jacquard P (1989) Evidence for a periodic excretion of nitrogen by roots of grass-legume associations. Plant Soil 116:57–68

    CAS  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1996) Induced systemic resistance to cucumber diseases and increased plant growth by plant growth promoting rhizobacteria under field conditions. Phytopathology 86:221–224

    Google Scholar 

  • Weishuang Z, Yingheng FEI, Yi H (2009) Soluble protein and acid phosphatase exuded by ectomycorrhizal fungi and seedlings in response to excessive Cu and Cd. J Environ Sci 21:1667–1672

    Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Google Scholar 

  • Whipps JM (1990) Carbon economy. In: Lynch JM (ed) The rhizosphere. Wiley and Son, Chichester, UK, pp 59–87

    Google Scholar 

  • Whipps JM, Lynch JM (1985) Energy losses by the plant in rhizodeposition. Ann Proceedings Phytochem J Eur 26:59–71

    Google Scholar 

  • Zehnder G, Kloepper JW, Yao C, Wei G (1997) Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth-promoting rhizobacteria. J Econ Entomol 90:391–396

    Google Scholar 

  • Zhu F, Qu L, Hong X, Sun X (2011) Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of yellow sea of China. J Evid Based Complement Altern 2011:1–6

  • Zwart KB, Kuikman PJ, van Veen JA (1994) Rhizosphere protozoa: their significance in nutrient dynamics. In: Darbyshire JF (ed) Soil protozoa. CAB International, Wallingford, pp 93–122

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratibha Prashar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prashar, P., Kapoor, N. & Sachdeva, S. Rhizosphere: its structure, bacterial diversity and significance. Rev Environ Sci Biotechnol 13, 63–77 (2014). https://doi.org/10.1007/s11157-013-9317-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-013-9317-z

Keywords

Navigation