Skip to main content
Log in

An efficient electrostatic self-assembly of reduced graphene oxide-BiOI/Bi2O2CO3 p–n junction nanocomposites for enhanced visible-light photocatalytic activity

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The BiOI/Bi2O2CO3 p–n junctions were constructed by anion exchange method with Bi2O2CO3 in situ growth on BiOI. Then, the surfaces of BiOI/Bi2O2CO3 samples were modified by negative charge with (3-aminopropyl) triethoxysilane (APTES) in an ethanol solution. Finally, the ami-BiOI/Bi2O2CO3/graphene (RGO) ternary composites were fabricates by the simple hydrothermal reaction. The obtained photocatalysts were well characterized with the various characterization techniques to study their morphological, physical, optical, and photocurrent properties, and have been evaluated by investigating the degradation of Rhodamine B and tetracycline under visible irradiation. Compared with single BiOI, the BiOI/Bi2O2CO3 photocatalysts displays higher photocatalytic activity, due to the formation of the electric fields between p–n heterojunction to promote the migration of photogenerated carriers. Moreover, the ami-BiOI/Bi2O2CO3/RGO composites with the best photocatalytic activities can be attributed to that the positively charged ami-BiOI/Bi2O2CO3 were coupled with the negatively charged graphite oxide (GO) by electrostatically attraction to form the effectively interfacial contacts, causing the photocatalytic reaction sites increased, the range of light response expanded, the separation of photogenerated charge further improved. This work provides a feasible strategy for the construction of high efficiency semiconductor and RGO nanocomposite photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cheng H, Huang B, Dai Y (2014) Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 6:2009–2026

    Article  CAS  PubMed  Google Scholar 

  2. Yang Y, Zhang C, Lai C, Zeng G, Huang D, Cheng M, Wang J, Chen F, Zhou C, Xiong W (2018) BiOX (X=Cl, Br, I) photocatalytic nanomaterials: applications for fuels and environmental management. Adv Coll Interf Sci 254:76–93

    Article  CAS  Google Scholar 

  3. Meng X, Zhang Z (2016) Bismuth-based photocatalytic semiconductors: introduction, challenges and possible approaches. J Mol Catal A 423:533–549

    Article  CAS  Google Scholar 

  4. Li H, Zhou Y, Tu W, Ye J, Zou Z (2015) State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv Funct Mater 25:998–1013

    Article  CAS  Google Scholar 

  5. Liang M, Borjigin T, Zhang Y, Liu B, Liu H, Guo H (2019) Controlled assemble of hollow heterostructured g-C3N4@CeO2 with rich oxygen vacancies for enhanced photocatalytic CO2 reduction. Appl Catal B 243:566–575

    Article  CAS  Google Scholar 

  6. Wang Y, Jiang W, Luo W, Chen X, Zhu Y (2018) Ultrathin nanosheets g-C3N4@Bi2WO6 core-shell structure via low temperature reassembled strategy to promote photocatalytic activity. Appl Catal B 237:633–640

    Article  CAS  Google Scholar 

  7. Xu B, Li Y, Gao Y, Liu S, Lv D, Zhao S, Gao H, Yang G, Li N, Ge L (2019) Ag-AgI/Bi3O4Cl for efficient visible light photocatalytic degradation of methyl orange: the surface plasmon resonance effect of Ag and mechanism insight. Appl Catal B 246:140–148

    Article  CAS  Google Scholar 

  8. Lu H, Hao Q, Chen T, Zhang L, Chen D, Ma C, Yao W, Zhu Y (2018) A high-performance Bi2O3/Bi2SiO5 p–n heterojunction photocatalyst induced by phase transition of Bi2O3. Appl Catal B 237:59–67

    Article  CAS  Google Scholar 

  9. Zhang G, Chen D, Li N, Xu Q, Li H, He J, Lu J (2019) Fabrication of Bi2MoO6/ZnO hierarchical heterostructures with enhanced visible-light photocatalytic activity. Appl Catal B 250:313–324

    Article  CAS  Google Scholar 

  10. Di J, Xia J, Li H, Guo S, Dai S (2017) Bismuth oxyhalide layered materials for energy and environmental applications. Nano Energy 41:172–192

    Article  CAS  Google Scholar 

  11. Zhao L, Zhang X, Fan C, Liang Z, Han P (2012) First-principles study on the structural, electronic and optical properties of BiOX (X=Cl, Br, I) crystals. Phys B 407:3364–3370

    Article  CAS  Google Scholar 

  12. Chen L, Huang R, Xiong M, Yuan Q, He J, Jia J, Yao MY, Luo SL, Au CT, Yin SF (2013) Room-temperature synthesis of flower-like BiOX (X═Cl, Br, I) hierarchical structures and their visible-light photocatalytic activity. Inor Chem 52:11118–11125

    Article  CAS  Google Scholar 

  13. Zhang T, Chu PK et al (2015) Anionic group self-doping as a promising strategy: band-gap engineering and multi-functional applications of high-performance CO3 2–doped Bi2O2CO3 [J]. ACS Catal 5(7):4094–4103

    Article  Google Scholar 

  14. Chen L, Yin SF, Luo SL et al (2012) Bi2O2CO3/BiOI photocatalysts with heterojunctions highly efficient for visible-light treatment of dye-containing wastewater [J]. Ind Eng Chem Res 51(19):6760–6768

    Article  CAS  Google Scholar 

  15. Haijing Lu, Xu L, Wei B et al (2014) Enhanced photosensitization process induced by the p–n junction of Bi2O2CO3/BiOCl heterojunctions on the degradation of rhodamine B[J]. Appl Surf Sci 303:360–366

    Article  Google Scholar 

  16. Zheng Y, Duan F, Chen M, Xie Y (2010) Synthetic Bi2O2CO3 nanostructures: novel photocatalyst with controlled special surface exposed. J Mol Catal A 317:34–40

    Article  CAS  Google Scholar 

  17. Cen W, Xiong T, Tang C, Yuan S, Dong F (2014) Effects of morphology and crystallinity on the photocatalytic activity of (BiO)2CO3 nano/microstructures. Industr Eng Chem Res 53:15002–15011

    Article  CAS  Google Scholar 

  18. Li J, Yu Y, Zhang L (2014) Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis. Nanoscale 6:8473–8488

    Article  CAS  PubMed  Google Scholar 

  19. Ni Z, Sun Y, Zhang Y, Dong F (2016) Fabrication, modification and application of (BiO)2CO3-based photocatalysts: a review. Appl Surf Sci 365:314–335

    Article  CAS  Google Scholar 

  20. Hou W, Xu H, Cai Y et al (2020) Precisely control interface OVs concentration for enhance 0D/2D Bi2O2CO3/BiOCl photocatalytic performance[J]. Appl Surf Sci 530:147218

    Article  CAS  Google Scholar 

  21. Song P-Y, Xu M, Zhang W-D (2015) Sodium citrate-assisted anion exchange strategy for construction of Bi2O2CO3/BiOI photocatalysts. Mater Res Bull 62:88–95

    Article  CAS  Google Scholar 

  22. Ding C, Cao F, Ye L, Liu K, Xie H, Jin X, Su Y (2015) Synthesis of BiOI@(BiO)2CO3 facet coupling heterostructures toward efficient visible-light photocatalytic properties. Phys Chem Chem Phys 17:23489–23495

    Article  CAS  PubMed  Google Scholar 

  23. Liu C, Chai B (2015) Facile ion-exchange synthesis of BiOI/Bi2O2CO3 heterostructure for efficient photocatalytic activity under visible light irradiation. J Mater Sci Mater Electron 26:2296–2304

    Article  CAS  Google Scholar 

  24. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  PubMed  Google Scholar 

  25. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  PubMed  Google Scholar 

  26. Xu T, Zhang L, Cheng H, Zhu Y (2011) Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl Catal B 101:382–387

    Article  CAS  Google Scholar 

  27. Ton NNT, Dao ATN, Kato K, Ikenaga T, Trinh DX, Taniike T (2018) One-pot synthesis of TiO2/graphene nanocomposites for excellent visible light photocatalysis based on chemical exfoliation method. Carbon 133:109–117

    Article  CAS  Google Scholar 

  28. Wang M, Cai L, Wang Y, Zhou F, Xu K, Tao X, Chai Y (2017) Graphene-draped semiconductors for enhanced photocorrosion resistance and photocatalytic properties. J Am Chem Soc 139:4144–4151

    Article  CAS  PubMed  Google Scholar 

  29. Chen Y, Tian G, Mao G, Li R, Xiao Y, Han T (2016) Facile synthesis of well-dispersed Bi2S3 nanoparticles on reduced graphene oxide and enhanced photocatalytic activity. Appl Surf Sci 378:231–238

    Article  CAS  Google Scholar 

  30. Zhang Z, Zhou C, Huang L, Wang X, Qu Y, Lai Y, Li J (2013) Synthesis of bismuth sulfide/reduced graphene oxide composites and their electrochemical properties for lithium ion batteries. Electrochim Acta 114:88–94

    Article  CAS  Google Scholar 

  31. Min Y, Zhang F-J, Zhao W, Zheng F, Chen Y, Zhang Y (2012) Hydrothermal synthesis of nanosized bismuth niobate and enhanced photocatalytic activity by coupling of graphene sheets. Chem Eng J 209:215–222

    Article  CAS  Google Scholar 

  32. Dong S, Cui Y, Wang Y, Li Y, Hu L, Sun J, Sun J (2014) Designing three-dimensional acicular sheaf shaped BiVO4/reduced graphene oxide composites for efficient sunlight-driven photocatalytic degradation of dye wastewater. Chem Eng J 249:102–110

    Article  CAS  Google Scholar 

  33. Zhang Y, Zhu Y, Yu J, Yang D, Ng TW, Wong PK, Yu JC (2013) Enhanced photocatalytic water disinfection properties of Bi2MoO6-RGO nanocomposites under visible light irradiation. Nanoscale 5:6307–6310

    Article  CAS  PubMed  Google Scholar 

  34. Dong S, Ding X, Guo T, Yue X, Han X, Sun J (2017) Self-assembled hollow sphere shaped Bi2WO6/RGO composites for efficient sunlight-driven photocatalytic degradation of organic pollutants. Chem Eng J 316:778–789

    Article  CAS  Google Scholar 

  35. Huang H, Liu K, Zhang Y, Chen K, Zhang Y, Tian N (2014) Tunable 3D hierarchical graphene–BiOI nanoarchitectures: their in situ preparation, and highly improved photocatalytic performance and photoelectrochemical properties under visible light irradiation. RSC Adv 4:49386–49394

    Article  CAS  Google Scholar 

  36. Liu Z, Xu W, Fang J, Xu X, Wu S, Zhu X, Chen Z (2012) Decoration of BiOI quantum size nanoparticles with reduced graphene oxide in enhanced visible-light-driven photocatalytic studies. Appl Surf Sci 259:441–447

    Article  CAS  Google Scholar 

  37. Liu H, Cao WR, Su Y, Chen Z, Wang Y (2013) Bismuth oxyiodide-graphene nanocomposites with high visible light photocatalytic activity. J Coll Interface Sci 398:161–167

    Article  CAS  Google Scholar 

  38. Gurusamy L, Anandan S, Wu JJ (2017) Synthesis of reduced graphene oxide supported flower-like bismuth subcarbonates microsphere (Bi2O2CO3-RGO) for supercapacitor application. Electrochim Acta 244:209–221

    Article  CAS  Google Scholar 

  39. Madhusudan P, Yu J, Wang W, Cheng B, Liu G (2012) Facile synthesis of novel hierarchical graphene–Bi2O2CO3 composites with enhanced photocatalytic performance under visible light. Dalton Trans 41:14345

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Y, Li D, Zhang Y, Zhou X, Guo S, Yang L (2014) Graphene-wrapped Bi2O2CO3 core–shell structures with enhanced quantum efficiency profit from an ultrafast electron transfer process. J Mater Chem A 2:8273–8280

    Article  CAS  Google Scholar 

  41. Luévano-Hipólito E, TorresMartínez LM, Cantú-Castro LVF (2019) Self-cleaning coatings based on fly ash and bismuth-photocatalysts: Bi2O3, Bi2O2CO3, BiOI, BiVO4, BiPO4[J]. Constr Build Mater 220:206–213

    Article  Google Scholar 

  42. Wang Y, Wang W, Mao H, Lu Y, Lu J, Huang J, Ye Z, Lu B (2014) Electrostatic self-assembly of BiVO4-reduced graphene oxide nanocomposites for highly efficient visible light photocatalytic activities. ACS Appl Mater Interfaces 6:12698–12706

    Article  CAS  PubMed  Google Scholar 

  43. Xu YX, Bai H, Lu GW, Li C, Shi GQ (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856–5857

    Article  CAS  PubMed  Google Scholar 

  44. Zhao T, Zai J, Xu M, Zou Q, Su Y, Wang K, Qian X (2011) Hierarchical Bi2O2CO3 microspheres with improved visible-light-driven photocatalytic activity. CrystEngComm 13:4010

    Article  CAS  Google Scholar 

  45. Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L (2007) Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Lett 7:238–242

    Article  CAS  PubMed  Google Scholar 

  46. Dong F, Lee SC, Wu Z, Huang Y, Fu M, Ho WK, Zou S, Wang B (2011) Rose-like monodisperse bismuth subcarbonate hierarchical hollow microspheres: one-pot template-free fabrication and excellent visible light photocatalytic activity and photochemical stability for NO removal in indoor air. J Hazard Mater 195:346–354

    Article  CAS  PubMed  Google Scholar 

  47. Wang H, Liang Y, Liu L, Hu J, Wu P, Cui W (2017) Enriched photoelectrocatalytic degradation and photoelectric performance of BiOI photoelectrode by coupling rGO. Appl Catal B 208:22–34

    Article  CAS  Google Scholar 

  48. Ng YH, Iwase A, Kudo A, Amal R (2010) Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. Physical Chem Lett 1:2607–2612

    Article  CAS  Google Scholar 

  49. Xiang QJ, Yu JG, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41:782–796

    Article  CAS  PubMed  Google Scholar 

  50. Yang MQ, Weng B, Xu YJ (2013) Improving the visible light photoactivity of In2S3-graphene nanocomposite via a simple surface charge modification approach. Langmuir 29:10549–10558

    Article  CAS  PubMed  Google Scholar 

  51. Su M, Xu R, Chen Z et al (2020) Heterostructured Bi2O2CO3/rGO/PDA photocatalysts with superior activity for organic pollutant degradation: structural characterization, reaction mechanism and economic assessment [J]. Ecotoxicol Environ Saf 204:111112

    Article  CAS  PubMed  Google Scholar 

  52. Wang Z, Ma W, Chen C, Ji H, Zhao J (2011) Probing paramagnetic species in titania-based heterogeneous photocatalysis by electron spin resonance (ESR) spectroscopy—a mini review. Chem Eng J 170:353–362

    Article  CAS  Google Scholar 

  53. Guo Y, Dai Y, Zhao W, Li H, Xu B, Sun C (2018) Highly efficient photocatalytic degradation of naphthalene by Co3O4/Bi2O2CO3 under visible light: a novel p–n heterojunction nanocomposite with nanocrystals/lotus-leaf-like nanosheets structure. Appl Catal B 237:273–287

    Article  CAS  Google Scholar 

  54. Cao J, Li X, Lin H, Xu B, Chen S, Guan Q (2013) Surface acid etching of (BiO)2CO3 to construct (BiO)2CO3/BiOX (X=Cl, Br, I) heterostructure for methyl orange removal under visible light. Appl Surf Sci 266:294–299

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to financial support from National Natural Science Foundation of China for its strong support (51572115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingshun Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1400 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Lu, L., Wang, B. et al. An efficient electrostatic self-assembly of reduced graphene oxide-BiOI/Bi2O2CO3 p–n junction nanocomposites for enhanced visible-light photocatalytic activity. Reac Kinet Mech Cat 132, 581–597 (2021). https://doi.org/10.1007/s11144-020-01916-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01916-3

Keywords

Navigation