Skip to main content

Advertisement

Log in

Fertiliser drawn forward osmosis desalination: the concept, performance and limitations for fertigation

  • Review Paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

With the world’s population growing rapidly, pressure is increasing on the limited fresh water resources. Membrane technology could play a vital role in solving the water scarcity issues through alternative sources such as saline water sources and wastewater reclamation. The current generation of membrane technologies, particularly reverse osmosis (RO), has significantly improved in performance. However, RO desalination is still energy intensive and any effort to improve energy efficiency increases total cost of the product water. Since energy, environment and climate change issues are all inter-related, desalination for large-scale irrigation requires new novel technologies that address the energy issues. Forward osmosis (FO) is an emerging membrane technology. However, FO desalination for potable water is still a challenge because, recovery and regeneration of draw solutes require additional processes and energy. This article focuses on the application of FO desalination for non-potable irrigation where maximum water is required. In this concept of fertiliser drawn FO (FDFO) desalination, fertilisers are used as draw solutions (DS). The diluted draw solution after desalination can be directly applied for fertigation without the need for recovery and regeneration of DS. FDFO desalination can make irrigation water available at comparatively lower energy than the current desalination technologies. As a low energy technology, FDFO can be easily powered by renewable energy sources and therefore suitable for inland and remote applications. This article outlines the concept of FDFO desalination and critically evaluates the scope and limitations of this technology for fertigation, including suggestions on options to overcome some of these limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Achilli A, Cath TY, Marchand EA, Childress AE (2009) The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes. Desalination 239(1–3):10–21

    Article  CAS  Google Scholar 

  • Achilli A, Cath TY, Childress AE (2010) Selection of inorganic-based draw solutions for forward osmosis applications. J Memb Sci 364(1–2):233–241

    Article  CAS  Google Scholar 

  • Anderson DK (1977) Concentration of dilute industrial wastes by Direct osmosis. Dissertation. University of Rhode Island

  • ANRA (2009) National water availability. Australiannatural resources data website. http://www.anra.gov.au/topics/water/availability/index.html#groundwater. Accessed 26 March 2011

  • Bartels C (2007) Nanofiltration technology and applications. In: Wilf M (ed) The guide to membrane desalination technology. Balaban desalination Publications, Italy

    Google Scholar 

  • Cath TY, Childress AE, Elimelech M (2006) Forward osmosis: principles, applications, and recent developments: review. J Memb Sci 281(2006):70–87

    Article  CAS  Google Scholar 

  • Cath TY, Hancock NT, Lundin CD, Hoppe-Jones C, Drewes JE (2010) A multi-barrier osmotic dilution process for simultaneous desalination and purification of impaired water. J Memb Sci 362(1–2):417–426

    Article  CAS  Google Scholar 

  • Cheeseman J (1988) Mechanisms of salinity tolerance in plants. Plant Physiol 87:547–550

    Article  CAS  Google Scholar 

  • Cosier P, Flannery T, Harding R, Karoly D, Possingham H, Purves R, Saunders D, Thom B, Williams J, Young M, Grafton Q, Kowalick I, Miller C, Stubbs T, Verity F, Walker K (2010) Sustainable diversion in the Murray-Darling basin: an analysis of the options for achieving a sustainable diversion limit in the Murray-Darling basin. Wentworth Group of Concerned Scientist. http://www.wentworthgroup.org. Accessed 12 July 2011

  • Elimelech M, Bhattacharjee S (1998) A novel approach for modeling concentration polarization in crossflow membrane filtration based on the equivalence of osmotic pressure model and filtration theory. J Memb Sci 145(2):223–241

    Article  Google Scholar 

  • Elimelech M, Phillip WA (2011) The future of seawater desalination: energy, technology, and the environment. Science 333(6043):712–717

    Article  CAS  Google Scholar 

  • Flemming HC (2002) Biofouling in water systems–cases, causes and countermeasures. Appl Microb Biotechnol 59(6):629–640

    Article  CAS  Google Scholar 

  • Garcia-Castello EM, McCutcheon JR (2011) Dewatering press liquor derived from orange production by forward osmosis. J Membr Sci 372(1–2):97–101

    Article  CAS  Google Scholar 

  • Garcia-Castello EM, McCutcheon JR, Elimelech M (2009) Performance evaluation of sucrose concentration using forward osmosis. J Membr Sci 338(1–2):61–66

    Article  CAS  Google Scholar 

  • Ge Q, Su J, Chung T-S, Amy G (2011) Hydrophilic superparamagnetic nanoparticles: synthesis, characterization, and performance in forward osmosis processes. Ind Eng Chem Res 50(1):382–388

    Article  CAS  Google Scholar 

  • Gokel GW (2004) Dean’s handbook of organic chemistry, 2nd edn. pp 2.4–2.5

  • Goss KF (2003) Environmental flows, river salinity and biodeversity conservation: managing trade-offs in the Murray-Darling basin. Aust J Bot 51:619–625

    Article  Google Scholar 

  • Gray GT, McCutcheon JR, Elimelech M (2006) Internal concentration polarization in forward osmosis: role of membrane orientation. Desalination 197(1–3):1–8

    Article  CAS  Google Scholar 

  • Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P (2009) Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res 43(9):2317–2348

    Article  CAS  Google Scholar 

  • GWI (Global Water Intellegence) (2011a) FO takes a gaint step forward. Water Desalination Report 46(45)

  • GWI (Global Water Intellegence) (2011b) Thin film membrane in the work. Water Desalination Report 47(33)

  • Hails RS (2002) Assessing the risks associated with new agricultural practices. Nature 418(6898):685–688

    Article  CAS  Google Scholar 

  • Hancock NT, Cath TY (2009) Solute coupled diffusion in osmotically driven membrane processes. Environ Sci Technol 43(17):6769–6775

    Article  CAS  Google Scholar 

  • Hanson BR, Simunek J, Hopmans JW (2006) Evaluation of urea-ammonium-nitrate fertigation with drip irrigation using numerical modeling. Agric Water Manag 86(1–2):102–113

    Article  Google Scholar 

  • Hassan AM, Al-Sofi MAK, Al-Amoudi AS, Jamaluddin ATM, Farooque AM, Rowaili A, Dalvi AGI, Kither NM, Mustafa GM, Al-Tisan IAR (1998) A new approach to membrane and thermal seawater desalination processes using nanofiltration membranes (Part 1). Desalination 118(1–3):35–51

    Article  CAS  Google Scholar 

  • Holloway RW, Childress AE, Dennett KE, Cath TY (2007) Forward osmosis for concentration of anaerobic digester centrate. Water Res 41(2007):4005–4014

    Article  CAS  Google Scholar 

  • Ife D, Skelt K (2004) Murray-darling basin groundwater status—summary report: 1990–2000. Murray Darling Basin Commission, Canberra

    Google Scholar 

  • Ivnitsky H, Minz D, Kautsky L, Preis A, Ostfeld A, Semiat R, Dosoretz CG (2010) Biofouling formation and modeling in nanofiltration membranes applied to wastewater treatment. J Membr Sci 360(1–2):165–173

    Article  CAS  Google Scholar 

  • Jia Y-x, Li H-l, Wang M, Wu L-y, Hu Y-d (2010) Carbon nanotube: possible candidate for forward osmosis. Sep Purif Technol 75(1):55–60

    Article  CAS  Google Scholar 

  • Jury WA, Vaux H (2005) The role of science in solving the world’s emerging water problems. Proc Natl Acad Sci USA 102(44):15715–15720

    Article  CAS  Google Scholar 

  • Khan S (2008) Managing climate risks in Australia: options for water policy and irrigation management. Aust J Exp Agric 48:265–273

    Article  Google Scholar 

  • Kravath RE, Davis JA (1975) Desalination of seawater by direct osmosis. Desalination 16(1975):151–155

    Article  CAS  Google Scholar 

  • Lay WC, Chong TH, Tang CY, Fane AG, Zhang J, Liu Y (2010) Fouling propensity of forward osmosis: investigation of the slower flux decline phenomenon. Water Sci Technol 61(4):927–936

    Article  CAS  Google Scholar 

  • Lee KL, Baker RW, Lonsdale HK (1981) Membranes for power generation by pressure-retarded osmosis. J Membr Sci 8(2):141–171

    Article  CAS  Google Scholar 

  • Lee S, Boo C, Elimelech M, Hong S (2010) Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). J Membr Sci 365(1–2):34–39

    Article  CAS  Google Scholar 

  • Lu X, Bian X, Shi L (2002) Preparation and characterization of NF composite membrane. J Membr Sci 210(1):3–11

    Article  CAS  Google Scholar 

  • Martinetti CR, Childress AE, Cath TY (2009) High recovery of concentrated RO brines using forward osmosis and membrane distillation. J Membr Sci 331(1–2):31–39

    Article  CAS  Google Scholar 

  • McBeath TM, McLaughlin MJ, Armstrong RD, Bell M, Bolland MDA, Conyers MK, Holloway RE, Mason SD (2007) Predicting the response of wheat (Triticum aestivum L.) to liquid and granular phosphorus fertilisers in Australian soils. Aust J Soil Res 45(6):448–458

    Article  CAS  Google Scholar 

  • McCutcheon JR, Elimelech M (2007) Modelling water flux in forward osmosis: implications for improved membrane design. AIChE 53(7):1736–1744

    Article  CAS  Google Scholar 

  • McCutcheon JR, McGinnis RL, Elimelech M (2005) A novel ammonia–carbon dioxide forward (direct) osmosis desalination process. Desalination 174(2005):1–11

    Article  CAS  Google Scholar 

  • McCutcheon JR, McGinnis RL, Elimelech M (2006) Desalination by ammonia-carbon dioxide forward osmosis: influence of draw and feed solution concentrations on process performance. J Membr Sci 278(2006):114–123

    Article  CAS  Google Scholar 

  • McDonald RI, Green P, Balk D, Fekete BM, Revenga C, Todd M, Montgomery M (2011) Urban growth, climate change, and freshwater availability. Proc Natl Acad Sci USA 108(15):6312–6317

    Google Scholar 

  • McGinnis RL (2002) Osmotic desalination process. U. P. Pending. PCT/US02/02740 (2002)

  • McGinnis RL, Elimelech M (2007) Energy requirements of ammonia-carbon dioxide forward osmosis desalination. Desalination 207(1–3):370–382

    Article  CAS  Google Scholar 

  • MDBA (2010) Guide to the proposed Basin Plan: overview. Murray-Darling Basin Authority (MDBA), Canberra, Australia. http://www.mdba.gov.au/bpkid/guide/. Accessed 21 May 2011

  • Melo LF, Bott TR (1997) Biofouling in water systems. Exp Thermal Fluid Sci 14(4):375–381

    Article  CAS  Google Scholar 

  • Mi B, Elimelech M (2010) Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents. J Membr Sci 348(1–2):337–345

    Article  CAS  Google Scholar 

  • Moody CD (1977) Forward osmosis extractors: theory, feasibility and design optimisation. Dissertation. School of renewable natural resources. The University of Arizona, Arizona

  • Moody CD, Kessler JO (1976) Forward osmosis extractors. Desalination 18(1976):283–295

    Article  CAS  Google Scholar 

  • Oliver S, Barber SA (1966) An evaluation of the mechanisms governing the supply of Ca, Mg, K, and Na to soybean roots (Glycine max)1. Soil Sci Soc Am J 30(1):82–86

    Article  CAS  Google Scholar 

  • Papadopoulos I, Eliades G (1987) A fertigation system for experimental purposes. Plant Soil 102:141–143

    Article  Google Scholar 

  • Phillip WA, Yong JS, Elimelech M (2010) Reverse draw solute permeation in forward osmosis: modeling and experiments. Environ Sci Technol 44(13):5170–5176

    Article  CAS  Google Scholar 

  • Phocaides A (2007) Handbook on pressurized irrigation techniques. Food and Agriculture Organization, Rome

    Google Scholar 

  • Phuntsho S, Listowski A, Shon HK, Le-Clech P, Vigneswaran S (2011a) Membrane autopsy of a 10 year old hollow fibre membrane from Sydney Olympic Park water reclamation plant. Desalination 271(1–3):241–247

    Article  CAS  Google Scholar 

  • Phuntsho S, Shon HK, Hong SK, Lee SY, Vigneswaran S (2011b) A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: evaluating the performance of fertilizer draw solutions. J Membr Sci 375(2011):172–181

    Article  CAS  Google Scholar 

  • Plusquellec H (2002) Is the daunting challenge of irrigation achievable?, vol 51. Wiley, Londan, pp 185–198

    Google Scholar 

  • Saren Q, Qiu CQ, Tang CY (2011) Synthesis and characterization of novel forward osmosis membranes based on layer-by-layer assembly. Environ Sci Technol 45(12):5201–5208

    Article  CAS  Google Scholar 

  • Semiat R (2008) Energy issues in desalination processes. Environ Sci Technol 42(22):8193–8201

    Article  CAS  Google Scholar 

  • Service RF (2006) Desalination freshens up. Science 313(5790):1088–1090

    Article  CAS  Google Scholar 

  • Setiawan L, Wang R, Li K, Fane AG (2011) Fabrication of novel poly(amide-imide) forward osmosis hollow fiber membranes with a positively charged nanofiltration-like selective layer. J Membr Sci 369(1–2):196–205

    Article  CAS  Google Scholar 

  • Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452(7185):301–310

    Article  CAS  Google Scholar 

  • Subramani A, Badruzzaman M, Oppenheimer J, Jacangelo JG (2011) Energy minimization strategies and renewable energy utilization for desalination: a review. Water Res 45(5):1907–1920

    Article  CAS  Google Scholar 

  • Tan CH, Ng HY (2008) Modified models to predict flux behavior in forward osmosis in consideration of external and internal concentration polarizations. J Membr Sci 324(1–2):209–219

    Article  CAS  Google Scholar 

  • Tan CH, Ng HY (2010) A novel hybrid forward osmosis–nanofiltration (FO-NF) process for seawater desalination: draw solution selection and system configuration. Desalination Water Treat 13(2010):356–361

    Article  CAS  Google Scholar 

  • Tiraferri A, Yip NY, Phillip WA, Schiffman JD, Elimelech M (2011) Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. J Membr Sci 367(1–2):340–352

    Article  CAS  Google Scholar 

  • UN (2009) World population prospects: the 2008 revision Highlights. Department of Economic and Social Affairs - Working Paper No. ESA/P/WP.210. Population Division, United Nations, New York. http://www.un.org/esa/population/publications/wpp2008/wpp2008_highlights.pdf. Accessed 15 July 2011

  • UNFPA (2011) State of world population 2011. Information and External Relations Division, United Nations Population Fund. http://foweb.unfpa.org/SWP2011/reports/EN-SWOP2011-FINAL.pdf

  • Van der Bruggen B, Vandecasteele C (2002) Modelling of the retention of uncharged molecules with nanofiltration. Water Res 36(5):1360–1368

    Article  Google Scholar 

  • Wang KY, Ong RC, Chung T-S (2010a) Double-skinned forward osmosis membranes for reducing internal concentration polarization within the porous sublayer. Ind Eng Chem Res 49(10):4824–4831

    Article  CAS  Google Scholar 

  • Wang R, Shi L, Tang CY, Chou S, Qiu C, Fane AG (2010b) Characterization of novel forward osmosis hollow fiber membranes. J Membr Sci 355(1–2):158–167

    Article  CAS  Google Scholar 

  • Ward FA, Pulido-Velazquez M (2008) Water conservation in irrigation can increase water use. Proc Natl Acad Sci USA 105(47):18215–18220

    Article  CAS  Google Scholar 

  • Wei J, Qiu C, Tang CY, Wang R, Fane AG (2011) Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes. J Membr Sci 372(1–2):292–302

    Article  CAS  Google Scholar 

  • Xiao D, Tang CY, Zhang J, Lay WCL, Wang R, Fane AG (2011) Modeling salt accumulation in osmotic membrane bioreactors: implications for FO membrane selection and system operation. J Membr Sci 366(1–2):314–324

    Article  CAS  Google Scholar 

  • Yip NY, Tiraferri A, Phillip WA, Schiffman JD, Elimelech M (2010) High performance thin-film composite forward osmosis membrane. Environ Sci Technol 44(10):3812–3818

    Article  CAS  Google Scholar 

  • Zhao S, Zou L, Mulcahy D (2011). Brackish water desalination by a hybrid forward osmosis–nanofiltration system using divalent draw solute. Desalination (in press)

Download references

Acknowledgments

This study was funded by the National Centre for Excellence in Desalination Australia (NCEDA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Kyong Shon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phuntsho, S., Shon, H.K., Hong, S. et al. Fertiliser drawn forward osmosis desalination: the concept, performance and limitations for fertigation. Rev Environ Sci Biotechnol 11, 147–168 (2012). https://doi.org/10.1007/s11157-011-9259-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-011-9259-2

Keywords

Navigation