Skip to main content

Advertisement

Log in

Relevance of nutrient media composition for hydrogen production in Chlamydomonas

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Microalgae are capable of biological H2 photoproduction from water, solar energy, and a variety of organic substrates. Acclimation responses to different nutrient regimes finely control photosynthetic activity and can influence H2 production. Hence, nutrient stresses are an interesting scenario to study H2 production in photosynthetic organisms. In this review, we mainly focus on the H2-production mechanisms in Chlamydomonas reinhardtii and the physiological relevance of the nutrient media composition when producing H2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alric J (2014) Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii: (II) involvement of the PGR5-PGRL1 pathway under anaerobic conditions. Biochim Biophys Acta 1837:825–834

    Article  CAS  PubMed  Google Scholar 

  • Antal TK, Krendeleva TE, Laurinavichene TV, Makarova VV, Ghirardi ML, Rubin AB, Tsygankov AA, Seibert M (2003) The dependence of algal H2 production on photosystem II and O2 consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells. Biochim Biophys Acta 1607:153–160

    Article  CAS  PubMed  Google Scholar 

  • Antal TK, Volgusheva AA, Kukarskih GP, Bulychev AA, Krendeleva TE, Rubin AB (2006) Effects of sulfur limitation on photosystem II functioning in Chlamydomonas reinhardtii as probed by chlorophyll a fluorescence. Physiol Plant 128:360–367

    Article  CAS  Google Scholar 

  • Antal TK, Volgusheva AA, Kukarskih GP, Krendeleva TE, Rubin AB (2009) Relationships between H2 photoproduction and different electron transport pathways in sulfur-deprived Chlamydomonas reinhardtii. Int J Hydrog Energy 34:9087–9094

    Article  CAS  Google Scholar 

  • Antal TK, Krendeleva TE, Rubin AB (2011) Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production. Appl Microbiol Biotechnol 89:3–15

    Article  CAS  PubMed  Google Scholar 

  • Aparicio PJ, Azuara MP, Ballesteros A, Fernandez VM (1985) Effects of light-intensity and oxidized nitrogen-sources on hydrogen-production by Chlamydomonas reinhardtii. Plant Physiol 78:803–806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Asada Y, Miyake J (1999) Photobiological hydrogen production. J Biosci Bioeng 88:1–6

    Article  CAS  PubMed  Google Scholar 

  • Atteia A, van Lis R, Gelius-Dietrich G, Adrait A, Garin J, Joyard J, Rolland N, Martin W (2006) Pyruvate formate-lyase and a novel route of eukaryotic ATP synthesis in Chlamydomonas mitochondria. J Biol Chem 281:9909–9918

    Article  CAS  PubMed  Google Scholar 

  • Atteia A, Adrait A, Brugiere S, Tardif M, van Lis R, Deusch O, Dagan T, Kuhn L, Gontero B, Martin W, Garin J, Joyard J, Rolland N (2009) A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the alpha-proteobacterial mitochondrial ancestor. Mol Biol Evol 26:1533–1548

    Article  CAS  PubMed  Google Scholar 

  • Baltz A, Kieu-Van D, Beyly A, Auroy P, Richaud P, Cournac L, Peltier G (2014) Plastidial expression of type II NAD(P)H dehydrogenase increases the reducing state of plastoquinones and hydrogen photoproduction rate by the indirect pathway in Chlamydomonas reinhardtii. Plant Physiol 165:1344–1352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bamberger ES, King D, Erbes DL, Gibbs M (1982) H(2) and CO(2) evolution by anaerobically adapted Chlamydomonas reinhardtii F-60. Plant Physiol 69:1268–1273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Batyrova KA, Tsygankov AA, Kosourov SN (2012) Sustained hydrogen photoproduction by phosphorus-deprived Chlamydomonas reinhardtii cultures. Int J Hydrog Energy 37:8834–8839

    Article  CAS  Google Scholar 

  • Batyrova K, Gavrisheva A, Ivanova E, Liu J, Tsygankov A (2015) Sustainable hydrogen photoproduction by phosphorus-deprived marine green microalgae Chlorella sp. Int J Mol Sci 16:2705–2716

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20:264–271

    Article  CAS  PubMed  Google Scholar 

  • Bolling C, Fiehn O (2005) Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation. Plant Physiol 139:1995–2005

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bulté L, Wollman FA (1992) Evidence for a selective destabilization of an integral membrane protein, the cytochrome b6/f complex, during gametogenesis in Chlamydomonas reinhardtii. Eur J Biochem 204:327–336

    Article  PubMed  Google Scholar 

  • Cakmak T, Angun P, Demiray YE, Ozkan AD, Elibol Z, Tekinay T (2012) Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol Bioeng 109:1947–1957

    Article  CAS  PubMed  Google Scholar 

  • Camargo A, Llamas A, Schnell RA, Higuera JJ, Gonzalez-Ballester D, Lefebvre PA, Fernandez E, Galvan A (2007) Nitrate signaling by the regulatory gene NIT2 in Chlamydomonas. Plant Cell 19:3491–3503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Castruita M, Casero D, Karpowicz SJ, Kropat J, Vieler A, Hsieh SI, Yan W, Cokus S, Loo JA, Benning C, Pellegrini M, Merchant SS (2011) Systems biology approach in Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps. Plant Cell 23:1273–1292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Catalanotti C, Dubini A, Subramanian V, Yang W, Magneschi L, Mus F, Seibert M, Posewitz MC, Grossman AR (2012) Altered fermentative metabolism in Chlamydomonas reinhardtii mutants lacking pyruvate formate lyase and both pyruvate formate lyase and alcohol dehydrogenase. Plant Cell 24:692–707

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Catalanotti C, Yang W, Posewitz MC, Grossman AR (2013) Fermentation metabolism and its evolution in algae. Front Plant Sci 4:150

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen M, Zhao L, Sun Y-L, Cui S-X, Zhang L-F, Yang B, Wang J, Kuang T-Y, Huang F (2010) Proteomic analysis of hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. J Proteome Res 9:3854–3866

    Article  CAS  PubMed  Google Scholar 

  • Chochois V, Dauvillee D, Beyly A, Tolleter D, Cuine S, Timpano H, Ball S, Cournac L, Peltier G (2009) Hydrogen production in Chlamydomonas: photosystem II-dependent and -independent pathways differ in their requirement for starch metabolism. Plant Physiol 151:631–640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chochois V, Constans L, Dauville D, Beyly A, Soliveres M, Ball S, Peltier G, Cournac L (2010) Relationships between PSII-independent hydrogen bioproduction and starch metabolism as evidenced from isolation of starch catabolism mutants in the green alga Chlamydomonas reinhardtii. Int J Hydrog Energy 35:1073110740

    Article  CAS  Google Scholar 

  • Cournac L, Latouche G, Cerovic Z, Redding K, Ravenel J, Peltier G (2002) In vivo interactions between photosynthesis, mitorespiration, and chlororespiration in Chlamydomonas reinhardtii. Plant Physiol 129:1921–1928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Das D, Veziroglu TN (2008) Advances in biological hydrogen production processes. Int J Hydrog Energy 33:6046–6057

    Article  CAS  Google Scholar 

  • Davies J, Yildiz F, Grossman AR (1996) Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation. EMBO J 15:2150–2159

    PubMed Central  CAS  PubMed  Google Scholar 

  • Davies JP, Yildiz FH, Grossman AR (1999) Sac3, an Snf1-like serine/threonine kinase that positively and negatively regulates the responses of Chlamydomonas to sulfur limitation. Plant Cell 11:1179–1190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davies KM, Skamnaki V, Johnson LN, Venien-Bryan C (2006) Structural and functional studies of the response regulator HupR. J Mol Biol 359:276–288

    Article  CAS  PubMed  Google Scholar 

  • Degrenne B, Pruvost J, Christophe G, Cornet JF, Cogne G, Legrand J (2010) Investigation of the combined effects of acetate and photobioreactor illuminated fraction in the induction of anoxia for hydrogen production by Chlamydomonas reinhardtii. Int J Hydrog Energy 35:1074110749

    Article  CAS  Google Scholar 

  • Degrenne B, Pruvost J, Legrand J (2011) Effect of prolonged hypoxia in autotrophic conditions in the hydrogen production by the green microalga Chlamydomonas reinhardtii in photobioreactor. Bioresour Technol 102:1035–1043

    Article  CAS  PubMed  Google Scholar 

  • Desplats C, Mus F, Cuine S, Billon E, Cournac L, Peltier G (2009) Characterization of Nda2, a plastoquinone-reducing type II NAD(P)H dehydrogenase in Chlamydomonas chloroplasts. J Biol Chem 284:4148–4157

    Article  CAS  PubMed  Google Scholar 

  • Doebbe A, Keck M, La Russa M, Mussgnug JH, Hankamer B, Tekce E, Niehaus K, Kruse O (2010) The interplay of proton, electron, and metabolite supply for photosynthetic H-2 production in Chlamydomonas reinhardtii. J Biol Chem 285:30247–30260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dubini A, Ghirardi ML (2015) Engineering photosynthetic organisms for the production of biohydrogen. Photosynth Res 123:241–253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dubini A, Mus F, Seibert M, Grossman AR, Posewitz MC (2009) Flexibility in anaerobic metabolism as revealed in a mutant of Chlamydomonas reinhardtii lacking hydrogenase activity. J Biol Chem 284:7201–7213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Endo T, Asada K (1996) Dark induction of the non-photochemical quenching of chlorophyll fluorescence by acetate in Chlamydomonas reinhardtii. Plant Cell Physiol 37:551–555

    Article  CAS  Google Scholar 

  • Eroglu E, Melis A (2011) Photobiological hydrogen production: recent advances and state of the art. Bioresour Technol 102:8403–8413

    Article  CAS  PubMed  Google Scholar 

  • Fedorov AS, Kosourov S, Ghirardi ML, Seibert M (2005) Continuous hydrogen photoproduction by Chlamydomonas reinhardtii. Appl Biochem Biotechnol 121:403–412

    Article  PubMed  Google Scholar 

  • Fernández E, Galvan A (2007) Inorganic nitrogen assimilation in Chlamydomonas. J Exp Bot 58:2279–2287

    Article  PubMed  CAS  Google Scholar 

  • Finazzi G, Rappaport F, Furia A, Fleischmann M, Rochaix JD, Zito F, Forti G (2002) Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii. EMBO Rep 3:280–285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Florin L, Tsokoglou A, Happe T (2001) A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J Biol Chem 276:6125–6132

    Article  CAS  PubMed  Google Scholar 

  • Fouchard S, Hemschemeier A, Caruana A, Pruvost K, Legrand J, Happe T, Peltier G, Cournac L (2005) Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. Appl Environ Microbiol 71:6199–6205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fouchard S, Pruvost J, Degrenne B, Titica Mll (2009) Kinetic modeling of light limitation and sulfur deprivation effects in the induction of hydrogen production with Chlamydomonas reinhardtii: part I. Model development and parameter identification. Biotechnol Bioeng 102:232–245

    Article  CAS  PubMed  Google Scholar 

  • Gérin S, Mathy G, Franck F (2014) Modeling the dependence of respiration and photosynthesis upon light, acetate, carbon dioxide, nitrate and ammonium in Chlamydomonas reinhardtii using design of experiments and multiple regression. BMC Syst Biol 8:96. http://www.biomedcentral.com/1752-0509/8/96

  • Gfeller RP, Gibbs M (1984) Fermentative metabolism of Chlamydomonas reinhardtii.1. Analysis of fermentative products from starch in dark and light. Plant Physiol 75:212–218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghirardi ML, Dubini A, Yu J, Maness P-C (2009) Photobiological hydrogen-producing systems. Chem Soc Rev 38:52–61

    Article  CAS  PubMed  Google Scholar 

  • Giannelli L, Scoma A, Torzillo G (2009) Interplay between light intensity, chlorophyll concentration and culture mixing on the hydrogen production in sulfur-deprived Chlamydomonas reinhardtii cultures grown in laboratory photobioreactors. Biotechnol Bioeng 104:76–90

    Article  CAS  PubMed  Google Scholar 

  • Gibbs M, Gfeller RP, Chen C (1986) Fermentative metabolism of Chlamydomonas reinhardii: III. Photoassimilation of acetate. Plant Physiol 82:160–166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gonzalez-Ballester D, Pollock SV, Pootakham W, Grossman AR (2008) The central role of a SNRK2 kinase in sulfur deprivation responses. Plant Physiol 147:216–227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gonzalez-Ballester D, Casero D, Cokus S, Pellegrini M, Merchant SS, Grossman AR (2010) RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival. Plant Cell 22:2058–2084

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grewe S, Ballottari M, Alcocer M, D’Andrea C, Blifernez-Klassen O, Hankamer B, Mussgnug JH, Bassi R, Kruse O (2014) Light-harvesting complex protein LHCBM9 is critical for photosystem II activity and hydrogen production in Chlamydomonas reinhardtii. Plant Cell 26:1598–1611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grossman A (2000) Acclimation of Chlamydomonas reinhardtii to its nutrient environment. Protist 151:201–224

    Article  CAS  PubMed  Google Scholar 

  • Happe T, Naber JD (1993) Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii. Eur J Biochem 214:475–481

    Article  CAS  PubMed  Google Scholar 

  • Harris EH, Witman GB (2008) The Chlamydomonas sourcebook, 2nd edn. Elsevier, New York

    Google Scholar 

  • Healey FP (1970) Mechanism of hydrogen evolution by Chlamydomonas moewusii. Plant Physiol 45:153–159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heifetz PB, Forster B, Osmond CB, Giles LJ, Boynton JE (2000) Effects of acetate on facultative autotrophy in Chlamydomonas reinhardtii assessed by photosynthetic measurements and stable isotope analyses. Plant Physiol 122:1439–1445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hemschemeier A, Fouchard S, Cournac L, Peltier G, Happe T (2008) Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks. Planta 227:397–407

    Article  CAS  PubMed  Google Scholar 

  • Irihimovitch V, Yehudai-Resheff S (2008) Phosphate and sulfur limitation responses in the chloroplast of Chlamydomonas reinhardtii. FEMS Microbiol Lett 283:1–8

    Article  CAS  PubMed  Google Scholar 

  • Jans F, Mignolet E, Houyoux P-A, Cardol P, Ghysels B, Cuine S, Cournac L, Peltier G, Remacle C, Franck F (2008) A type II NAD(P)H dehydrogenase mediates light-independent plastoquinone reduction in the chloroplast of Chlamydomonas. Proc Natl Acad Sci USA 105:20546–20551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jo JH, Lee DS, Park JM (2006) Modeling and optimization of photosynthetic hydrogen gas production by green alga Chlamydomonas reinhardtii in sulfur-deprived circumstance. Biotechnol Prog 22:431–437

    Article  CAS  PubMed  Google Scholar 

  • Johnson X, Alric J (2013) Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryot Cell 12:776–793

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones LWMJ (1963) A common link between photosynthesis and respiration in a blue green alga. Nature 199:670–672

    Article  CAS  PubMed  Google Scholar 

  • Kim JP, Kang CD, Park TH, Kim MS, Sim SJ (2006) Enhanced hydrogen production by controlling light intensity in sulfur-deprived Chlamydomonas reinhardtii culture. Int J Hydrog Energy 31:1585–1590

    Article  CAS  Google Scholar 

  • Klein U, Betz A (1978) Fermentative metabolism of hydrogen-evolving Chlamydomonas moewusii. Plant Physiol 61:953–956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Komine Y, Eggink LL, Park HS, Hoober JK (2000) Vacuolar granules in Chlamydomonas reinhardtii: polyphosphate and a 70-kDa polypeptide as major components. Planta 210:897–905

    Article  CAS  PubMed  Google Scholar 

  • Kosourov S, Seibert M (2009) Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions. Biotechnol Bioeng 102:50–58

    Article  CAS  PubMed  Google Scholar 

  • Kosourov S, Tsygankov A, Seibert M, Ghirardi ML (2002) Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: effects of culture parameters. Biotechnol Bioeng 78:731–740

    Article  CAS  PubMed  Google Scholar 

  • Kosourov S, Seibert M, Ghirardi ML (2003) Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures. Plant Cell Physiol 44:146–155

    Article  CAS  PubMed  Google Scholar 

  • Kosourov S, Makarova V, Fedorov AS, Tsygankov A, Seibert M, Ghirardi ML (2005) The effect of sulfur re-addition on H(2) photoproduction by sulfur-deprived green algae. Photosynth Res 85:295–305

    Article  CAS  PubMed  Google Scholar 

  • Kosourov S, Patrusheva E, Ghirardi ML, Seibert M, Tsygankov A (2007) A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions. J Biotechnol 128:776–787

    Article  CAS  PubMed  Google Scholar 

  • Kosourov SN, Batyrova KA, Petushkova EP, Tsygankov AA, Ghirardi ML, Seibert M (2012) Maximizing the hydrogen photoproduction yields in Chlamydomonas reinhardtii cultures: the effect of the H2 partial pressure. Int J Hydrog Energy 37:8850–8858

    Article  CAS  Google Scholar 

  • Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005) Improved photobiological H2 production in engineered green algal cells. J Biol Chem 280:34170–34177

    Article  CAS  PubMed  Google Scholar 

  • Lam MK, Lee KT (2011) Renewable and sustainable bioenergies production from palm oil mill effluent (POME): win–win strategies toward better environmental protection. Biotechnol Adv 29:124–141

    Article  CAS  PubMed  Google Scholar 

  • Laurinavichene T, Tolstygina I, Tsygankov A (2004) The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii. J Biotechnol 114:143–151

    Article  CAS  PubMed  Google Scholar 

  • Laurinavichene TV, Kosourov SN, Ghirardi ML, Seibert M, Tsygankov AA (2008) Prolongation of H(2) photoproduction by immobilized, sulfur-limited Chlamydomonas reinhardtii cultures. J Biotechnol 134:275–277

    CAS  PubMed  Google Scholar 

  • Magneschi L, Catalanotti C, Subramanian V, Dubini A, Yang W, Mus F, Posewitz MC, Seibert M, Perata P, Grossman AR (2012) A mutant in the ADH1 gene of Chlamydomonas reinhardtii elicits metabolic restructuring during anaerobiosis. Plant Physiol 158:1293–1305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Makarova VV, Kosourov S, Krendeleva TE, Semin BK, Kukarskikh GP, Rubin AB, Sayre RT, Ghirardi ML, Seibert M (2007) Photoproduction of hydrogen by sulfur-deprived C. reinhardtii mutants with impaired photosystem II photochemical activity. Photosynth Res 94:79–89

    Article  CAS  PubMed  Google Scholar 

  • Malnoe A, Wang F, Girard-Bascou J, Wollman F-A, de Vitry C (2014) Thylakoid FTSH protease contributes to photosystem ii and cytochrome b(6)f remodeling in Chlamydomonas reinhardtii under stress conditions. Plant Cell 26:373–390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martin NC, Goodenough UW (1975) Gametic differention in Chlamydomonas reinhardti. 1. Production of gametes and their fine structure. J Cell Biol 67:587–605

    Article  CAS  PubMed  Google Scholar 

  • Matthew T, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM, Schenk PM (2009) The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 284:23415–23425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • May P, Wienkoop S, Kempa S, Usadel B, Christian N, Rupprecht J, Weiss J, Recuenco-Munoz L, Ebenhoeh O, Weckwerth W, Walther D (2008) Metabolomics- and proteomics-assisted genome annotation and analysis of the draft metabolic network of Chlamydomonas reinhardtii. Genetics 179:157–166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu L-H, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen C-L, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral J-P, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen C-J, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WCA, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR, Chlamydomonas A, Team JGIA (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meuser J, D’Adamo S, Jinkerson R, Mus F, Yang W, Ghirardi M, Seibert M, Grossman A, Posewitz M (2012) Genetic disruption of both Chlamydomonas reinhardtii [FeFe]-hydrogenases: insight into the role of HYDA2 in H2 production. Biochem Biophys Res Commun 317:704–709

    Article  CAS  Google Scholar 

  • Mignolet E, Lecler R, Ghysels B, Remacle C, Franck F (2012) Function of the chloroplastic NAD(P)H dehydrogenase Nda2 for H-2 photoproduction in sulphur-deprived Chlamydomonas reinhardtii. J Biotechnol 162:81–88

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Yamano T, Yoshioka S, Kohinata T, Inoue Y, Taniguchi F, Asamizu E, Nakamura Y, Tabata S, Yamato KT, Ohyama K, Fukuzawa H (2004) Expression profiling-based identification of CO2-responsive genes regulated by CCM1 controlling a carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol 135:1595–1607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morsy FM (2011) Acetate versus sulfur deprivation role in creating anaerobiosis in light for hydrogen production by Chlamydomonas reinhardtii and Spirulina platensis: two different organisms and two different mechanisms. Photochem Photobiol 87:137–142

    Article  PubMed  CAS  Google Scholar 

  • Mus F, Cournac L, Cardettini V, Caruana A, Peltier G (2005) Inhibitor studies on non-photochemical plastoquinone reduction and H(2) photoproduction in Chlamydomonas reinhardtii. Biochim Biophys Acta 1708:322–332

    Article  CAS  PubMed  Google Scholar 

  • Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR (2007) Anaerobic acclimation in Chlamydomonas reinhardtii—anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 282:25475–25486

    Article  CAS  PubMed  Google Scholar 

  • Noth J, Krawietz D, Hemschemeier A, Happe T (2013) Pyruvate: ferredoxin oxidoreductase is coupled to light-independent hydrogen production in Chlamydomonas reinhardtii. J Biol Chem 288:4368–4377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oncel S, Vardar-Sukan F (2009) Photo-bioproduction of hydrogen by Chlamydomonas reinhardtii using a semi-continuous process regime. Int J Hydrog Energy 34:7592–7602

    Article  CAS  Google Scholar 

  • Papazi A, Gjindali A-I, Kastanaki E, Assimakopoulos K, Stamatakis K, Kotzabasis K (2014) Potassium deficiency, a “smart” cellular switch for sustained high yield hydrogen production by the green alga Scenedesmus obliquus. Int J Hydrog Energy 39:19452–19464

    Article  CAS  Google Scholar 

  • Peden EA, Boehm M, Mulder DW, Davis R, Old WM, King PW, Ghirardi ML, Dubini A (2013) Identification of global ferredoxin interaction networks in Chlamydomonas reinhardtii. J Biol Chem 288:35192–35209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peltier G, Schmidt GW (1991) Chlororespiration- an adaptation to nitrogen deficiency in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 88:4791–4795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Philipps G, Happe T, Hemschemeier A (2012) Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii. Planta 235:729–745

    Article  CAS  PubMed  Google Scholar 

  • Rittmann SK, Lee HS, Lim JK, Kim TW, Lee JH, Kang SG (2015) One-carbon substrate-based biohydrogen production: microbes, mechanism, and productivity. Biotechnol Adv 33:165–177

    Article  CAS  PubMed  Google Scholar 

  • Roessler P, Lien S (1984) Effects of electron mediator charge properties on the reaction kinetics of hydrogenase from Chlamydomonas. Arch Biochem Biophys 230:103–109

    Article  CAS  PubMed  Google Scholar 

  • Rolland N, Atteia A, Decottignies P, Garin J, Hippler M, Kreimer G, Lemaire SD, Mittag M, Wagner V (2009) Chlamydomonas proteomics. Current Opin Microbiol 12:285–291

    Article  CAS  Google Scholar 

  • Siderius M, Musgrave A, vanden Ende H, Koerten H, Cambier P, vander Meer P (1996) Chlamydomonas eugametos (chlorophyta) stores phosphate in polyphosphate bodies together with calcium. J Phycol 32:402–409

    Article  CAS  Google Scholar 

  • Srirangan K, Pyne ME, Perry Chou C (2011) Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. Bioresour Technol 102:8589–8604

    Article  CAS  PubMed  Google Scholar 

  • Subramanian V, Dubini A, Astling DP, Laurens LM, Old WM, Grossman AR, Posewitz MC, Seibert M (2014) Profiling Chlamydomonas metabolism under dark, anoxic H2-producing conditions using a combined proteomic, transcriptomic, and metabolomic approach. J Proteome Res 13:5431–5451

    Article  CAS  PubMed  Google Scholar 

  • Tamburic B, Dechatiwongse P, Zemichael FW, Maitland GC, Hellgardt K (2013) Process and reactor design for biophotolytic hydrogen production. Phys Chem Chem Phys 15:10783–10794

    Article  CAS  PubMed  Google Scholar 

  • Terashima M, Specht M, Naumann B, Hippler M (2010) Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics. Mol Cell Proteomics 9:1514–1532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Timmins M, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM, Schenk PM (2009) The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion (vol 284, p 23415). J Biol Chem 284:35996

    Article  PubMed Central  CAS  Google Scholar 

  • Toepel J, Illmer-Kephalides M, Jaenicke S, Straube J, May P, Goesmann A, Kruse O (2013) New insights into Chlamydomonas reinhardtii hydrogen production processes by combined microarray/RNA-seq transcriptomics. Plant Biotechnol J 11:717–733

    Article  CAS  PubMed  Google Scholar 

  • Tolleter D, Ghysels B, Alric J, Petroutsos D, Tolstygina I, Krawietz D, Happe T, Auroy P, Adriano J-M, Beyly A, Cuine S, Plet J, Reiter IM, Genty B, Cournac L, Hippler M, Peltier G (2011) Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii. Plant Cell 23:2619–2630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tolstygina IV, Antal TK, Kosourov SN, Krendeleva TE, Rubin AB, Tsygankov AA (2009) Hydrogen production by photoautotrophic sulfur-deprived Chlamydomonas reinhardtii pre-grown and incubated under high light. Biotechnol Bioeng 102:1055–1061

    Article  CAS  PubMed  Google Scholar 

  • Tsygankov AA, Fedorov AS, Kosourov SN, Rao KK (2002) Hydrogen production by cyanobacteria in an automated outdoor photobioreactor under aerobic conditions. Biotechnol Bioeng 80:777–783

    Article  CAS  PubMed  Google Scholar 

  • Tsygankov AA, Kosourov SN, Tolstygina IV, Ghirardi ML, Seibert M (2006) Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions. Int J Hydrog Energy 31:1574–1584

    Article  CAS  Google Scholar 

  • van Lis R, Baffert C, Coute Y, Nitschke W, Atteia A (2013) Chlamydomonas reinhardtii chloroplasts contain a homodimeric pyruvate: ferredoxin oxidoreductase that functions with FDX1. Plant Physiol 161:57–71

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Volgusheva A, Styring S, Mamedov F (2013) Increased photosystem II stability promotes H2 production in sulfur-deprived Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 110:7223–7228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Volgusheva A, Kukarskikh G, Krendeleva T, Rubina A, Mamedov F (2014) Hydrogen photoproduction in green algae Chlamydomonas reinhardtii under magnesium deprivation. RSC Adv 5:5633–5637

    Article  CAS  Google Scholar 

  • Wang H, Fan X, Zhang Y, Yang D, Guo R (2011) Sustained photo-hydrogen production by Chlorella pyrenoidosa without sulfur depletion. Biotechnol Lett 33:1345–1350

    Article  CAS  PubMed  Google Scholar 

  • Willeford KO, Gibbs M (1989) Localization of the enzymes involved in the photoevolution of H(2) from acetate in Chlamydomonas reinhardtii. Plant Physiol 90:788–791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Willeford KO, Gombos Z, Gibbs M (1989) Evidence for chloroplastic succinate dehydrogenase participating in the chloroplastic respiratory and photosynthetic electron transport chains of Chlamydomonas reinhardtii. Plant Physiol 90:1084–1087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Winkler M, Hemschemeier A, Jacobs J, Stripp S, Happe T (2010) Multiple ferredoxin isoforms in Chlamydomonas reinhardtii—their role under stress conditions and biotechnological implications. Eur J Cell Biol 89:998–1004

    Article  CAS  PubMed  Google Scholar 

  • Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LML, Dismukes GC, Posewitz MC (2010) Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell 9:1251–1261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wykoff DD, Davies JP, Melis A, Grossman AR (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 117:129–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wykoff DD, Grossman AR, Weeks DP, Usuda H, Shimogawara K (1999) Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas. Proc Natl Acad Sci USA 96:15336–15341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang W, Catalanotti C, D’Adamo S, Wittkopp TM, Ingram-Smith CJ, Mackinder L, Miller TE, Heuberger AL, Peers G, Smith KS, Jonikas MC, Grossman AR, Posewitz MC (2014) Alternative acetate production pathways in Chlamydomonas reinhardtii during dark anoxia and the dominant role of chloroplasts in fermentative acetate production. Plant Cell 26:4499–4518

    Article  CAS  PubMed  Google Scholar 

  • Yasin NH, Mumtaz T, Hassan MA, Abd Rahman N (2013) Food waste and food processing waste for biohydrogen production: a review. J Environ Manag 130:375–385

    Article  CAS  Google Scholar 

  • Zhang L, Melis A (2002) Probing green algal hydrogen production. Philos Trans R Soc Lond B Biol Sci 357: 1499–1507, discussion 1507–1411

  • Zhang L, Happe T, Melis A (2002) Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214:552–561

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the MINECO (Ministerio de Economia y Competitividad, Spain, Grant no. BFU2011-29338), supported by the European “Fondo Europeo de Desarrollo Regional (FEDER)” program, the Plan E program (CONV 188/09), the Ramon y Cajal program (RYC-2011-07671), the Junta de Andalucıa grants (P08-CVI-04157 and BIO-502), and the Plan Propio de la Universidad de Cordoba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gonzalez-Ballester.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez-Ballester, D., Jurado-Oller, J.L. & Fernandez, E. Relevance of nutrient media composition for hydrogen production in Chlamydomonas. Photosynth Res 125, 395–406 (2015). https://doi.org/10.1007/s11120-015-0152-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0152-7

Keywords

Navigation