Skip to main content
Log in

Influence of the variation potential on photosynthetic flows of light energy and electrons in pea

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Local damage (mainly burning, heating, and mechanical wounding) induces propagation of electrical signals, namely, variation potentials, which are important signals during the life of plants that regulate different physiological processes, including photosynthesis. It is known that the variation potential decreases the rate of CO2 assimilation by the Calvin–Benson cycle; however, its influence on light reactions has been poorly investigated. The aim of our work was to investigate the influence of the variation potential on the light energy flow that is absorbed, trapped and dissipated per active reaction centre in photosystem II and on the flow of electrons through the chloroplast electron transport chain. We analysed chlorophyll fluorescence in pea leaves using JIP-test and PAM-fluorometry; we also investigated delayed fluorescence. The electrical signals were registered using extracellular electrodes. We showed that the burning-induced variation potential stimulated a nonphotochemical loss of energy in photosystem II under dark conditions. It was also shown that the variation potential gradually increased the flow of light energy absorbed, trapped and dissipated by photosystem II. These changes were likely caused by an increase in the fraction of absorbed light distributed to photosystem II. In addition, the variation potential induced a transient increase in electron flow through the photosynthetic electron transport chain. Some probable mechanisms for the influence of the variation potential on the light reactions of photosynthesis (including the potential role of intracellular pH decrease) are discussed in the work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allakhverdiev SI (2011) Recent progress in the studies of structure and function of photosystem II. J Photochem Photobiol B 104:1–8

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Murata N (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of photosystem II in Synechocystis sp. PCC 6803. Biochim Biophys Acta 1657:23–32

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Klimov VV, Carpentier R (1997) Evidence for the involvement of cyclic electron transport in the protection of photosystem II against photoinhibition: influence of a new phenolic compound. Biochemistry 36:4149–4154

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Nishiyama Y, Miyairi S, Yamamoto H, Inagaki N, Kanesaki Y, Murata N (2002) Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiol 130:1443–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allakhverdiev SI, Los DA, Mohanty P, Nishiyama Y, Murata N (2007) Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. Biochim Biophys Acta 1767:1363–1371

    Article  CAS  PubMed  Google Scholar 

  • Avenson TJ, Kanazawa A, Cruz JA, Takizawa K, Ettinger WE, Kramer DM (2005) Integrating the proton circuit into photosynthesis: progress and challenges. Plant Cell Environ 28:97–109

    Article  CAS  Google Scholar 

  • Beilby MJ (2007) Action potential in Charophytes. Int Rev Cytol 257:43–82

    Article  CAS  PubMed  Google Scholar 

  • Beilby MJ, Walker NA (1981) Chloride transport in Chara. J Exp Bot 32:43–54

    Article  CAS  Google Scholar 

  • Beilby MJ, Shepherd VA, Absolonova M (2017) The role of H+/OH channels in saline pathology of Chara australis: brief history. Botany Let. doi:10.1080/23818107.2017.1356745

    Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Curr Sci 89:1113–1121

    CAS  Google Scholar 

  • Białasek M, Górecka M, Mittler R, Karpiński S (2017) Evidence for the involvement of electrical, calcium and ROS signaling in the systemic regulation of non-photochemical quenching and photosynthesis. Plant Cell Physiol. doi:10.1093/pcp/pcw232

    PubMed  PubMed Central  Google Scholar 

  • Bose J, Pottosin II, Shabala SS, Palmgren MG, Shabala S (2011) Calcium efflux systems in stress signaling and adaptation in plants. Front Plant Sci 2:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Bulychev AA, Komarova AV (2014) Long-distance signal transmission and regulation of photosynthesis in characean cells. BioChemistry 79:273–281

    CAS  PubMed  Google Scholar 

  • Charles SA, Halliwell B (1980) Action of calcium ions on spinach (Spinacia oleracea) chloroplast fructose bisphosphatase and other enzymes of the Calvin cycle. Biochem J 188:775–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228

    Article  CAS  Google Scholar 

  • Demidchik V, Shabala SN, Davies JM (2007) Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. Plant J 49:377–386

    Article  CAS  PubMed  Google Scholar 

  • Desikan R, Cheung MK, Clarke A, Golding S, Sagi M, Fluhr R, Rock C, Hancock J, Neill S (2004) Hydrogen peroxide is a common signal for darkness- and ABA-induced stomatal closure in Pisum sativum. Funct Plant Biol 31:913–920

    Article  CAS  Google Scholar 

  • Dziubinska H, Filek M, Koscielniak J, Trebacz K (2003) Variation and action potentials evoked by thermal stimuli accompany enhacement of ethylene emission in distant non-stimulated leaves of Vicia faba minor seedlings. J Plant Physiol 160:1203–1210

    Article  CAS  PubMed  Google Scholar 

  • Eremin A, Bulychev A, Hauser MJ (2013) Cyclosis-mediated transfer of H2O2 elicited by localized illumination of Chara cells and its relevance to the formation of pH bands. Protoplasma 250:1339–1349

    Article  CAS  PubMed  Google Scholar 

  • Ettinger WF, Clear AM, Fanning KJ, Peck ML (1999) Identification of a Ca2+/H+ antiport in the plant chloroplast thylakoid membrane. Plant Physiol 119:1379–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finazzi G, Petroutsos D, Tomizioli M, Flori S, Sautron E, Villanova V, Rolland N, Seigneurin-Berny D (2015) Ions channels/transporters and chloroplast regulation. Cell Calcium 58:86–97

    Article  CAS  PubMed  Google Scholar 

  • Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environ 30:249–257

    Article  CAS  PubMed  Google Scholar 

  • Gallé A, Lautner S, Flexas J, Ribas-Carbo M, Hanson D, Roesgen J, Fromm J (2013) Photosynthetic responses of soybean (Glycine max L.) to heat-induced electrical signalling are predominantly governed by modifications of mesophyll conductance for CO2. Plant Cell Environ 36:542–552

    Article  PubMed  CAS  Google Scholar 

  • Gallé A, Lautner S, Flexas J, Fromm J (2015) Environmental stimuli and physiological responses: the current view on electrical signaling. Environ Exp Bot 114:15–21

    Article  Google Scholar 

  • García-Plazaola JI, Esteban R, Fernández-Marín B, Kranner I, Porcar-Castell (2012) A thermal energy dissipation and xanthophyll cycles beyond the Arabidopsis model. Photosynth Res 113:89–103

    Article  PubMed  CAS  Google Scholar 

  • Gilroy S, Białasek M, Suzuki N, Górecka M, Devireddy AR, Karpiński S, Mittler R (2016) ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol 171:1606–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goltsev V, Zaharieva I, Chernev P, Strasser RJ (2009) Delayed fluorescence in photosynthesis. Photosynth Res 101:217–232

    Article  CAS  PubMed  Google Scholar 

  • Goltsev VN, Kalaji HM, Paunov M, Bąba W, Horaczek T, Mojski J, Kociel H, Allakhverdiev SI (2016) Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russ J Plant Physiol 63:869–893

    Article  CAS  Google Scholar 

  • Goss R, Lepetit B (2015) Biodiversity of NPQ. J Plant Physiol 172:13–32

    Article  CAS  PubMed  Google Scholar 

  • Grams TEE, Lautner S, Felle HH, Matyssek R, Fromm J (2009) Heat-induced electrical signals affect cytoplasmic and apoplastic pH as well as photosynthesis during propagation through the maize leaf. Plant Cell Environ 32:319–326

    Article  CAS  PubMed  Google Scholar 

  • Hlaváčková V, Nauš J (2007) Chemical signal as a rapid long-distance information messenger after local wounding of a plant? Plant Signal Behav 2:103–105

    Article  PubMed  PubMed Central  Google Scholar 

  • Hlaváčková V, Krchňák P, Nauš J, Novák O, Špundová M, Strnad M (2006) Electrical and chemical signals involved in short-term systemic photosynthetic responses of tobacco plants to local burning. Planta 225:235–244

    Article  PubMed  CAS  Google Scholar 

  • Hlavinka J, Nožková-Hlaváčková V, Floková K, Novák O, Nauš J (2012) Jasmonic acid accumulation and systemic photosynthetic and electrical changes in locally burned wild type tomato, ABA-deficient sitiens mutants and sitiens pretreated by ABA. Plant Physiol Biochem 54:89–96

    Article  CAS  PubMed  Google Scholar 

  • Höhner R, Aboukila A, Kunz H-H, Venema K (2016) Proton gradients and proton-dependent transport processes in the chloroplast. Front Plant Sci 7:218

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang W, Yang SJ, Zhang SB, Zhang JL, Cao KF (2012) Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress. Planta 235:819–828

    Article  CAS  PubMed  Google Scholar 

  • Hung S-H, Yu C-W, Lin CH (2005) Hydrogen peroxide functions as a stress signal in plants. Bot Bull Acad Sin 46:1–10

    CAS  Google Scholar 

  • Ivanov AG, Allakhverdiev SI, Huner NPA, Murata N (2012) Genetic decrease in fatty acid unsaturation of phosphatidylglycerol increased photoinhibition of photosystem I at low temperature in tobacco leaves. Biochim Biophys Acta 1817:1374–1379

    Article  CAS  PubMed  Google Scholar 

  • Jahns P, Latowski D, Strzalka K (2008) Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. Biochim Biophys Acta 1787:3–14

    Article  PubMed  CAS  Google Scholar 

  • Kalaji HM, Carpentier R, Allakhverdiev SI, Bosa K (2012) Fluorescence parameters as early indicators of light stress in barley. J Photochem Photobiol B 112:1–6

    Article  CAS  PubMed  Google Scholar 

  • Katicheva L, Sukhov V, Akinchits E, Vodeneev V (2014) Ionic nature of burn-induced variation potential in wheat leaves. Plant Cell Physiol 55:1511–1519

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Portis AR Jr (2004) Oxygen-dependent H2O2 production by Rubisco. FEBS Lett 571:124–128

    Article  CAS  PubMed  Google Scholar 

  • Klughammer C, Schreiber U (2008) Saturation pulse method for assessment of energy conversion in PS I. PAM Appl Notes 1:11–14

    Google Scholar 

  • Kouřil R, Dekker JP, Boekema EJ (2012) Supramolecular organization of photosystem II in green plants. Biochim Biophys Acta 1817:2–12

    Article  PubMed  CAS  Google Scholar 

  • Kramer DM, Sacksteder CA, Cruz JA (1999) How acidic is the lumen? Photosynth Res 60:151–163

    Article  CAS  Google Scholar 

  • Krausko M, Perutka Z, Šebela M, Šamajová O, Šamaj J, Novák O, Pavlovič A (2017) The role of electrical and jasmonate signalling in the recognition of captured prey in the carnivorous sundew plant Drosera capensis. New Phytol 213:1818–1835

    Article  CAS  PubMed  Google Scholar 

  • Kreslavski VD, Carpentier R, Klimov VV, Allakhverdiev SI (2009) Transduction mechanisms of photoreceptor signals in plant cells. J Photochem Photobiol C: Photochem Rev 10:63–80

    Article  CAS  Google Scholar 

  • Kreslavski VD, Fomina IR, Los DA, Carpentier R, Kuznetsov VV, Allakhverdiev SI (2012) Red and near infra-red signaling: hypothesis and perspectives. J Photochem Photobiol C 13:190–203

    Article  CAS  Google Scholar 

  • Król E, Dziubińska H, Trebacz K (2010) What do plants need action potentials for? In: Action Potential: DuBois ML (ed) Biophysical and cellular context, initiation, phases and propagation. Nova Science Publishers, New York, pp 1–26

    Google Scholar 

  • Krupenina NA, Bulychev AA (2007) Action potential in a plant cell lowers the light requirement for non-photochemical energy-dependent quenching of chlorophyll fluorescence. Biochim Biophys Acta 1767:781–788

    Article  CAS  PubMed  Google Scholar 

  • Krupenina NA, Bulychev AA, Roelfsema MRG, Schreiber U (2008) Action potential in Chara cells intensifies spatial patterns of photosynthetic electron flow and non-photochemical quenching in parallel with inhibition of pH banding. Photochem Photobiol Sci 7:681–688

    Article  CAS  PubMed  Google Scholar 

  • Lautner S, Grams TEE, Matyssek R, Fromm J (2005) Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiol 138:2200–2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • León J, Rojo E, Sánchez-Serrano JJ (2001) Wound signaling in plant. J Exp Bot 52:1–9

    Article  PubMed  Google Scholar 

  • Mancuso S (1999) Hydraulic and electrical transmission of wound-induced signals in Vitis vinifera. Aust J Plant Physiol 26:55–61

    Article  Google Scholar 

  • Mathieu Y, Guern J, Kurkdjian A, Manigault P, Manigault J, Zielinska T, Gillet B, Beloeil J-C, Lallemand J-Y (1989) Regulation of vacuolar pH of plant cells. Plant Physiol 89:19–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathur S, Allakhverdiev SI, Jajoo A (2011) Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of photosystem II in wheat leaves (Triticum aestivum). Biochim Biophys Acta 1807:22–29

    Article  CAS  PubMed  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorofill fluorescence—a partical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Mehta P, Allakhverdiev SI, Jajoo A (2010) Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosynth Res 105:249–255

    Article  CAS  PubMed  Google Scholar 

  • Miyake C, Shinzaki Y, Miyata M, Tomizawa K (2004) Enhancement of cyclic electron flow around PSI at high light and its contribution to the induction of non-photochemical quenching (NPQ) of Chl fluorescence in intact leaves of tobacco plants. Plant Cell Physiol 45:1426–1433

    Article  CAS  PubMed  Google Scholar 

  • Miyake C, Miyata M, Shinzaki Y, Tomizawa K (2005) CO2 response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves–relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of Chl fluorescence. Plant Cell Physiol 46:629–637

    Article  CAS  PubMed  Google Scholar 

  • Mohanty P, Allakhverdiev SI, Murata N (2007) Application of low temperatures during photoinhibition allows characterization of individual steps in photodamage and the repair of photosystem II. Photosynth Res 94:217–224

    Article  CAS  PubMed  Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed  PubMed Central  Google Scholar 

  • Muñoz R, Quiles MJ (2013) Illumination in hibiscus plants. Int J Mol Sci 14:5432–5444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421

    Article  CAS  PubMed  Google Scholar 

  • Pavlovič A, Slováková L, Pandolfi C, Mancuso S (2011) On the mechanism underlying photosynthetic limitation upon trigger hair irritation in the carnivorous plant Venus flytrap (Dionaea muscipula Ellis). J Exp Bot 62:1991–2000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pavlovič A, Jakšová J, Novák O (2017) Triggering a false alarm: wounding mimics prey capture in the carnivorous Venus flytrap (Dionaea muscipula). New Phytol. doi:10.1111/nph.14747

    Google Scholar 

  • Peña-Cortés H, Fisahn J, Willmitzer L (1995) Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. Proc Natl Acad Sci USA 92:4106–4113

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfannschmidt T, Bräutigam K, Wagner R, Dietzel L, Schröter Y, Steiner S, Nykytenko A (2009) Potential regulation of gene expression in photosynthetic cells by redox and energy state: approaches towards better understanding. Ann Bot 103:599–607

    Article  CAS  PubMed  Google Scholar 

  • Poonam R, Kaur R, Bali S, Kaur P, Sirhindi G, Thukral AK, Ohri P, Vig AP (2015) Role of various hormones in photosynthetic responses of green plants under environmental stresses. Curr Protein Pept Sci 16:435–449

    Article  CAS  PubMed  Google Scholar 

  • Prásil O, Adir N, Ohad I (1992) Dynamics of photosystem II: mechanism of photoinhibition and recovery process. In: Barber J (ed) The Photosystems: Structure, Function and Molecular Biology. Elsevier Science Publishers, Amsterdam, pp 295–348

    Google Scholar 

  • Quiles MJ, López NI (2004) Photoinhibition of photosystems I and II induced by exposure to high light intensity during oat plant growth. Effects on the chloroplast NADH dehydrogenase complex. Plant Sci 166:815–823

    Article  CAS  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  • Rochaix J-D, Lemeille S, Shapiguzov A, Samol I, Fucile G, Willig A, Goldschmidt-Clermont M (2012) Protein kinases and phosphatases involved in the acclimation of the photosynthetic apparatus to a changing light environment. Phil Trans R Soc B 367:3466–3474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruban AV, Young AJ, Horton P (1993) Induction of nonphotochemical energy dissipation and absorbance changes in leaves. Evidence for changes in the state of the light-harvesting system of photosystem II in vivo. Plant Physiol 102:741–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherstneva ON, Vodeneev VA, Katicheva LA, Surova LM, Sukhov VS (2015) Participation of intracellular and extracellular pH changes in photosynthetic response development induced by variation potential in pumpkin seedlings. Biochemistry 80:776–784

    CAS  PubMed  Google Scholar 

  • Sherstneva ON, Surova LM, Vodeneev VA, Plotnikova YI, Bushueva AV, Sukhov VS (2016a) The role of the intra- and extracellular protons in the photosynthetic response induced by the variation potential in pea seedlings. Biochemistry (Mosc) Suppl Ser A 10:60–67

    Article  Google Scholar 

  • Sherstneva ON, Vodeneev VA, Surova LM, Novikova EM, Sukhov VS (2016b) Application of a mathematical model of variation potential for analysis of its influence on photosynthesis in higher plants. Biochem Moscow Suppl Ser A 10:269–277

    Article  Google Scholar 

  • Stael S, Wurzinger B, Mair A, Mehlmer N, Vothknecht UC, Teige M (2012) Plant organellar calcium signalling: an emerging field. J Exp Bot 63:1525–1542

    Article  CAS  PubMed  Google Scholar 

  • Stahlberg R, Cleland RE, van Volkenburgh E (2006) Slow wave potentials – a propagating electrical signal unique to higher plants. In: Baluška F, Mancuso S, Volkmann D (eds) Communication in plants. Neuronal aspects of plant life. Springer, Berlin, pp 291–309

    Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanisme, regulation and adaptation. Taylor and Francis, London, pp 445–483

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V (2010) Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim Biophys Acta 1797:1313–1326

    Article  CAS  PubMed  Google Scholar 

  • Sukhov V (2016) Electrical signals as mechanism of photosynthesis regulation in plants. Photosynth Res 130:373–387

    Article  CAS  PubMed  Google Scholar 

  • Sukhov V, Vodeneev V (2009) A mathematical model of action potential in cells of vascular plants. J Membrane Biol 232:59–67

    Article  CAS  Google Scholar 

  • Sukhov V, Orlova L, Mysyagin S, Sinitsina J, Vodeneev V (2012) Analysis of the photosynthetic response induced by variation potential in geranium. Planta 235:703–712

    Article  CAS  PubMed  Google Scholar 

  • Sukhov V, Akinchits E, Katicheva L, Vodeneev V (2013) Simulation of variation potential in higher plant cells. J Membrane Biol 246:287–296

    Article  CAS  Google Scholar 

  • Sukhov V, Sherstneva O, Surova L, Katicheva L, Vodeneev V (2014) Proton cellular influx as a probable mechanism of variation potential influence on photosynthesis in pea. Plant Cell Environ 37:2532–2541

    Article  CAS  PubMed  Google Scholar 

  • Sukhov V, Surova L, Sherstneva O, Katicheva L, Vodeneev V (2015) Variation potential in fluence on photosynthetic cyclic electron flow in pea. Front Plant Sci 5:766

    Article  PubMed  PubMed Central  Google Scholar 

  • Sukhov V, Surova L, Morozova E, Sherstneva O, Vodeneev V (2016) Changes in H+-ATP synthase activity, proton gradient, and pH in pea chloroplast can be connected with variation potential. Front Plant Sci 7:1092

    Article  PubMed  PubMed Central  Google Scholar 

  • Sukhov VS, Gaspirovich VV, Gromova EN, Ladeynova MM, Sinitsyna YV, Berezina EV, Akinchits EK, Vodeneev VA (2017) Decrease of mesophyll conductance to CO2 is a possible mechanism of abscisic acid influence on photosynthesis in seedlings of pea and wheat. Biochem Moscow Suppl Ser A 11:237–247

    Article  Google Scholar 

  • Sukhova E, Akinchits E, Sukhov V (2017) Mathematical models of electrical activity in plants. J Membr Biol 250:407–423

    Article  CAS  PubMed  Google Scholar 

  • Surova L, Sherstneva O, Vodeneev V, Katicheva L, Semina M, Sukhov V (2016a) Variation potential-induced photosynthetic and respiratory changes increase ATP content in pea leaves. J Plant Physiol 202:57–64

    Article  CAS  PubMed  Google Scholar 

  • Surova L, Sherstneva O, Vodeneev V, Sukhov V (2016b) Variation potential propagation decreases heat-related damage of pea photosystem I by 2 different pathways. Plant Sign Behav 11, e1145334

    Article  CAS  Google Scholar 

  • Tikhonov AN (2013) pH-dependent regulation of electron transport and ATP synthesis in chloroplasts. Photosynth Res 116:511–534

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov AN (2014) The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways. Plant Physiol Biochem 81:163–183

    Article  CAS  PubMed  Google Scholar 

  • Trebacz K, Dziubinska H, Krol E (2006) Electrical signals in longdistance communication in plants. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants. Neuronal aspects of plant life. Springer, Berlin, pp 277–290

    Google Scholar 

  • Vodeneev VA, Akinchits EK, Orlova LA, Sukhov VS (2011) The role of Ca2+, H+, and Cl ions in generation of variation potential in pumpkin plants. Russ J Plant Physiol 58:974–981

  • Vodeneev V, Akinchits E, Sukhov V (2015) Variation potential in higher plants: mechanisms of generation and propagation. Plant Sign Behav 10:e1057365

    Article  CAS  Google Scholar 

  • von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387

    Article  Google Scholar 

  • Vredenberg W, Pavlovič A (2013) Chlorophyll a fluorescence induction (Kautsky curve) in a venus flytrap (Dionaea muscipula) leaf after mechanical trigger hair irritation. J Plant Physiol 170:242–250

    Article  CAS  PubMed  Google Scholar 

  • Werdan K, Heldt HW, Milovancev M (1975) The role of pH in the regulation of carbon fixation in the chloroplast stroma. Studies on CO2 fixation in the light and dark. Biochim Biophys Acta 396:276–292

    Article  CAS  PubMed  Google Scholar 

  • Wolosiuk RA, Ballicora MA, Hagelin K (1993) The reductive pentose phosphate cycle for photosynthetic CO2 assimilation: enzyme modulation. FASEB J 7:622–637

    Article  CAS  PubMed  Google Scholar 

  • Yamburenko MV, Zubo YO, Börner T (2015) Abscisic acid affects transcription of chloroplast genes via protein phosphatase 2C-dependent activation of nuclear genes: repression by guanosine-30-50-bisdiphosphate and activation by sigma factor 5. Plant J 82:1030–1041

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann MR, Felle HH (2009) Dissection of heat-induced systemic signals: superiority of ion fluxes to voltage changes in substomatal cavities. Planta 229:539–547

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann MR, Maischak H, Mithoefer A, Boland W, Felle HH (2009) System potentials, a novel electrical long-distance apoplastic signal in plants, induced by wounding. Plant Physiol 149:1593–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zivcak M, Brestic M, Balatova Z, Drevenakova P, Olsovska K, Kalaji HM, Yang X, Allakhverdiev SI (2013) Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress. Photosynth Res 117:529–546

    Article  CAS  PubMed  Google Scholar 

  • Zivcak M, Brestic M, Kunderlikova K, Sytar O, Allakhverdiev SI (2015) Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves. Photosynth Res 126:449–463

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The detailed investigation of photosynthetic flows of light energy and electrons was supported by the Russian Science Foundation (Project No. 17-76-20032). The investigation of the dependence of photosynthetic changes on variation potential propagation was supported by the Ministry of Education and Science of the Russian Federation (contract no. 6.3199.2017/PCh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Sukhov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 188 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhova, E., Mudrilov, M., Vodeneev, V. et al. Influence of the variation potential on photosynthetic flows of light energy and electrons in pea. Photosynth Res 136, 215–228 (2018). https://doi.org/10.1007/s11120-017-0460-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-017-0460-1

Keywords

Navigation