Skip to main content
Log in

New imaging technologies in the diagnosis of osteoporosis

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

In the context of osteoporosis, bone quality—which encompasses trabecular and cortical micro-architecture, mass, and tissue mechanical & compositional properties—plays an important and as yet undiscovered role. Non-invasive assessment of bone quality has recently received considerable attention, as bone density alone has not been able to predict existing or future osteoporotic fractures, or to explain therapeutic effects of emerging treatments. The goal of this review, therefore, is to present imaging modalities and related analysis methods capable of assessing bone quality for improved diagnosis and care of osteoporotic individuals. The techniques described include quantitative ultrasound, quantitative computed tomography, peripheral quantitative tomography, micro computed tomography, magnetic resonance, radiographic texture analysis, as well as finite element analysis based on the above-mentioned imaging modalities. The performance of these techniques in predicting osteoporotic fracture and assessing strength indices are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bouillon R, Burckhardt P, Christiansen C, Fleisch HA, Fujita T, Gennari C, et al. Consensus development conference: prophylaxis and treatment of osteoporosis. Am J Med 1991;90:107–10.

    Article  Google Scholar 

  2. World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. W.H.O. Tech Rep Ser 1994;843:1–129.

    Google Scholar 

  3. Frost HM. Absorptiometry and “osteoporosis”: problems. J Bone Miner Metab 2003;21:255–60.

    Article  PubMed  Google Scholar 

  4. Black DM, Cummings SR, Karpf DB, et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group (see comments). Lancet 1996;348:1535–41.

    Article  PubMed  CAS  Google Scholar 

  5. Cummings SR. How drugs decrease fracture risk: lessons from trials. J Musculoskelet Neuronal Interact 2002;2:198–200.

    PubMed  CAS  Google Scholar 

  6. Beck TJ, Looker AC, Ruff CB, Sievanen H, Wahner HW. Structural trends in the aging femoral neck and proximal shaft: analysis of the third national health and nutrition examination survey dual-energy X-ray absorptiometry data. J Bone Miner Res 2000;15:2297–304.

    Article  PubMed  CAS  Google Scholar 

  7. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ (Clinical Research Ed) 1996;312:1254–9.

    CAS  Google Scholar 

  8. Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 2003;33:744–50.

    Article  PubMed  Google Scholar 

  9. Ferretti JL, Capozza RF, Zanchetta JR. Mechanical validation of a tomographic (pQCT) index for noninvasive estimation of rat femur bending strength. Bone 1996;18:97–102.

    Article  PubMed  CAS  Google Scholar 

  10. Beck T, Ruff C, Bissessur K. Age-related changes in femoral neck geometry: implications for bone strength. Calcif Tissue Int 1993;53 (S1):S41–6.

    Article  PubMed  Google Scholar 

  11. Gluer CC, Cummings SR, Pressman A, et al. Prediction of hip fractures from pelvic radiographs: the study of osteoporotic fractures. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 1994;9:671–7.

    PubMed  CAS  Google Scholar 

  12. Kleerekoper M, Villanueva AR, Stanciu J, Rao DS, Parfitt AM. The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int 1985;37:594–7.

    Article  PubMed  CAS  Google Scholar 

  13. Ciarelli MJ, Goldstein SA, Kuhn JL, Cody DD, Brown MB. Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography. J Orthop Res 1991;9:674–82.

    Article  PubMed  CAS  Google Scholar 

  14. Riggs BL, Melton LJ, 3rd. Bone turnover matters: the raloxifene treatment paradox of dramatic decreases in vertebral fractures without commensurate increases in bone density. J Bone Miner Res 2002;17:11–4.

    Article  PubMed  Google Scholar 

  15. Gordon CL, Lang TF, Augat P, Genant HK. Image-based assessment of spinal trabecular bone structure from high-resolution CT images. Osteoporos Int 1998;8:317–25.

    Article  PubMed  CAS  Google Scholar 

  16. Chesnut CH, 3rd, Rosen CJ. Reconsidering the effects of antiresorptive therapies in reducing osteoporotic fracture. J Bone Miner Res 2001;16:2163–72.

    Article  PubMed  CAS  Google Scholar 

  17. Vesterby A, Mosekilde L, Gundersen HJG, et al. Biologically meaningful determinants of the in vitro strength of lumbar vertebrae. Bone 1991;12:219–24.

    Article  PubMed  CAS  Google Scholar 

  18. van der Linden JC, Homminga J, Verhaar JA, Weinans H. Mechanical consequences of bone loss in cancellous bone. J Bone Miner Res 2001;16:457–65.

    Article  PubMed  Google Scholar 

  19. Rho JY, Roy ME, Tsui TY, Pharr GM. Elastic properties of microstructural components of human bone tissue as measured by nanoindentation. J Biomed Materi Res 1999;45:48–54.

    Article  CAS  Google Scholar 

  20. Courtney AC, Hayes WC, Gibson LJ. Age-related differences in post-yield damage in human cortical bone. Experiment and model. J Biomech 1996;29:1463–71.

    Article  PubMed  CAS  Google Scholar 

  21. Boyce T, Bloebaum R. Cortical aging differences and fracture implications for the human femoral neck. Bone 1993;14:769–78.

    Article  PubMed  CAS  Google Scholar 

  22. Keaveny TM, Wachtel EF, Guo XE, Hayes WC. Mechanical behavior of damaged trabecular bone. J Biomech 1994;27:1309–18.

    Article  PubMed  CAS  Google Scholar 

  23. Lochmuller EM, Miller P, Burklein D, Wehr U, Rambeck W, Eckstein F. In situ femoral dual-energy X-ray absorptiometry related to ash weight, bone size and density, and its relationship with mechanical failure loads of the proximal femur. Osteoporos Int 2000;11:361–7.

    Article  PubMed  CAS  Google Scholar 

  24. Kastl S, Sommer T, Klein P, Hohenberger W, Engelke K. Accuracy and precision of bone mineral density and bone mineral content in excised rat humeri using fan beam dual-energy X-ray absorptiometry. Bone 2002;30:243–6.

    Article  PubMed  CAS  Google Scholar 

  25. Sran MM, Khan KM, Keiver K, Chew JB, McKay HA, Oxland TR. Accuracy of DXA scanning of the thoracic spine: cadaveric studies comparing BMC, areal BMD and geometric estimates of volumetric BMD against ash weight and CT measures of bone volume. Eur Spine J 2005;14:971–6.

    Article  PubMed  Google Scholar 

  26. Cheng S, Tylavsky F, Carbone L. Utility of ultrasound to assess risk of fracture. J Am Geriatr Soc 1997;45:1382–94.

    PubMed  CAS  Google Scholar 

  27. Kanis JA, McCloskey EV, de Takats D, Pande K. Clinical assessment of bone mass, quality and architecture. Osteoporos Int 1999;9 Suppl 2:S24–8.

    Article  PubMed  Google Scholar 

  28. Hans D, Dargent-Molina P, Schott AM, et al. Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS Prospective Study. Lancet 1996;348:511–4.

    Article  PubMed  CAS  Google Scholar 

  29. Pithioux M, Lasaygues P, Chabrand P. An alternative ultrasonic method for measuring the elastic properties of cortical bone. J Biomech 2002;35:961–8.

    Article  PubMed  CAS  Google Scholar 

  30. Hans D, Njeh CF, Genant HK, Meunier PJ. Quantitative ultrasound in bone status assessment. Rev Rhum (Engl Ed) 1998;65:489–98.

    CAS  Google Scholar 

  31. Stewart A, Reid DM. Precision of quantitative ultrasound: comparison of three commercial scanners. Bone 2000;27:139–43.

    Article  PubMed  CAS  Google Scholar 

  32. Falgarone G, Porcher R, Duche A, Kolta S, Dougados M, Roux C. Discrimination of osteoporotic patients with quantitative ultrasound using imaging or non-imaging device. Jt Bone Spine 2004;71:419–23.

    Article  Google Scholar 

  33. Moyad MA. Osteoporosis: a rapid review of risk factors and screening methods. Urol Oncol 2003;21:375–9.

    PubMed  Google Scholar 

  34. Njeh CF, Boivin CM, Langton CM. The role of ultrasound in the assessment of osteoporosis: a review. Osteoporos Int 1997;7:7–22.

    Article  PubMed  CAS  Google Scholar 

  35. Cheng XG, Nicholson PH, Boonen S, et al. Prediction of vertebral strength in vitro by spinal bone densitometry and calcaneal ultrasound. J Bone Miner Res 1997;12:1721–8.

    Article  PubMed  CAS  Google Scholar 

  36. Bauer DC, Gluer CC, Cauley JA, et al. Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med 1997;157:629–34.

    Article  PubMed  CAS  Google Scholar 

  37. Gluer CC. Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. The International Quantitative Ultrasound Consensus Group. J Bone Miner Res 1997;12:1280–8.

    Article  PubMed  CAS  Google Scholar 

  38. Brunader R, Shelton DK. Radiologic bone assessment in the evaluation of osteoporosis. Am Fam Phys 2002;65:1357–64.

    Google Scholar 

  39. Guglielmi G, Grimston SK, Fischer KC, Pacifici R. Osteoporosis: diagnosis with lateral and posteroanterior dual X-ray absorptiometry compared with quantitative CT. Radiology 1994;192:845–50.

    PubMed  CAS  Google Scholar 

  40. Genant HK, Cann CE, Ettinger B, Gordan GS. Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy. Ann Intern Med 1982;97:699–705.

    PubMed  CAS  Google Scholar 

  41. Miller PD, Zapalowski C, Kulak CA, Bilezikian JP. Bone densitometry: the best way to detect osteoporosis and to monitor therapy. J Clin Endocrinol Metab 1999;84:1867–71.

    Article  PubMed  CAS  Google Scholar 

  42. Rehman Q, Lang T, Modin G, Lane NE. Quantitative computed tomography of the lumbar spine, not dual X-ray absorptiometry, is an independent predictor of prevalent vertebral fractures in postmenopausal women with osteopenia receiving long-term glucocorticoid and hormone-replacement therapy. Arthritis and Rheum 2002;46:1292–7.

    Article  PubMed  CAS  Google Scholar 

  43. Yamada M, Ito M, Hayashi K, Ohki M, Nakamura T. Dual energy X-ray absorptiometry of the calcaneus: comparison with other techniques to assess bone density and value in predicting risk of spine fracture. AJR Am J Roentgenol 1994;163:1435–40.

    PubMed  CAS  Google Scholar 

  44. Ebbesen EN, Thomsen JS, Beck-Nielsen H, Nepper-Rasmussen HJ, Mosekilde L. Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing. Bone 1999;25:713–24.

    Article  PubMed  CAS  Google Scholar 

  45. Hudelmaier M, Kuhn V, Lochmuller EM, et al. Can geometry-based parameters from pQCT and material parameters from quantitative ultrasound (QUS) improve the prediction of radial bone strength over that by bone mass (DXA)? Osteoporos Int 2004;15:375–81.

    Article  PubMed  CAS  Google Scholar 

  46. Lotz JC, Hayes WC. The use of quantitative computed tomography to estimate risk of fracture of the hip from falls. J Bone Jt Surg, Am Vol 1990;72:689–700.

    CAS  Google Scholar 

  47. Lang TF, Keyak JH, Heitz MW, et al. Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone 1997;21:101–8.

    Article  PubMed  CAS  Google Scholar 

  48. Link TM, Majumdar S, Grampp S, et al. Imaging of trabecular bone structure in osteoporosis. Eur Radiol 1999;9:1781–8.

    Article  PubMed  CAS  Google Scholar 

  49. Link TM, Majumdar S, Lin JC, et al. Assessment of trabecular structure using high resolution CT images and texture analysis. J Comput Assist Tomogr 1998;22:15–24.

    Article  PubMed  CAS  Google Scholar 

  50. Majumdar S, Weinstein RS, Prasad RR. Application of fractal geometry techniques to the study of trabecular bone. Med Phys 1993;20:1611–9.

    Article  PubMed  CAS  Google Scholar 

  51. Chung HW, Chu CC, Underweiser M, Wehrli FW. On the fractal nature of trabecular structure. Med Phys 1994;21:1535–40.

    Article  PubMed  CAS  Google Scholar 

  52. Mundinger A, Wiesmeier B, Dinkel E, Helwig A, Beck A, Schulte Moenting J. Quantitative image analysis of vertebral body architecture—improved diagnosis in osteoporosis based on high-resolution computed tomography. Br J Radiol 1993;66:209–13.

    Article  PubMed  CAS  Google Scholar 

  53. Ito M, Ohki M, Hayashi K, Yamada M, Uetani M, Nakamura T. Trabecular texture analysis of CT images in the relationship with spinal fracture. Radiology 1995;194:55–9.

    PubMed  CAS  Google Scholar 

  54. Tomomitsu T, Mimura H, Murase K, Sone T, Fukunaga M. Fractal analysis of bone architecture at distal radius. Nippon Hoshasen Gijutsu Gakkai Zasshi 2005;61:1592–8.

    PubMed  Google Scholar 

  55. Meier N, Link TM, Fiebich M, Bick U, Lenzen H, Peters P. Digital bone structure analysis from computer tomographs of the human lumbar spine. In: Lemke HU, Inamura K, Jaffe CC, Vannier MW, editors. Computer assisted radiology. Berlin Heidelberg New York: Springer; 1995. p. 67–73.

    Google Scholar 

  56. Waldt S, Meier N, Renger B, et al. The texture-analysis of high-resolution computed tomograms as an additional procedure in osteoporosis diagnosis: in-vitro studies on vertebral segments. Rofo 1999;171:136–42.

    PubMed  CAS  Google Scholar 

  57. Muller R, Hahn M, Vogel M, Delling G, Ruegsegger P. Morphometric analysis of noninvasively assessed bone biopsies: comparison of high-resolution computed tomography and histologic sections. Bone 1996;18:215–20.

    Article  PubMed  CAS  Google Scholar 

  58. Muller R, Hildebrand T, Hauselmann HJ, Ruegsegger P. In vivo reproducibility of three-dimensional structural properties of noninvasive bone biopsies using 3D-pQCT. J Bone Miner Res 1996;11:1745–50.

    PubMed  CAS  Google Scholar 

  59. Laib A, Ruegsegger P. Comparison of structure extraction methods for in vivo trabecular bone measurements. Comput Med Imaging Graph 1999;23:69–74.

    Article  PubMed  CAS  Google Scholar 

  60. Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 2005;90:6508–15.

    Article  PubMed  CAS  Google Scholar 

  61. Muller R, Van Campenhout H, Van Damme B, et al. Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone 1998;23:59–66.

    Article  PubMed  CAS  Google Scholar 

  62. Ito M, Nakamura T, Matsumoto T, Tsurusaki K, Hayashi K. Analysis of trabecular microarchitecture of human iliac bone using microcomputed tomography in patients with hip arthrosis with or without vertebral fracture. Bone 1998;23:163–9.

    Article  PubMed  CAS  Google Scholar 

  63. Pothuaud L, Lespessailles E, Harba R, et al. Fractal analysis of trabecular bone texture on radiographs: discriminant value in postmenopausal osteoporosis. Osteoporos Int 1998;8:618–25.

    Article  PubMed  CAS  Google Scholar 

  64. Caligiuri P, Giger ML, Favus M. Multifractal radiographic analysis of osteoporosis. Med Phys 1994;21:503–8.

    Article  PubMed  CAS  Google Scholar 

  65. Majumdar S, Link TM, Millard J, et al. In vivo assessment of trabecular bone structure using fractal analysis of distal radius radiographs. Med Phys 2000;27:2594–9.

    Article  PubMed  CAS  Google Scholar 

  66. Krug R, Banerjee S, Han ET, Newitt DC, Link TM, Majumdar S. Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Osteoporos Int 2005;16:1307–14.

    Article  PubMed  Google Scholar 

  67. Hipp JA, Jansujwicz A, Simmons CA, Snyder BD. Trabecular bone morphology from micro-magnetic resonance imaging. J Bone Miner Res 1996;11:286–97.

    Article  PubMed  CAS  Google Scholar 

  68. Majumdar S, Newitt D, Mathur A, et al. Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with X-ray tomographic microscopy and biomechanics. Osteoporos Int 1996;6:376–85.

    Article  PubMed  CAS  Google Scholar 

  69. Sell CA, Masi JN, Burghardt A, Newitt D, Link TM, Majumdar S. Quantification of trabecular bone structure using magnetic resonance imaging at 3 Tesla—calibration studies using microcomputed tomography as a standard of reference. Calcif Tissue Int 2005;76:355–64.

    Article  PubMed  CAS  Google Scholar 

  70. Majumdar S, Genant HK, Grampp S, et al. Correlation of trabecular bone structure with age, bone mineral density, and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res 1997;12:111–8.

    Article  PubMed  CAS  Google Scholar 

  71. Laib A, Newitt DC, Lu Y, Majumdar S. New model-independent measures of trabecular bone structure applied to in vivo high-resolution MR images. Osteoporos Int 2002;13:130–6.

    Article  PubMed  CAS  Google Scholar 

  72. Wehrli FW, Hwang SN, Ma J, Song HK, Ford JC, Haddad JG. Cancellous bone volume and structure in the forearm: noninvasive assessment with MR microimaging and image processing. Radiology 1998;206:347–57.

    PubMed  CAS  Google Scholar 

  73. Link TM, Majumdar S, Augat P, et al. In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 1998;13:1175–82.

    Article  PubMed  CAS  Google Scholar 

  74. Majumdar S, Link TM, Augat P, et al. Trabecular bone architecture in the distal radius using magnetic resonance imaging in subjects with fractures of the proximal femur. Magnetic Resonance Science Center and Osteoporosis and Arthritis Research Group. Osteoporos Int 1999;10:231–9.

    Article  PubMed  CAS  Google Scholar 

  75. Hwang SN, Wehrli FW, Williams JL. Probability-based structural parameters from three-dimensional nuclear magnetic resonance images as predictors of trabecular bone strength. Med Phys 1997;24:1255–61.

    Article  PubMed  CAS  Google Scholar 

  76. Beuf O, Newitt DC, Mosekilde L, Majumdar S. Trabecular structure assessment in lumbar vertebrae specimens using quantitative magnetic resonance imaging and relationship with mechanical competence. J Bone Miner Res 2001;16:1511–9.

    Article  PubMed  CAS  Google Scholar 

  77. Pistoia W, van Rietbergen B, Lochmuller EM, Lill CA, Eckstein F, Ruegsegger P. Image-based micro-finite-element modeling for improved distal radius strength diagnosis: moving from bench to bedside. J Clin Densitom 2004;7:153–60.

    Article  PubMed  CAS  Google Scholar 

  78. van Rietbergen B, Majumdar S, Newitt D, MacDonald B. High-resolution MRI and micro-FE for the evaluation of changes in bone mechanical properties during longitudinal clinical trials: application to calcaneal bone in postmenopausal women after one year of idoxifene treatment. Clin Biomech (Bristol, Avon) 2002;17:81–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galateia J. Kazakia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazakia, G.J., Majumdar, S. New imaging technologies in the diagnosis of osteoporosis. Rev Endocr Metab Disord 7, 67–74 (2006). https://doi.org/10.1007/s11154-006-9004-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-006-9004-2

Keywords

Navigation