Skip to main content
Log in

Peptides in Colorectal Cancer: Current State of Knowledge

  • Review Article
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is the second most deadly and the third most commonly diagnosed cancer in the world. CRC treatment is mainly based on surgery, chemotherapy, and even though the probability of complications after surgery is very low, chemo drugs affect the patient’s quality of life. Multiple studies have shown a strong correlation between diet and the onset and progression of CRC. Thus, the consumption of dietary nutraceuticals for its treatment and prevention has been suggested as a promising option. Peptides have increasingly become of interest in human health due to their antioxidant, antihypertensive, and anticancer potential. In recent years, there have been extensive reports on peptides with anti-tumor activity, and some studies suggest that peptides modulate cell proliferation, evasion of cell death, and metastasis in malignant cells. Plant-derived peptides such as soybean, bean, and rice have received main attention. In this review, we show evidence of several mechanisms through which bioactive peptides exert anti-tumor activity over in vitro and in vivo CRC models. We also report the current status of major production techniques, as well as limitations and future perspectives.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BBTIs:

Bowman-Birk trypsin inhibitors

CDKs:

Cyclin-dependent kinases

CDK2:

Cyclin-dependent kinase 2

CRC:

Colorectal cancer

GI:

Gastrointestinal

References

  1. Ferlay J, Ervik M, Lam F, Cfolombet M, Mery L, Piñeros M, Znaor A, Soejomataram I, Bray F (2018) Cancer today. Global Cancer Observatory. https://gco.iarc.fr/today. Accessed 11 August 2020

  2. Redondo-Blanco S, Fernández J, Gutiérrez-del-Río I, Villar CJ, Lombó F (2017) New insights toward colorectal cancer chemotherapy using natural bioactive compounds. Front Pharmacol 8:109. https://doi.org/10.3389/fphar.2017.00109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aune D, Chan DS, Lau R, Vieira R, Greenwood DC, Kampman E, Norat T (2011) Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. Br Med J 343:d6617. https://doi.org/10.1136/bmj.d6617

    Article  Google Scholar 

  4. Chan DS, Lau R, Aune D, Vieira R, Greenwood DC, Kampman E, Norat T (2011) Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLoS One 6:e20456. https://doi.org/10.1371/journal.pone.0020456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fan Y, Jin X, Man C, Gao Z, Wang X (2017) Meta-analysis of the association between the inflammatory potential of diet and colorectal cancer risk. Oncotarget 8:59592. https://doi.org/10.18632/oncotarget.19233

  6. Pan P, Jianhua Y, Wang LS (2018) Colon cancer: what we eat. Sur Oncol Clin N Am 27:243–267. https://doi.org/10.1016/j.soc.2017.11.002

    Article  Google Scholar 

  7. González-Montoya M, Hernández-Ledesma B, Silván JM, Mora-Escobedo R, Martínez-Villaluenga C (2018) Peptides derived from in vitro gastrointestinal digestion of germinated soybean proteins inhibit human colon cancer cells proliferation and inflammation. Food Chem 242:75–82. https://doi.org/10.1016/j.foodchem.2017.09.035

    Article  CAS  PubMed  Google Scholar 

  8. Ortiz-Martinez M, Winkler R, García-Lara S (2014) Preventive and therapeutic potential of peptides from cereals against cancer. J Proteome 5:165–183. https://doi.org/10.1016/j.jprot.2014.03.044

    Article  CAS  Google Scholar 

  9. Henchion M, Hayes M, Mullen A, Fenelon M, Tiwari B (2017) Future protein supply and demand: strategies and factors influencing a sustainable equilibrium. Foods 6:53. https://doi.org/10.3390/foods6070053

    Article  CAS  PubMed Central  Google Scholar 

  10. Rizzello CG, Tagliazucchi D, Babini E, Rutella GS, Taneyo DL, Gianotti A (2016) Bioactive peptides from vegetable food matrices: research trends and novel biotechnologies for synthesis and recovery. J Funct Foods 27:549–569. https://doi.org/10.1016/j.jff.2016.09.023

    Article  CAS  Google Scholar 

  11. Marqus S, Pirogova E, Piva TJ (2017) Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci 24:21. https://doi.org/10.1186/s12929-017-0328-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Seeberger PH, Els-Heindl S, Beck-Sickinger AG (2014) Automated solid-phase peptide synthesis to obtain therapeutic peptides. Beilstein J Org Chem 10:1197–1212. https://doi.org/10.3762/bjoc.10.118

    Article  CAS  Google Scholar 

  13. Trier N, Hansen P, Houen G (2019) Peptides, antibodies, peptide antibodies and more. Int J Mol Sci 20:6289. https://doi.org/10.3390/ijms20246289

    Article  CAS  PubMed Central  Google Scholar 

  14. Chakrabarti S, Guha S, Majumder K (2018) Food-derived bioactive peptides in human health: challenges and opportunities. Nutrients 10:1738. https://doi.org/10.3390/nu10111738

    Article  CAS  PubMed Central  Google Scholar 

  15. Zhang M, Mu TH (2018) Contribution of different molecular weight fractions to anticancer effect of sweet potato protein hydrolysates by six proteases on HT-29 colon cancer cells. Int J Food Sci Tech 53:25–532. https://doi.org/10.1111/ijfs.13625

    Article  CAS  Google Scholar 

  16. Ma S, Huang D, Zhai M, Yang L, Peng S, Chen C (2015) Isolation of a novel bio-peptide from walnut residual protein inducing apoptosis and autophagy on cancer cells. BMC Complem Alter M 15:413. https://doi.org/10.1186/s12906-015-0940-9

    Article  CAS  Google Scholar 

  17. Jahanbani R, Ghaffari SM, Salami M, Vahdati K, Sepehri H, Sarvestani NN (2016) Antioxidant and anticancer activities of walnut (Juglans regia L.) protein hydrolysates using different proteases. Plant Foods Hum Nutr 71:402–409. https://doi.org/10.1007/s11130-016-0576-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chui H, Chan M, Hernandez D, Chong P, McCorrister S, Robinson A (2015) Rapid, sensitive, and specific Escherichia coli H antigen typing by matrix-assisted laser desorption ionization–time of flight-based peptide mass fingerprinting. J Clin Microbiol 53:2480–2485. https://doi.org/10.1128/JCM.00593-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yamagishi H, Kuroda H, Imai Y, Hiraishi H (2016) Molecular pathogenesis of sporadic colorectal cancers. Chin J Cancer 35:4. https://doi.org/10.1186/s40880-015-0066-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jass J (2007) Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology 50:113–130. https://doi.org/10.1111/j.1365-2559.2006.02549.x

    Article  CAS  PubMed  Google Scholar 

  21. Markowitz SD, Bertagnolli MM (2009) Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med 361:2449–2460. https://doi.org/10.1056/NEJMra0804588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu IS, Cheung WK (2018) Metastatic colorectal cancer in the era of personalized medicine: a more tailored approach to systemic therapy. Can J Gastroenterol Hepatol 2018:9450754–9450711. https://doi.org/10.1155/2018/9450754

    Article  PubMed  PubMed Central  Google Scholar 

  23. Long AG, Lundsmith ET, Hamilton KE (2017) Inflammation and colorectal cancer. Curr Colorectal Cancer Rep 13:341–351. https://doi.org/10.1007/s11888-017-0373-6

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chiangjong W, Chutipongtanate S, Hongeng S (2020) Anticancer peptides: physicochemical property, functional aspect and trend in clinical application (review). Int J Oncol 57:678–696. https://doi.org/10.3892/ijo.2020.5099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Korhonen H, Pihlanto A (2006) Bioactive peptides: production and functionality. Int Dairy J 16:945–960. https://doi.org/10.1016/j.idairyj.2005.10.012

    Article  CAS  Google Scholar 

  26. Luna-Vital DA, de Mejía EG, Loarca-Piña G (2016) Selective mechanism of action of dietary peptides from common bean on HCT116 human colorectal cancer cells through loss of mitochondrial membrane potential and DNA damage. J Funct Foods 23:24–39. https://doi.org/10.1016/j.jff.2016.02.021

    Article  CAS  Google Scholar 

  27. Vermeirssen V, Camp JV, Verstraete W (2004) Bioavailability of angiotensin I converting enzyme inhibitory peptides. Br J Nutr 92:357–366. https://doi.org/10.1079/bjn20041189

    Article  CAS  PubMed  Google Scholar 

  28. Renukuntla J, Vadlapudi AD, Patel A, Boddu SHS, Mitra AK (2013) Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm 447:75–93. https://doi.org/10.1016/j.ijpharm.2013.02.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pan X, Xu J, Jia X (2020) Research progress evaluating the function and mechanism of anti-tumor peptides. Cancer Manag Res 12:397–409. https://doi.org/10.2147/CMAR.S232708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GPS (2013) In silico approach for predicting toxicity of peptides and proteins. PLoS One 8:e73957. https://doi.org/10.1371/journal.pone.0073957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rayaprolu SJ, Hettiarachchy NS, Chen P, Kannan A, Mauromostakos A (2013) Peptides derived from high oleic acid soybean meals inhibit colon, liver and lung cancer cell growth. Food Res Int 50:282–288. https://doi.org/10.1016/j.foodres.2012.10.021

    Article  CAS  Google Scholar 

  32. Rayaprolu SJ, Hettiarachchy NS, Horax R, Kumar-Phillips G (2017) Purification and characterization of a peptide from soybean with cancer cell proliferation inhibition. J Food Biochem 41:e12374. https://doi.org/10.1111/jfbc.12374

    Article  CAS  Google Scholar 

  33. Kannan A, Hettiarachchy N, Johnson MG, Nannapaneni R (2008) Human colon and liver cancer cell proliferation inhibition by peptide hydrolysates derived from heat-stabilized defatted rice bran. J Agr Food Chem 56:11643–11647. https://doi.org/10.1021/jf802558v

    Article  CAS  Google Scholar 

  34. Kannan A, Hettiarachchy NS, Lay JO, Liyanage R (2010) Human cancer cell proliferation inhibition by a pentapeptide isolated and characterized from rice bran. Peptides 31:1629–1634. https://doi.org/10.1016/j.peptides.2010.05.018

    Article  CAS  PubMed  Google Scholar 

  35. Kannan A, Hettiarachchy N, Narayan S (2009) Colon and breast anticancer effects of peptide hydrolysates derived from rice bran. TOBCJ 2:17–20. https://doi.org/10.2174/1874847300902010017

    Article  CAS  Google Scholar 

  36. Savitskaya M, Onishchenko G (2015) Mechanisms of apoptosis. Biochem Mosc 80:1393–1405. https://doi.org/10.1134/S0006297915110012

    Article  CAS  Google Scholar 

  37. Li Z, Zhao C, Li Z, Zhao Y, Shan S, Shi T (2014) Reconstructed mung bean trypsin inhibitor targeting cell surface GRP78 induces apoptosis and inhibits tumor growth in colorectal cancer. Int J Biochem Cell Bioll 47:68–75. https://doi.org/10.1016/j.biocel.2013.11.022

    Article  CAS  Google Scholar 

  38. Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G (2016) Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY) 8:603-619. https://doi.org/10.18632/aging.100934

  39. Budchart P, Khamwut A, Sinthuvanich C, Ratanapo S, Poovorawan Y, T-Thienprasert NP (2017) Partially purified Gloriosa superba peptides inhibit colon cancer cell viability by inducing apoptosis through p53 upregulation. Am J Med Sci 354:423–429. https://doi.org/10.1016/j.amjms.2017.06.005

    Article  PubMed  Google Scholar 

  40. Luna-Vital DA, de Mejía EG, Dia VP, Loarca-Piña G (2014) Peptides in common bean fractions inhibit human colorectal cancer cells. Food Chem 157:347–355. https://doi.org/10.1016/j.foodchem.2014.02.050

  41. Gao C, Sun R, Xie YR, Jiang AL, Lin M, Li M (2017) The soy-derived peptide Vglycin inhibits the growth of colon cancer cells in vitro and in vivo. Exp Biol Med 242:1034–1043. https://doi.org/10.1177/1535370217697383

    Article  CAS  Google Scholar 

  42. Lule VK, Garg S, Pophaly SD, Tomar SK (2015) Potential health benefits of lunasin: a multifaceted soy-derived bioactive peptide. J Food Sci 80:485–494. https://doi.org/10.1111/1750-3841.12786

    Article  CAS  Google Scholar 

  43. Fernández-Tomé S, Xu F, Han Y, Hernández-Ledesma B, Xiao H (2020) Inhibitory effects of peptide lunasin in colorectal cancer HCT-116 cells and their tumorsphere-derived subpopulation. Int J Mol Sci 21:537. https://doi.org/10.3390/ijms21020537

    Article  CAS  PubMed Central  Google Scholar 

  44. Sabbione AC, Ogutu FO, Scilingo A, Zhang M, Añón MC, Mu TH (2019) Antiproliferative effect of amaranth proteins and peptides on HT-29 human colon tumor cell line. Plants Foods Hum Nutr 74:107–114. https://doi.org/10.1007/s11130-018-0708-8

    Article  CAS  Google Scholar 

  45. Allaoui A, Gascón S, Benomar S, Quero J, Osada J, Nasri M (2019) Protein hydrolysates from fenugreek (Trigonella foenum graecum) as nutraceutical molecules in colon cancer treatment. Nutrients 11:724. https://doi.org/10.3390/nu11040724

    Article  CAS  PubMed Central  Google Scholar 

  46. Reilly NM, Novara L, Nicolantonio FD, Bardelli A (2019) Exploiting DNA repair defects in colorectal cancer. Mol Oncol 13:681–700. https://doi.org/10.1002/1878-0261.12467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tonnus W, Linkermann A (2017) The in vivo evidence for regulated necrosis. Immunol Rev 277:128–149. https://doi.org/10.1111/imr.12551

    Article  CAS  PubMed  Google Scholar 

  48. Cho YS, Park SY (2014) Harnessing of programmed necrosis for fighting against cancers. Biomol Ther 22:167–175. https://doi.org/10.4062/biomolther.2014.046

    Article  CAS  Google Scholar 

  49. Bagnjuk K, Stöckl JB, Fröhlich T, Arnold GJ, Behr R, Berg U (2019) Necroptosis in primate luteolysis: a role for ceramide. Cell Death Discov 5:1–14. https://doi.org/10.1038/s41420-019-0149-7

    Article  CAS  Google Scholar 

  50. Otto T, Sicinski P (2017) Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer 17:93–115. https://doi.org/10.1038/nrc.2016.138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Qasim BJ, Ali HH, Hussein AG (2012) Immunohistochemical expression of PCNA and CD34 in colorectal adenomas and carcinomas using specified automated cellular image analysis system: a clinicopathologic study. Saudi J Gastroenterol 18:268–276. https://doi.org/10.4103/1319-3767.98435

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ogino S, Goeyl A (2008) Molecular classification and correlates in colorectal cancer. J Mol Diagn 10:13–27. https://doi.org/10.2353/jmoldx.2008.070082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Qie S, Diehl JA (2020) Cyclin D degradation by E3 ligases in cancer progression and treatment. Semin Cancer Biol 30:s1044. https://doi.org/10.1016/j.semcancer.2020.01.012

    Article  CAS  Google Scholar 

  54. Chen YT, Tsao SC, Tsai HP, Wang JY, Chai CY (2016) Serine protease inhibitor Kazal type 1 (SPINK1) as a prognostic marker in stage IV colon cancer patients receiving cetuximab based targeted therapy. J Clin Pathol 69:974–978. https://doi.org/10.1136/jclinpath-2016-203638

    Article  CAS  Google Scholar 

  55. Clemente A, Marín-Manzano MC, Jiménez E, Arques MC, Domoney C (2012) The antiproliferative effect of TI1B, a major Bowman–Birk isoinhibitor from pea (Pisum sativum L.), on HT29 colon cancer cells is mediated through protease inhibition. Br J Nutr 108:135–144. https://doi.org/10.1017/S000711451200075X

    Article  CAS  Google Scholar 

  56. Caccialupi P, Ceci LR, Siciliano RA, Pignone D, Clemente A, Sonnante G (2010) Bowman-Birk inhibitors in lentil: heterologous expression, functional characterization and antiproliferative properties in human colon cancer cells. Food Chem 120:1058–1066. https://doi.org/10.1016/j.foodchem.2009.11.051

    Article  CAS  Google Scholar 

  57. Ragg EM, Galbusera V, Scarafoni A, Negri A, Tedeschi G, Consonni A (2006) Inhibitory properties and solution structure of a potent Bowman–Birk protease inhibitor from lentil (Lens culinaris L) seeds. FEBS J 273:402–439. https://doi.org/10.1111/j.1742-4658.2006.05406.x

  58. Reyes Díaz A, Del-Toro-Sánchez CL, Rodríguez-Figueroa J, Valdéz-Hurtado S, Wong-Corral FJ, Borboa-Flores J, Gonzáez-Osuna MF, Perez-Perez LM, González-Vega RI (2019) Legumes proteins as promising source of anti-inflammatory peptides. Curr Protein Pept Sci 20:1204–1217. https://doi.org/10.2174/1389203720666190430110647

    Article  CAS  PubMed  Google Scholar 

  59. Chan-Zapata I, Arana-Argáez VE, Torres-Romero JC, Segura-Campos MR (2019) Anti-inflammatory effects of the protein hydrolysate and peptide fraction isolated from Salvia hispanica L. seeds. F Agr Immunol 30:786–803. https://doi.org/10.1080/09540105.2019.1632804

    Article  CAS  Google Scholar 

  60. Yalcin S, Basman A (2015) Effects of infrared treatment on urease, trypsin inhibitor and lipoxygenase activities of soybean samples. Food Chem 15:169–203. https://doi.org/10.1016/j.foodchem.2014.07.114

    Article  CAS  Google Scholar 

  61. Cruz-Huerta E, Fernández-Tomé S, Arques MC, Amigo L, Recio I, Clemente A (2015) The protective role of the Bowman-Birk protease inhibitor in soybean lunasin digestion: the effect of released peptides on colon cancer growth. Food Funct 6:2626–2635. https://doi.org/10.1039/C5FO00454C

    Article  CAS  PubMed  Google Scholar 

  62. De Angelis E, Pilolli R, Bavaro SL, Monaci L (2017) Insight into the gastro-duodenal digestion resistance of soybean proteins and potential implications for residual immunogenicity. Food Funct 8:1599–1610. https://doi.org/10.1039/C6FO01788F

    Article  CAS  PubMed  Google Scholar 

  63. Yan J, Zhao J, Yang R, Zhao W (2019) Bioactive peptide with antidiabetic properties: a review. Food Sci Technol 54:1909–1919. https://doi.org/10.1111/ijfs.14090

    Article  CAS  Google Scholar 

  64. Lorensen E, Prevosto R, Wilson KA (1981) The appearance of new active forms of trypsin inhibitor in germinating mung bean (Vigna radiata) seeds. Plant Physiol 68:88–92. https://doi.org/10.1104/pp.68.1.88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sánchez-Chino XM, Jiménez Martínez C, León-Espinosa EB, Garduño-Siciliano L, Álvarez-González I, Madrigal-Bujaidar E (2019) Protective effect of chickpea protein hydrolysates on colon carcinogenesis associated with a hypercaloric diet. J Am Coll Nutr 38:162–170. https://doi.org/10.1080/07315724.2018.1487809

    Article  CAS  PubMed  Google Scholar 

  66. Świeca M, Baraniak B (2013) Influence of elicitation with H2O2 on phenolics content, antioxidant potential and nutritional quality of Lens culinaris sprouts. J Sci Food Agric 94:489–496. https://doi.org/10.1002/jsfa.6274

    Article  CAS  PubMed  Google Scholar 

  67. Giovannini C, Maiuri L, De Vincenzi M (1995) Cytotoxic effect of prolamin-derived peptides on in vitro cultures of cell line Caco-2: implications for coeliac disease. Toxicol in Vitro 9:251–255. https://doi.org/10.1016/0887-2333(94)00212-D

    Article  CAS  PubMed  Google Scholar 

  68. Jain A, Jain SK (2016) Optimization of chitosan nanoparticles for colon tumors using experimental design methodology. Artif Cells Nanomed Biotechnol 44:1917–1926. https://doi.org/10.3109/21691401.2015.1111236

    Article  CAS  PubMed  Google Scholar 

  69. El-Maghawry E, Tadros MI, Elkheshen SA, Abd-Elbary A (2020) Eudragit®-S100 coated PLGA nanoparticles for colon targeting of Etoricoxib: optimization and pharmacokinetic assessments in healthy human volunteers. Int J Nanomedicine 15:3965–3980. https://doi.org/10.2147/IJN.S244124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Thanks to CONACYT for providing a scholarship to Aviles-Gaxiola (597872).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Basilio Heredia.

Ethics declarations

Conflict of Interest

The authors declare they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avilés-Gaxiola, S., Gutiérrez-Grijalva, E.P., León-Felix, J. et al. Peptides in Colorectal Cancer: Current State of Knowledge. Plant Foods Hum Nutr 75, 467–476 (2020). https://doi.org/10.1007/s11130-020-00856-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-020-00856-6

Keywords

Navigation