Skip to main content
Log in

CO2 hydrogenation over Co/Al2O3 catalysts prepared via a solid-state reaction of fine gibbsite and cobalt precursors

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The properties of Co/Al2O3 catalysts prepared by the solid-state reaction between gibbsite and various cobalt salts such as cobalt acetate (CoAc), cobalt acetylacetonate, cobalt chloride, and cobalt nitrate (CoNT) were investigated in the hydrogenation of carbon dioxide at 270 °C and atmospheric pressure and characterized by N2 physisorption, X-ray diffraction, X-ray photoelectron spectroscopy, and H2-temperature programmed reduction. Compared to the catalyst prepared by conventional impregnation of aqueous solution of cobalt nitrate on alumina (CoNT-Imp), the solid-state catalysts (CoNT and CoAc) exhibited much higher activity in the CO2 hydrogenation with comparable CH4 and CO selectivity. Unlike the impregnation catalysts, in which most of the Co3O4 particles/clusters were located deep inside the pores of alumina, the solid-state reaction resulted in the dispersion of cobalt oxides mostly on the external surface of alumina. As a consequence, CO2 adsorption and dissociation to adsorbed CO and O (the initial steps in CO2 hydrogenation) were not limited by the slow diffusion of CO2 so high CO2 hydrogenation activity was obtained. As revealed by the XRD and H2-TPR results, the average crystallite size of Co3O4 and the metal-support interaction depended on the cobalt precursor used during the solid-state synthesis. Nevertheless, the solid-state reaction of gibbsite and cobalt chloride at 650 °C resulted in very poor CO2 hydrogenation activity due to the formation of inactive cobalt aluminate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kim MS, Bae WJ, Lee JY, Jun WK (2008) Catal Commun 9:2269–2273

    Article  CAS  Google Scholar 

  2. Somorjai GA (1994) Introduction to surface chemistry and catalysis. Wiley, New York

    Google Scholar 

  3. Dry ME (1996) Appl Catal A 138:319–344

    Article  CAS  Google Scholar 

  4. Adesina AA (1996) Appl Catal A 138:345–367

    Article  CAS  Google Scholar 

  5. Iglesia E (1997) Appl Catal A 161:59–78

    Article  CAS  Google Scholar 

  6. Sahki R, Benlounes O, Cherifi O, Thouvenot R, Bettahar MM, Hocine S (2011) React Kinet Mech Catal 103:391–403

    Article  CAS  Google Scholar 

  7. Peebles DE, Goodman DW, White JM (1983) J Phys Chem 87:4378–4387

    Article  CAS  Google Scholar 

  8. Riedel T, Claeys M, Schulz H, Schaub G, Nam SS, Jun KW, Choi MJ, Kishan G, Lee KW (1999) Appl Catal A 186:201–213

    Article  CAS  Google Scholar 

  9. Marwood M, Doepper R, Prairie M, Renken A (1994) Chem Eng Sci 49:4801–4809

    Article  CAS  Google Scholar 

  10. Solymosi F, Erdohelyi A, Kocsis M (1981) J Chem Soc, Faraday Trans 1:1003–1012

    Google Scholar 

  11. Scire S, Crisafulli C, Maggiore R, Minico S, Galvagno S (1998) Catal Lett 51:41–45

    Article  CAS  Google Scholar 

  12. Kondarides DI, Panagiotopoulou P, Verykios XE (2011) J Phys Chem C 115:1220–1230

    Article  Google Scholar 

  13. Behm RJ, Eckle S, Denkwitz Y (2010) J Catal 269:255–268

    Article  Google Scholar 

  14. McFarland EW, Park JN (2009) J Catal 266:92–97

    Article  Google Scholar 

  15. Erdohelyi A, Pasztor M, Solymosi F (1986) J Catal 98:166–177

    Article  CAS  Google Scholar 

  16. Solymosi F, Erdohelyi A, Bansagi T (1981) J Catal 68:371–382

    Article  CAS  Google Scholar 

  17. Zhang ZL, Kladi A, Verykios XE (1994) J Catal 148:737–747

    Article  CAS  Google Scholar 

  18. Iizuka T, Tanaka Y, Tanabe K (1982) J Mol Catal 17:381–389

    Article  CAS  Google Scholar 

  19. Karelovic A, Ruiz P (2012) Appl Catal B 113–114:237–249

    Google Scholar 

  20. Chang FW, Kuo MS, Tsay MT, Hsieh MC (2003) Appl Catal A 247:309–320

    Article  CAS  Google Scholar 

  21. Aksoylu AE, Onsan ZH (1997) Appl Catal A 164:1–11

    Article  Google Scholar 

  22. Janlamool J, Praserthdam P, Jongsomjit B (2011) J Nat Gas Chem 20:558–564

    Article  CAS  Google Scholar 

  23. Akin NA, Ataman M, Aksoylu EA, Onsan IZ (2002) React Kinet Catal Lett 76:265–270

    Article  CAS  Google Scholar 

  24. Hussain TS, Mazhar M, Rahman UHM, Bari M (2009) Environ Technol 30:543–559

    Article  CAS  Google Scholar 

  25. Visconti GC, Lietti L, Tronconi E, Forzatti P, Zennaro R, Finocchio E (2009) Appl Catal A 355:61–68

    Article  CAS  Google Scholar 

  26. Das T, Deo G (2011) J Mol Catal A 350:75–82

    Article  CAS  Google Scholar 

  27. Weatherbee GD, Bartholomew CH (1984) J Catal 87:352–362

    Article  CAS  Google Scholar 

  28. Khodakov AY, Chu W, Fongarland P (2007) Chem Rev 107:1692–1744

    Article  CAS  Google Scholar 

  29. Niemela MK, Backman L, Krause AOI, Vaara T (1997) Appl Catal A 156:319–334

    Article  Google Scholar 

  30. Khassin AA, Yurieva TM, Kustova GN, Itenberg IS, Demeshkina MP, Krieger TA, Plyasova LM, Chermashentseva GK, Parmon VN (2001) J Mol Catal A 168:193–207

    Article  CAS  Google Scholar 

  31. Reuel RC, Bartholomew CH (1984) J Catal 85:78–88

    Article  CAS  Google Scholar 

  32. Mikhailova VY, Sviderskii AS, Mishin VI, Mordkovich ZV (2007) Russ Chem Bull 56:1922–1926

    Article  CAS  Google Scholar 

  33. Li F, Yu X, Pan H, Wang M, Xin X (2000) Solid-State Sci 2:767–772

    Article  Google Scholar 

  34. Ji L, Lin J, Zeng CH (2000) J Phys Chem 104:1783–1790

    Article  CAS  Google Scholar 

  35. Kraum M, Baerns M (1999) Appl Catal A 186:189–200

    Article  CAS  Google Scholar 

  36. Jongsomjit B, Wongsalee T, Praserthdam P (2005) Catal Commun 6:705–710

    Article  CAS  Google Scholar 

  37. Panpranot J, Goodwin JG Jr, Sayari A (2002) Catal Today 77:269–284

    Article  CAS  Google Scholar 

  38. Zhang Y, Wei D, Hammache S, Goodwin JG Jr (1999) J Catal 188:281–290

    Article  CAS  Google Scholar 

  39. Ernst B, Libs S, Chaumette P, Kiennemann A (1999) Appl Catal A 186:145–168

    Article  CAS  Google Scholar 

  40. Lapidus A, Krylova A, Kazanskii V, Borovkov V, Zaitsev A, Rathousky J, Zukal A, Jancálková M (1991) Appl Catal 73:65–68

    Article  CAS  Google Scholar 

  41. Jongsomjit B, Panpranot J, Goodwin JG Jr (2001) J Catal 204:98–109

    Article  CAS  Google Scholar 

  42. Panpranot J, Kaewkun S, Praserthdam P, Goodwin JG Jr (2003) Catal Lett 91:95–102

    Article  CAS  Google Scholar 

  43. Riedel T, Schaub G (2003) Top Catal 26:145–156

    Article  CAS  Google Scholar 

  44. Zsoldos Z, Guczi L (1992) J Phys Chem 96:9393–9400

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from the Thailand Research Fund (TRF) Grant Number DBG52-Bunjerd Jongsomjit is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joongjai Panpranot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srisawad, N., Chaitree, W., Mekasuwandumrong, O. et al. CO2 hydrogenation over Co/Al2O3 catalysts prepared via a solid-state reaction of fine gibbsite and cobalt precursors. Reac Kinet Mech Cat 107, 179–188 (2012). https://doi.org/10.1007/s11144-012-0459-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-012-0459-8

Keywords

Navigation