Skip to main content

Advertisement

Log in

Potential of plant as a biological factory to synthesize gold and silver nanoparticles and their applications

  • Review Paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Green synthesis of metallic nanoparticles has become a promising field of research in recent years. Syntheses of gold and silver nanoparticles by various chemical and physical methods as well as the biosynthetic approach mediated by numerous microorganisms have been actively researched. A more scalable and economic route to produce these metallic nanoparticles would be through the plant-mediated synthetic approach. Owing to the biodiversity of plant biomasses, the mechanism by which bioconstituents of plants have contributed to the synthetic process is yet to be fully understood. Nevertheless, the feasibility of controlling the shape and size of nanoparticles by varying the reaction conditions has been demonstrated in many studies. This paper provides an overview of the plant-mediated syntheses of gold and silver nanoparticles, possible compounds and mechanisms that might be responsible for the bioreduction process as well as the potential applications of biosynthesized nanoparticles in different fields. The challenges and limitations of this plant-mediated biosynthetic approach are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abu Bakar NHH, Ismail J, Abu Bakar M (2007) Synthesis and characterization of silver nanoparticles in natural rubber. Mater Chem Phys 104(2–3):276–283

    CAS  Google Scholar 

  • Adlim M, Abu Bakar M, Liew KY, Ismail J (2004) Synthesis of chitosan-stabilized platinum and palladium nanoparticles and their hydrogenation activity. J Mol Catal A Chem 212(1–2):141–149

    CAS  Google Scholar 

  • Ahmad N, Sharma S, Alam MK, Singh VN, Shamsi SF, Mehta BR, Fatma A (2010) Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B 81(1):81–86

    CAS  Google Scholar 

  • Alvarez-Puebla RA, Dos Santos DS Jr, Aroca RF (2007) SERS detection of environmental pollutants in humic acid-gold nanoparticle composite materials. Analyst 132(12):1210–1214

    CAS  Google Scholar 

  • Andreeva D (2002) Low temperature water gas shift over gold catalysts. Gold Bull 35(3):82–88

    CAS  Google Scholar 

  • Armendariz V, Herrera I, Peralta-Videa JR, Jose-Yacaman M, Troiani H, Santiago P, Gardea-Torresdey JL (2004) Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res 6(4):377–382

    CAS  Google Scholar 

  • Asare N, Instanes C, Sandberg WJ, Refsnes M, Schwarze P, Kruszewski M, Brunborg G (2012) Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology 291(1–3):65–72

    CAS  Google Scholar 

  • Bali R, Harris AT (2010) Biogenic synthesis of Au nanoparticles using vascular plants. Ind Eng Chem Res 49(24):12762–12772. doi:10.1021/ie101600m

    CAS  Google Scholar 

  • Bangs LB (1996) New developments in particle-based immunoassays: introduction. Pure Appl Chem 68(10):1873–1879

    CAS  Google Scholar 

  • Bankar A, Joshi B, Ravi Kumar A, Zinjarde S (2010) Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf B 80(1):45–50

    CAS  Google Scholar 

  • Bansal V, Sanyal A, Rautaray D, Ahmad A, Sastry M (2005) Bioleaching of sand by the fungus fusarium oxysporum as a means of producing extracellular silica nanoparticles. Adv Mater 17(7):889–892

    CAS  Google Scholar 

  • Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A (2009) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf A 339(1–3):134–139

    CAS  Google Scholar 

  • Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5(16):1897–1910

    CAS  Google Scholar 

  • Basri H, Ismail AF, Aziz M (2011) Polyethersulfone (PES)-silver composite UF membrane: effect of silver loading and PVP molecular weight on membrane morphology and antibacterial activity. Desalination 273(1):72–80

    CAS  Google Scholar 

  • Becker RO (1999) Silver ions in the treatment of local infections. Met-Based Drugs 6(4–5):311–314

    CAS  Google Scholar 

  • Bhattarai SR, Bahadur KCR, Aryal S, Bhattarai N, Kim SY, Yi HK, Hwang PH, Kim HY (2008) Hydrophobically modified chitosan/gold nanoparticles for DNA delivery. J Nanopart Res 10(1):151–162

    CAS  Google Scholar 

  • Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB (2007) Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res 24(8):1415–1426

    CAS  Google Scholar 

  • Burns C, Spendel WU, Puckett S, Pacey GE (2006) Solution ionic strength effect on gold nanoparticle solution color transition. Talanta 69(4):873–876

    CAS  Google Scholar 

  • Carrettin S, McMorn P, Johnston P, Griffin K, Hutchings GJ (2002) Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. Chem Commun 7:696–697

    Google Scholar 

  • Castro L, Blázquez ML, González F, Muñoz JA, Ballester A (2010) Extracellular biosynthesis of gold nanoparticles using sugar beet pulp. Chem Eng J 164(1):92–97

    CAS  Google Scholar 

  • Chang ALS, Khosravi V, Egbert B (2006) A case of argyria after colloidal silver ingestion. J Cutan Pathol 33(12):809–811

    Google Scholar 

  • Chen X, Parker SG, Zou G, Su W, Zhang Q (2010) β-cyclodextrin-functionalized silver nanoparticles for the naked eye detection of aromatic isomers. ACS Nano 4(11):6387–6394

    CAS  Google Scholar 

  • Chou WL, Yu DG, Yang MC (2005) The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment. Polym Adv Technol 16(8):600–607

    CAS  Google Scholar 

  • Christensen CH, Nørskov JK (2010) Green gold catalysis. Science 327(5963):278–279

    Google Scholar 

  • Chuang YC, Li JC, Chen SH, Liu TY, Kuo CH, Huang WT, Lin CS (2010) An optical biosensing platform for proteinase activity using gold nanoparticles. Biomaterials 31(23):6087–6095

    CAS  Google Scholar 

  • Claus P (2005) Heterogeneously catalysed hydrogenation using gold catalysts. Appl Catal A 291(1–2):222–229

    CAS  Google Scholar 

  • Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1(3):325–327

    CAS  Google Scholar 

  • Cruz D, Falé PL, Mourato A, Vaz PD, Luisa Serralheiro M, Lino ARL (2010) Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena). Colloids Surf B 81(1):67–73

    CAS  Google Scholar 

  • Das RK, Gogoi N, Bora U (2011a) Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract. Bioprocess Biosyst Eng 34(5):615–619

    CAS  Google Scholar 

  • Das RK, Sharma P, Nahar P, Bora U (2011b) Synthesis of gold nanoparticles using aqueous extract of Calotropis procera latex. Mater Lett 65(4):610–613

    CAS  Google Scholar 

  • Davies RL, Etris SF (1997) The development and functions of silver in water purification and disease control. Catal Today 36(1):107–114

    CAS  Google Scholar 

  • Dhar S, Maheswara Reddy E, Shiras A, Pokharkar V, Prasad BLV (2008) Natural gum reduced/stabilized gold nanoparticles for drug delivery formulations. Chem Eur J 14(33):10244–10250

    CAS  Google Scholar 

  • Du L, Jiang H, Liu X, Wang E (2007) Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem Commun 9(5):1165–1170

    CAS  Google Scholar 

  • Dubey SP, Lahtinen M, Särkkä H, Sillanpää M (2010) Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids Surf B 80(1):26–33

    CAS  Google Scholar 

  • Dwivedi AD, Gopal K (2010) Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf A 369(1–3):27–33

    CAS  Google Scholar 

  • Dwivedi AD, Gopal K (2011) Plant-mediated biosynthesis of silver and gold nanoparticles. J Biomed Nanotechnol 7(1):163–164

    CAS  Google Scholar 

  • Egorova EM, Revina AA (2000) Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin. Colloids Surf A 168(1):87–96

    CAS  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6

    Google Scholar 

  • Elliott DW, Zhang WX (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35(24):4922–4926

    CAS  Google Scholar 

  • Fiehn O, Kopka J, Trethewey RN, Willmitzer L (2000) Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal Chem 72(15):3573–3580

    CAS  Google Scholar 

  • Gamez G, Gardea-Torresdey JL, Tiemann KJ, Parsons J, Dokken K, Yacaman MJ (2003) Recovery of gold (III) from multi-elemental solutions by alfalfa biomass. Adv Environ Res 7(2):563–571

    CAS  Google Scholar 

  • Gardea-Torresdey JL, Tiemann KJ, Gamez G, Dokken K, Tehuacanero S, José-Yacamán M (1999) Gold nanoparticles obtained by bio-precipitation from gold(III) solutions. J Nanopart Res 1(3):397–404

    CAS  Google Scholar 

  • Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ (2002a) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2(4):397–401

    CAS  Google Scholar 

  • Gardea-Torresdey JL, Tiemann KJ, Parsons JG, Gamez G, Herrera I, Jose-Yacaman M (2002b) XAS investigations into the mechanism(s) of Au(III) binding and reduction by alfalfa biomass. Microchem J 71(2–3):193–204

    CAS  Google Scholar 

  • Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19(4):1357–1361

    CAS  Google Scholar 

  • Ghodake GS, Deshpande NG, Lee YP, Jin ES (2010) Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates. Colloids Surf B 75(2):584–589

    CAS  Google Scholar 

  • Gibson JD, Khanal BP, Zubarev ER (2007) Paclitaxel-functionalized gold nanoparticles. J Am Chem Soc 129(37):11653–11661

    CAS  Google Scholar 

  • Girling CA, Peterson PJ (1978) Uptake, transport and localization of gold in plants. Trace Subst Environ Health 12:105–111

    Google Scholar 

  • Girling CA, Peterson PJ (1980) Gold in plants. Gold Bull 13(4):151–157

    CAS  Google Scholar 

  • Girling CA, Peterson PJ, Warren HV (1979) Plants as indicators of gold mineralization at Watson bar, British Columbia, Canada. Economic Geol Lancaster Pa 74(4):902–907

    CAS  Google Scholar 

  • Goodman CM, Chari NS, Han G, Hong R, Ghosh P, Rotello VM (2006) DNA-binding by functionalized gold nanoparticles: mechanism and structural requirements. Chem Biol Drug Des 67(4):297–304

    CAS  Google Scholar 

  • Goodwin TW, Mercer EI (1985) Introduction to plant biochemistry, 2nd edn. Pergamon Press, New York, pp 140–161

  • Grisel R, Weststrate KJ, Gluhoi A, Nieuwenhuys BE (2002) Catalysis by gold nanoparticles. Gold Bull 35(2):39–45

    CAS  Google Scholar 

  • Gruen LC (1975) Interaction of amino acids with silver(I) ions. Biochim Biophys Acta 386(1):270–274

    CAS  Google Scholar 

  • Han MJ, Hao J, Xu Z, Meng X (2011) Surface-enhanced Raman scattering for arsenate detection on multilayer silver nanofilms. Anal Chim Acta 692(1–2):96–102

    CAS  Google Scholar 

  • Haratifar E, Shahverdi HR, Shakibaie M, Mollazadeh Moghaddam K, Amini M, Montazeri H, Shahverdi AR (2009) Semi-biosynthesis of magnetite-gold composite nanoparticles using an ethanol extract of Eucalyptus camaldulensis and study of the surface chemistry. J Nanomater 2009(962021):5. doi:10.1155/2009/962021

  • Haverkamp RG, Marshall AT (2009) The mechanism of metal nanoparticle formation in plants: limits on accumulation. J Nanopart Res 11(6):1453–1463

    CAS  Google Scholar 

  • He L, Ni J, Sun H, Cao Y (2009) Gold nanocatalysis for green synthesis of fine chemicals: Opportunities and challenges. Cuihua Xuebao/Chinese J Catalysis 30(9):958–964

    CAS  Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007a) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18(10):105104

  • Huang X, Qian W, El-Sayed IH, El-Sayed MA (2007b) The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Lasers Surg Med 39(9):747–753

    Google Scholar 

  • Huang J, Lin L, Li Q, Sun D, Wang Y, Lu Y, He N, Yang K, Yang X, Wang H, Wang W, Lin W (2008) Continuous-flow biosynthesis of silver nanoparticles by lixivium of sundried cinnamomum camphora leaf in tubular microreactors. Ind Eng Chem Res 47(16):6081–6090

    CAS  Google Scholar 

  • Hughes MD, Xu YJ, Jenkins P, McMorn P, Landon P, Enache DI, Carley AF, Attard GA, Hutchings GJ, King F, Stitt EH, Johnston P, Griffin K, Kiely CJ (2005) Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437(7062):1132–1135

    CAS  Google Scholar 

  • Hung LH, Lee AP (2007) Microfluidic devices for the synthesis of nanoparticles and biomaterials. J Med Biol Eng 27(1):1–6

    Google Scholar 

  • Hutchings GJ, Haruta M (2005) A golden age of catalysis: a perspective. Appl Catal A 291(1–2):2–5

    CAS  Google Scholar 

  • Inbakandan D, Venkatesan R, Ajmal Khan S (2010) Biosynthesis of gold nanoparticles utilizing marine sponge Acanthella elongata (Dendy, 1905). Colloids Surf B Biointerfaces 81(2):634–639

    Google Scholar 

  • Jha AK, Prasad K, Kulkarni AR (2009) Plant system: nature’s nanofactory. Colloids Surf B 73(2):219–223

    CAS  Google Scholar 

  • Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V (2010) A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40(4):328–346

    CAS  Google Scholar 

  • Kalele SA, Kundu AA, Gosavi SW, Deobagkar DN, Deobagkar DD, Kulkarni SK (2006) Rapid detection of escherichia coli by using antibody-conjugated silver nanoshells. Small 2(3):335–338

    CAS  Google Scholar 

  • Kasthuri J, Kathiravan K, Rajendiran N (2009) Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. J Nanopart Res 11(5):1075–1085

    CAS  Google Scholar 

  • Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677

    CAS  Google Scholar 

  • Kim Y, Johnson RC, Hupp JT (2001) Gold nanoparticle-based sensing of “Spectroscopically Silent” heavy metal ions. Nano Lett 1(4):165–167. doi:10.1021/nl0100116

    Google Scholar 

  • Klaus-Joerger T, Joerger R, Olsson E, Granqvist CG (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19(1):15–20

    CAS  Google Scholar 

  • Konwarh R, Gogoi B, Philip R, Laskar MA, Karak N (2011) Biomimetic preparation of polymer-supported free radical scavenging, cytocompatible and antimicrobial “green” silver nanoparticles using aqueous extract of Citrus sinensis peel. Colloids Surf B 84(2):338–345

    CAS  Google Scholar 

  • Kotelnikova NE, Wegener G, Stoll M, Demidov VN (2003) Comparative study of intercalation of zero-valent silver into the cellulose matrix by raster and transmission microscopy. Russ J Appl Chem 76(1):117–123. doi:10.1023/a:1023312404620

    CAS  Google Scholar 

  • Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14(1):95–100

    CAS  Google Scholar 

  • Krasteva N, Besnard I, Guse B, Bauer RE, Müllen K, Yasuda A, Vossmeyer T (2002) Self-assembled gold nanoparticle/dendrimer composite films for vapor sensing applications. Nano Lett 2(5):551–555

    CAS  Google Scholar 

  • Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B 76(1):50–56

    CAS  Google Scholar 

  • Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84(2):151–157. doi:10.1002/jctb.2023

    CAS  Google Scholar 

  • Kumar SA, Peter Y-A, Nadeau JL (2008) Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin. Nanotechnology 19(49):495101

    Google Scholar 

  • Kumar DVR, Kasture M, Prabhune AA, Ramana CV, Prasad BLV, Kulkarni AA (2010a) Continuous flow synthesis of functionalized silver nanoparticles using bifunctional biosurfactants. Green Chem 12(4):609–615

    CAS  Google Scholar 

  • Kumar V, Yadav SC, Yadav SK (2010b) Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization. J Chem Technol Biotechnol 85(10):1301–1309

    CAS  Google Scholar 

  • Kundu S, Panigrahi S, Praharaj S, Basu S, Ghosh SK, Pal A, Pal T (2007) Anisotropic growth of gold clusters to gold nanocubes under UV irradiation. Nanotechnology 18(7):075712

    Google Scholar 

  • Kundu S, Lau S, Liang H (2009) Shape-controlled catalysis by cetyltrimethylammonium bromide terminated gold nanospheres, nanorods, and nanoprisms. J Phys Chem C 113(13):5150–5156

    CAS  Google Scholar 

  • Kwon C, Park B, Kim H, Jung S (2009) Green synthesis of silver nanoparticles by sinorhizobial octasaccharide isolated from Sinorhizobium meliloti. Bull Korean Chem Soc 30(7):1651–1654

    CAS  Google Scholar 

  • Landon P, Collier PJ, Papworth AJ, Kiely CJ, Hutchings GJ (2002) Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst. Chem Commun 18:2058–2059

    Google Scholar 

  • Landon P, Collier PJ, Carley AF, Chadwick D, Papworth AJ, Burrows A, Kiely CJ, Hutchings GJ (2003) Direct synthesis of hydrogen peroxide from H2 and O2 using Pd and Au catalysts. Phys Chem Chem Phys 5(9):1917–1923

    CAS  Google Scholar 

  • Leff DV, Ohara PC, Heath JR, Gelbart WM (1995) Thermodynamic control of gold nanocrystal size: experiment and theory. J Phys Chem 99(18):7036–7041

    CAS  Google Scholar 

  • Leonard K, Ahmmad B, Okamura H, Kurawaki J (2011) In situ green synthesis of biocompatible ginseng capped gold nanoparticles with remarkable stability. Colloids Surf B 82(2):391–396

    CAS  Google Scholar 

  • Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25(4):279–283

    CAS  Google Scholar 

  • Lin SY, Liu SW, Lin CM, Chen CH (2002) Recognition of potassium ion in water by 15-crown-5 functionalized gold nanoparticles. Anal Chem 74(2):330–335

    CAS  Google Scholar 

  • Lin Z, Wu J, Xue R, Yang Y (2005) Spectroscopic characterization of Au3+ biosorption by waste biomass of Saccharomyces cerevisiae. Spectrochim Acta Part A Mol Biomol Spectrosc 61(4):761–765

    Google Scholar 

  • Lin L, Wang W, Huang J, Li Q, Sun D, Yang X, Wang H, He N, Wang Y (2010) Nature factory of silver nanowires: plant-mediated synthesis using broth of Cassia fistula leaf. Chem Eng J 162(2):852–858

    CAS  Google Scholar 

  • Lukman AI, Gong B, Marjo CE, Roessner U, Harris AT (2011) Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. J Colloid Interface Sci 353(2):433–444

    CAS  Google Scholar 

  • Luty-Blocho M, Pacławski K, Jaworski W, Streszewski B, Fitzner K (2010) Kinetic studies of gold nanoparticles formation in the batch and in the flow microreactor system. Prog Colloid Polym Sci 138:39–43. doi:10.1007/978-3-642-19038-4_7

    Google Scholar 

  • Mafuné F, Kohno JY, Takeda Y, Kondow T (2002) Full physical preparation of size-selected gold nanoparticles in solution: Laser ablation and laser-induced size control. J Phys Chem B 106(31):7575–7577

    Google Scholar 

  • Mandal S, Selvakannan PR, Phadtare S, Pasricha R, Sastry M (2002) Synthesis of a stable gold hydrosol by the reduction of chloroaurate ions by the amino acid, aspartic acid. Proc Indian Acad Sci Chem Sci 114(5):513–520

    CAS  Google Scholar 

  • Meyre ME, Tréguer-Delapierre M, Faure C (2008) Radiation-induced synthesis of gold nanoparticles within lamellar phases. Formation of aligned colloidal gold by radiolysis. Langmuir 24(9):4421–4425

    CAS  Google Scholar 

  • Mohammed Fayaz A, Girilal M, Venkatesan R, Kalaichelvan PT (2011) Biosynthesis of anisotropic gold nanoparticles using Maduca longifolia extract and their potential in infrared absorption. Colloids Surf B 88(1):287–291

    CAS  Google Scholar 

  • MubarakAli D, Thajuddin N, Jeganathan K, Gunasekaran M (2011) Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf B 85(2):360–365

    CAS  Google Scholar 

  • Mukherjee P, Bhattacharya R, Bone N, Lee YK, Patra C, Wang S, Lu L, Secreto C, Banerjee PC, Yaszemski MJ, Kay NE, Mukhopadhyay D (2007) Potential therapeutic application of gold nanoparticles in B-chronic lymphocytic leukemia (BCLL): enhancing apoptosis. J Nanobiotechnol 5:4

    Google Scholar 

  • Nadagouda MN, Varma RS (2008) Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem 10(8):859–862

    CAS  Google Scholar 

  • Nagy A, Mestl G (1999) High temperature partial oxidation reactions over silver catalysts. Appl Catal A 188(1–2):337–353

    CAS  Google Scholar 

  • Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO (2002) Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater 1(3):169–172

    CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2008) Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett 62(30):4588–4590

    CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010a) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156(1–2):1–13

    CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2010b) Phytosynthesis of gold nanoparticles using leaf extract of Coleus amboinicus Lour. Mater Charact 61(11):1232–1238. doi:10.1016/j.matchar.2010.08.003

    CAS  Google Scholar 

  • Njagi EC, Huang H, Stafford L, Genuino H, Galindo HM, Collins JB, Hoag GE, Suib SL (2011) Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir: null–null. doi:10.1021/la103190n

  • Noruzi M, Zare D, Khoshnevisan K, Davoodi D (2011) Rapid green synthesis of gold nanoparticles using Rosa hybrida petal extract at room temperature. Spectrochim Acta Part A Mol Biomol Spectrosc 79(5):1461–1465

    CAS  Google Scholar 

  • Obare SO, Hollowell RE, Murphy CJ (2002) Sensing strategy for lithium ion based on gold nanoparticles. Langmuir 18(26):10407–10410

    CAS  Google Scholar 

  • Okitsu K, Mizukoshi Y, Yamamoto TA, Maeda Y, Nagata Y (2007) Sonochemical synthesis of gold nanoparticles on chitosan. Mater Lett 61(16):3429–3431

    CAS  Google Scholar 

  • Orendorff CJ, Gole A, Sau TK, Murphy CJ (2005) Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence. Anal Chem 77(10):3261–3266

    CAS  Google Scholar 

  • Paciotti GF, Myer L, Kingston DGI, Ganesh T, Tamarkin L (2005) Colloidal gold nanoparticles: a versatile platform for developing tumor targeted cancer therapies. In: Technical proceedings of the 2005 NSTI nanotechnology conference and trade show, pp 7–10

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720

    CAS  Google Scholar 

  • Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3(11):1941–1949

    CAS  Google Scholar 

  • Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5(18):2067–2076

    CAS  Google Scholar 

  • Panda KK, Achary VMM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN, Panda BB (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol In Vitro 25(5):1097–1105

    CAS  Google Scholar 

  • Panigrahi S, Kundu S, Ghosh S, Nath S, Pal T (2004) General method of synthesis for metal nanoparticles. J Nanopart Res 6(4):411–414. doi:10.1007/s11051-004-6575-2

    CAS  Google Scholar 

  • Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh SK, Pal T (2007) Synthesis and size-selective catalysis by supported gold nanoparticles: study on heterogeneous and homogeneous catalytic process. J Phys Chem C 111(12):4596–4605

    CAS  Google Scholar 

  • Parajuli D, Kawakita H, Inoue K, Ohto K, Kajiyama K (2007) Persimmon peel gel for the selective recovery of gold. Hydrometallurgy 87(3–4):133–139

    CAS  Google Scholar 

  • Parsons JG, Peralta-Videa JR, Gardea-Torresdey JL (2007) Chapter 21 use of plants in biotechnology: synthesis of metal nanoparticles by inactivated plant tissues, plant extracts, and living plants. Dev Environ Sci 5

  • Pavlov V, Xiao Y, Willner I (2005) Inhibition of the acetycholine esterase-stimulated growth of Au nanoparticles: nanotechnology-based sensing of nerve gases. Nano Lett 5(4):649–653

    CAS  Google Scholar 

  • Peng C, Zheng L, Chen Q, Shen M, Guo R, Wang H, Cao X, Zhang G, Shi X (2012) PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials 33(4):1107–1119

    CAS  Google Scholar 

  • Philip D (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectroch Acta Part A Mol Biomol Spectrosc 73(2):374–381

    Google Scholar 

  • Philip D (2010a) Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E 42(5):1417–1424

    CAS  Google Scholar 

  • Philip D (2010b) Honey mediated green synthesis of silver nanoparticles. Spectroch Acta Part A Mol Biomol Spectrosc 75(3):1078–1081

    Google Scholar 

  • Philip D (2010c) Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf. Spectroch Acta Part A Mol Biomol Spectrosc 77(4):807–810

    Google Scholar 

  • Philip D, Unni C (2011) Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi (Ocimum sanctum) leaf. Physica E: Low-Dimens Syst Nanostruct 43(7):1318–1322

    Google Scholar 

  • Pileni MP (1997) Nanosized particles made in colloidal assemblies. Langmuir 13(13):3266–3276

    CAS  Google Scholar 

  • Pimprikar PS, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK (2009) Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf B 74(1):309–316

    CAS  Google Scholar 

  • Pradeep T, Anshup A (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517(24):6441–6478

    CAS  Google Scholar 

  • Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A (2011) Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf B 82(1):152–159

    CAS  Google Scholar 

  • Raghunandan D, Basavaraja S, Mahesh B, Balaji S, Manjunath SY, Venkataraman A (2009) Biosynthesis of stable polyshaped gold nanoparticles from microwave-exposed aqueous extracellular anti-malignant guava (psidium guajava) leaf extract. Nano Biotechnol 5(1–4):34–41

    CAS  Google Scholar 

  • Rajani P, SriSindhura K, Prasad TNVKV, Hussain OM, Sudhakar P, Latha P, Balakrishna M, Kambala V, Raja Reddy K (2010) Fabrication of biogenic silver nanoparticles using agricultural crop plant leaf extracts. In: AIP conference proceedings, pp 148–153

  • Samadi N, Golkaran D, Eslamifar A, Jamalifar H, Fazeli MR, Mohseni FA (2009) Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of Proteus mirabilis isolated from photographic waste. J Biomed Nanotechnol 5(3):247–253

    CAS  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2010) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108(3):693–702. doi:10.1007/s00436-010-2115-4

    Google Scholar 

  • Sastry M, Ahmad A, Islam Khan M, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85(2):162–170

    CAS  Google Scholar 

  • Sathishkumar M, Sneha K, Won SW, Cho CW, Kim S, Yun YS (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf B 73(2):332–338

    CAS  Google Scholar 

  • Sathishkumar M, Sneha K, Yun YS (2010) Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresour Technol 101(20):7958–7965

    CAS  Google Scholar 

  • Semmler-Behnke M, Kreyling WG, Lipka J, Fertsch S, Wenk A, Takenaka S, Schmid G, Brandau W (2008) Biodistribution of 1.4- and 18-nm gold particles in rats. Small 4(12):2108–2111

    CAS  Google Scholar 

  • Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42(5):919–923

    CAS  Google Scholar 

  • Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44(8):939–943

    CAS  Google Scholar 

  • Shankar SS, Ahmad A, Sastry M (2003) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19(6):1627–1631

    CAS  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004a) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275(2):496–502

    CAS  Google Scholar 

  • Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004b) Biological synthesis of triangular gold nanoprisms. Nat Mater 3(7):482–488

    CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57(4):711–726

    CAS  Google Scholar 

  • Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea-Torresdey JL, Tarasankar P (2007) Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol 41(14):5137–5142

    CAS  Google Scholar 

  • Sheikhloo Z, Salouti M, Katiraee F (2011) Biological synthesis of gold nanoparticles by fungus epicoccum nigrum. J Cluster Sci 22(4):661–665

    CAS  Google Scholar 

  • Shukla VK, Singh RP, Pandey AC (2010) Black pepper assisted biomimetic synthesis of silver nanoparticles. J Alloy Compd 507(1):L13–L16. doi:10.1016/j.jallcom.2010.07.156

    CAS  Google Scholar 

  • Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27(2–3):341–353

    CAS  Google Scholar 

  • Singh A, Shirolkar M, Lalla NP, Malek CK, Kulkarni SK (2009) Room temperature, water-based, microreactor synthesis of gold and silver nanoparticles. Int J Nanotechnol 6(5–6):541–551

    CAS  Google Scholar 

  • Singh AK, Talat M, Singh DP, Srivastava ON (2010) Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group. J Nanopart Res 12(5):1667–1675

    CAS  Google Scholar 

  • Sinha AK, Seelan S, Tsubota S, Haruta M (2004) Catalysis by gold nanoparticles: epoxidation of propene. Top Catal 29(3–4):95–102

    CAS  Google Scholar 

  • Soleimani M, Kaghazchi T (2008) Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones—an agricultural waste. Bioresour Technol 99(13):5374–5383

    CAS  Google Scholar 

  • Son WK, Youk JH, Lee TS, Park WH (2004) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25(18):1632–1637

    CAS  Google Scholar 

  • Sonavane G, Tomoda K, Sano A, Ohshima H, Terada H, Makino K (2008) In vitro permeation of gold nanoparticles through rat skin and rat intestine: effect of particle size. Colloids Surf B 65(1):1–10

    CAS  Google Scholar 

  • Song JY, Jang HK, Kim BS (2009) Biological synthesis of gold nanoparticles using magnolia kobus and diopyros kaki leaf extracts. Process Biochem 44(10):1133–1138

    CAS  Google Scholar 

  • Soto K, Garza KM, Murr LE (2007) Cytotoxic effects of aggregated nanomaterials. Acta Biomaterialia 3 (3 SPEC. ISS.):351–358

  • Spencer JPE (2008) Flavonoids: modulators of brain function? Br J Nutr 99(E-SUPPL. 1):ES60–ES77

    Google Scholar 

  • Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37(9):1896–1908

    CAS  Google Scholar 

  • Sugano K, Uchida Y, Tsuchiya T, Tabata O (2010) Mixing speed-and temperature-controlled microreactor for gold nanoparticle synthesis. IEE J Trans Sensors Micromach 130(7):292–299

    Google Scholar 

  • Suresh AK, Pelletier DA, Wang W, Moon JW, Gu B, Mortensen NP, Allison DP, Joy DC, Phelps TJ, Doktycz MJ (2010) Silver nanocrystallites: biofabrication using shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria. Environ Sci Technol 44(13):5210–5215

    CAS  Google Scholar 

  • Suresh AK, Pelletier DA, Wang W, Broich ML, Moon JW, Gu B, Allison DP, Joy DC, Phelps TJ, Doktycz MJ (2011) Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater 7(5):2148–2152

    CAS  Google Scholar 

  • Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P, Heyder J (2001) Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 109(Suppl 4):547–551

    CAS  Google Scholar 

  • Tan S, Erol M, Sukhishvili S, Du H (2008) Substrates with discretely immobilized silver nanoparticles for ultrasensitive detection of anions in water using surface-enhanced Raman scattering. Langmuir 24(9):4765–4771

    CAS  Google Scholar 

  • Tan YN, Lee JY, Wang DIC (2010) Uncovering the design rules for peptide synthesis of metal nanoparticles. J Am Chem Soc 132(16):5677–5686

    CAS  Google Scholar 

  • Tanaka K (1999) Nanotechnology towards the 21st century. Thin Solid Films 341(1):120–125

    CAS  Google Scholar 

  • Thomas M, Ranson SL, Richardson JA (1973) Plant physiology, 5th edn. Longman Group Publishers, London, pp 422–448

  • Thomson RH (1976) Quinone: nature, distribution and biosynthesis. Chemistry and biochemistry of plant pigments, pp 527–559

  • Tripathy A, Raichur AM, Chandrasekaran N, Prathna TC, Mukherjee A (2010) Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. J Nanopart Res 12(1):237–246

    CAS  Google Scholar 

  • Trop M (2006) Silver-coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. J Trauma 61(4):1024

    Google Scholar 

  • Tsuji T, Kakita T, Tsuji M (2003) Preparation of nano-size particles of silver with femtosecond laser ablation in water. Appl Surf Sci 206(1–4):314–320

    CAS  Google Scholar 

  • Usha Rani P, Rajasekharreddy P (2011) Green synthesis of silver-protein (core-shell) nanoparticles using Piper betle L. leaf extract and its ecotoxicological studies on Daphnia magna. Colloids Surf A Physicochem Eng Aspects 389(1–3):188–194

    Google Scholar 

  • Valodkar M, Jadeja RN, Thounaojam MC, Devkar RV, Thakore S (2011) In vitro toxicity study of plant latex capped silver nanoparticles in human lung carcinoma cells. Mater Sci Eng C 31(8):1723–1728

    CAS  Google Scholar 

  • Varshney R, Mishra AN, Bhadauria S, Gaur MS (2009) A novel microbial route to synthesize silver nanoparticles using fungus Hormoconis resinae. Digest J Nanomater Biostruct 4(2):349–355

    Google Scholar 

  • Verma A, Simard JM, Worrall JWE, Rotello VM (2004) Tunable reactivation of nanoparticle-inhibited β-galactosidase by glutathione at intracellular concentrations. J Am Chem Soc 126(43):13987–13991

    CAS  Google Scholar 

  • Vijayaraghavan K, Nalini SPK (2010) Biotemplates in the green synthesis of silver nanoparticles. Biotechnol J 5(10):1098–1110. doi:10.1002/biot.201000167

    CAS  Google Scholar 

  • Vlachou E, Chipp E, Shale E, Wilson YT, Papini R, Moiemen NS (2007) The safety of nanocrystalline silver dressings on burns: a study of systemic silver absorption. Burns 33(8):979–985

    Google Scholar 

  • Wachs IE, Madix RJ (1978) The oxidation of methanol on a silver (110) catalyst. Surf Sci 76(2):531–558

    CAS  Google Scholar 

  • Wang JC, Neogi P, Forciniti D (2006) On one-dimensional self-assembly of surfactant-coated nanoparticles. J Chem Phys 125(19):194717

    Google Scholar 

  • Wang Y, He X, Wang K, Zhang X, Tan W (2009) Barbated Skullcup herb extract-mediated biosynthesis of gold nanoparticles and its primary application in electrochemistry. Colloids Surf B 73(1):75–79

    CAS  Google Scholar 

  • Wangoo N, Bhasin KK, Mehta SK, Suri CR (2008) Synthesis and capping of water-dispersed gold nanoparticles by an amino acid: Bioconjugation and binding studies. J Colloid Interface Sci 323(2):247–254

    CAS  Google Scholar 

  • Watanabe S, Sonobe M, Arai M, Tazume Y, Matsuo T, Nakamura T, Yoshida K (2002) Enhanced optical sensing of anions with amide-functionalized gold nanoparticles. Chem Commun 23:2866–2867

    Google Scholar 

  • Xiong Y, Adhikari CR, Kawakita H, Ohto K, Inoue K, Harada H (2009) Selective recovery of precious metals by persimmon waste chemically modified with dimethylamine. Bioresour Technol 100(18):4083–4089

    CAS  Google Scholar 

  • Yang SY, Cheng FY, Yeh CS, Lee GB (2010) Size-controlled synthesis of gold nanoparticles using a micro-mixing system. Microfluid Nanofluid 8(3):303–311

    CAS  Google Scholar 

  • Yeh P, Perricaudet M (1997) Advances in adenoviral vectors: from genetic engineering to their biology. FASEB J 11(8):615–623

    CAS  Google Scholar 

  • Yoon KY, Byeon JH, Park CW, Hwang J (2008) Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers. Environ Sci Technol 42(4):1251–1255. doi:10.1021/es0720199

    CAS  Google Scholar 

  • Zhou Y, Lin W, Huang J, Wang W, Gao Y, Lin L, Li Q, Du M (2010) Biosynthesis of gold nanoparticles by foliar broths: roles of biocompounds and other attributes of the extracts. Nanoscale Res Lett 5(8):1351–1359

    CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the National University of Singapore, National Research Foundation and Economic Development Board (SPORE, COY-15-EWI-RCFSA/N197-1), and Ministry of Education (R-143-000-441-112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Fong Yau Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, P.P., Li, S.F.Y. Potential of plant as a biological factory to synthesize gold and silver nanoparticles and their applications. Rev Environ Sci Biotechnol 11, 169–206 (2012). https://doi.org/10.1007/s11157-012-9278-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-012-9278-7

Keywords

Navigation