Skip to main content
Log in

Algal omics: unlocking bioproduct diversity in algae cell factories

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Rapid advances in “omic” technologies are helping to unlock the full potential of microalgae as multi-use feedstocks, with utility in an array of industrial biotechnology, biofuel, and biomedical applications. In turn, algae are emerging as highly attractive candidates for development as microbial cell factories. In this review, we examine the wide array of potential algal bioproducts, with a focus upon the role of omic technologies in driving bioproduct discovery and optimization in microalgal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adarme-Vega TC et al (2012) Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb Cell Fact 11:96

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Apt KE, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35:215

    Article  Google Scholar 

  • Baba M, Ioki M, Nakajima N, Shiraiwa Y, Watanabe MM (2012) Transcriptome analysis of an oil-rich race A strain of Botryococcus braunii (BOT-88-2) by de novo assembly of pyrosequencing cDNA reads. Bioresour Technol 109:282

    Article  CAS  PubMed  Google Scholar 

  • Boyle NR et al (2012) Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J Biol Chem 287:15811

    Google Scholar 

  • Boynton JE et al (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534

    Google Scholar 

  • Cordero BF, Couso I, Leon R, Rodriguez H, Vargas MA (2011) Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis. Appl Microbiol Biotechnol 91:341

    Google Scholar 

  • Couso I, Vila M, Rodriguez H, Vargas MA, Leon R (2011) Overexpression of an exogenous phytoene synthase gene in the unicellular alga Chlamydomonas reinhardtii leads to an increase in the content of carotenoids. Biotechnol Prog 27:54

    Article  CAS  PubMed  Google Scholar 

  • Dennis J, Stephenson AL, Howe CJ, Scott SA, Smith AG (2010) Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels 1:47

    Google Scholar 

  • Dong Z, Chen Y (2013) Transcriptomics: advances and approaches. Sci China Life Sci 56:960

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg D, Marcotte EM, Xenarios I, Yeates TO (2000) Protein function in the post-genomic era. Nature 405:823

    Article  CAS  PubMed  Google Scholar 

  • Eom H, Lee CG, Jin E (2006) Gene expression profile analysis in astaxanthin-induced Haematococcus pluvialis using a cDNA microarray. Planta 223:1231

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Andre C, Xu C (2011) A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii. FEBS Lett 585:1985

    Article  CAS  PubMed  Google Scholar 

  • Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghirardi ML et al (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu Rev Plant Biol 58:71

    Article  CAS  PubMed  Google Scholar 

  • Gillet S, Decottignies P, Chardonnet S, Le Marechal P (2006) Cadmium response and redoxin targets in Chlamydomonas reinhardtii: a proteomic approach. Photosynth Res 89:201

    Article  CAS  PubMed  Google Scholar 

  • Golueke CG, Oswald WJ (1959) Biological conversion of light energy to the chemical energy of methane. Appl Microbiol 7:219

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gregory JA, Topol AB, Doerner DZ, Mayfield S (2013) Alga-produced cholera toxin-Pfs25 fusion proteins as oral vaccines. Appl Environ Microbiol 79:3917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grossman AR (2005) Paths toward algal genomics. Plant Physiol 137:410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grossman AR et al (2007) Novel metabolism in Chlamydomonas through the lens of genomics. Curr Opin Plant Biol 10:190

    Google Scholar 

  • Guarnieri MT (2013) Comparative proteomics lends insight into genotype-specific pathogenicity. Proteomics 13:2544

    Article  CAS  PubMed  Google Scholar 

  • Guarnieri MT et al (2011) Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalga. PLoS One 6:e25851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guarnieri MT, Nag A, Yang S, Pienkos PT (2013) Proteomic analysis of Chlorella vulgaris: potential targets for enhanced lipid accumulation. J Proteomics 93:245

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand M et al (2013) Metabolic and cellular organization in evolutionarily diverse microalgae as related to biofuels production. Curr Opin Chem Biol 17:506

    Article  CAS  PubMed  Google Scholar 

  • Hu Q et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621

    Article  CAS  PubMed  Google Scholar 

  • Ioki M et al (2012a) Modes of hydrocarbon oil biosynthesis revealed by comparative gene expression analysis for race A and race B strains of Botryococcus braunii. Bioresour Technol 109:271

    Article  CAS  PubMed  Google Scholar 

  • Ioki M, Baba M, Nakajima N, Shiraiwa Y, Watanabe MM (2012b) Transcriptome analysis of an oil-rich race B strain of Botryococcus braunii (BOT-70) by de novo assembly of 5′-end sequences of full-length cDNA clones. Bioresour Technol 109:277

    Article  CAS  PubMed  Google Scholar 

  • Ioki M, Baba M, Nakajima N, Shiraiwa Y, Watanabe MM (2012c) Transcriptome analysis of an oil-rich race B strain of Botryococcus braunii (BOT-22) by de novo assembly of pyrosequencing cDNA reads. Bioresour Technol 109:292

    Article  CAS  PubMed  Google Scholar 

  • Jamers A, Blust R, De Coen W (2009) Omics in algae: paving the way for a systems biological understanding of algal stress phenomena? Aquat Toxicol 92:114

    Article  CAS  PubMed  Google Scholar 

  • Jones CS, Mayfield SP (2012) Algae biofuels: versatility for the future of bioenergy. Curr Opin Biotechnol 23:346

    Article  CAS  PubMed  Google Scholar 

  • Karpowicz SJ, Prochnik SE, Grossman AR, Merchant SS (2011) The GreenCut2 resource, a phylogenomically derived inventory of proteins specific to the plant lineage. J Biol Chem 286:21427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knoshaug EP, Shi B, Shannon TG, Mleziva MM, Pienkos PT (2013) The potential of photosynthetic aquatic species as sources of useful cellulose fibers—a review. J Appl Phycol 25:1123

    Google Scholar 

  • Lee do Y, Park JJ, Barupal DK, Fiehn O (2012) System response of metabolic networks in Chlamydomonas reinhardtii to total available ammonium. Mol Cell Proteomics 11:973

    Article  PubMed Central  PubMed  Google Scholar 

  • Leon-Banares R, Gonzalez-Ballester D, Galvan A, Fernandez E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22:45

    Article  CAS  PubMed  Google Scholar 

  • Liu GN, Zhu YH, Jiang JG (2009) The metabolomics of carotenoids in engineered cell factory. Appl Microbiol Biotechnol 83:989

    Article  CAS  PubMed  Google Scholar 

  • Lohr M, Im CS, Grossman AR (2005) Genome-based examination of chlorophyll and carotenoid biosynthesis in Chlamydomonas reinhardtii. Plant Physiol 138:490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lohr M, Schwender J, Polle JE (2012) Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. Plant Sci 185–186:9

    Article  PubMed  Google Scholar 

  • Lopez D, Casero D, Cokus SJ, Merchant SS, Pellegrini M (2011) Algal functional annotation tool: a web-based analysis suite to functionally interpret large gene lists using integrated annotation and expression data. BMC Bioinform 12:282

    Article  Google Scholar 

  • Lu Y, Oyler GA (2009) Green algae as a platform to express therapeutic proteins. Discov Med 8:28

    PubMed  Google Scholar 

  • Lv H et al (2013) Transcriptome analysis of Chlamydomonas reinhardtii during the process of lipid accumulation. Genomics 101:229

    Article  CAS  PubMed  Google Scholar 

  • Matsushima D et al (2012) The single cellular green microalga Botryococcus braunii, race B possesses three distinct 1-deoxy-d-xylulose 5-phosphate synthases. Plant Sci 185–186:309

    Article  PubMed  Google Scholar 

  • Mayfield SP, Kindle KL (1990) Stable nuclear transformation of Chlamydomonas reinhardtii by using a C. reinhardtii gene as the selectable marker. Proc Natl Acad Sci USA 87:2087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci USA 100:438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Merchant SS et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miller R et al (2010) Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol 154:1737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moellering ER, Benning C (2010) RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot Cell 9:97

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Molnar I et al (2012) Bio-crude transcriptomics: gene discovery and metabolic network reconstruction for the biosynthesis of the terpenome of the hydrocarbon oil-producing green alga, Botryococcus braunii race B (Showa). BMC Genom 13:576

    Article  CAS  Google Scholar 

  • Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255

    Article  CAS  PubMed  Google Scholar 

  • Msanne J et al (2012) Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 75:50

    Article  CAS  PubMed  Google Scholar 

  • Murphy CD (2012) The microbial cell factory. Org Biomol Chem 10:1949

    Article  CAS  PubMed  Google Scholar 

  • Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR (2007) Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 282:25475

    Article  CAS  PubMed  Google Scholar 

  • Nguyen AV et al (2008) Transcriptome for photobiological hydrogen production induced by sulfur deprivation in the green alga Chlamydomonas reinhardtii. Eukaryot Cell 7:1965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nguyen HM et al (2011) Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism. Proteomics 11:4266

    Article  CAS  PubMed  Google Scholar 

  • Niehaus TD et al (2011) Identification of unique mechanisms for triterpene biosynthesis in Botryococcus braunii. Proc Natl Acad Sci USA 108:12260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niehaus TD et al (2012) Functional identification of triterpene methyltransferases from Botryococcus braunii race B. J Biol Chem 287:8163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Okazaki Y, Saito K (2012) Recent advances of metabolomics in plant biotechnology. Plant Biotechnol Rep 6:1

    Article  PubMed Central  PubMed  Google Scholar 

  • Patel N et al (2004) Differential gene expression of Chlamydomonas reinhardtii in response to 2,4,6-trinitrotoluene (TNT) using microarray analysis. Plant Sci 167:1109

    Article  CAS  Google Scholar 

  • Patel VJ et al (2009) A comparison of labeling and label-free mass spectrometry-based proteomics approaches. J Proteome Res 8:3752

    Article  CAS  PubMed  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramos AA et al (2009) Molecular and functional characterization of a cDNA encoding 4-hydroxy-3-methylbut-2-enyl diphosphate reductase from Dunaliella salina. J Plant Physiol 166:968

    Article  CAS  PubMed  Google Scholar 

  • Rasala BA et al (2012) Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS One 7:e43349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rismani-Yazdi H, Haznedaroglu BZ, Hsin C, Peccia J (2012) Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnol Biofuels 5:74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430

    Article  CAS  PubMed  Google Scholar 

  • Sheehan J, Dunahay T, Bennemann J, Roessler P (1998) “DOE aquatic species program closeout report. www.nrel.gov/docs/legosti/fy98/24190.pdf

  • Shrestha RP et al (2012) Whole transcriptome analysis of the silicon response of the diatom Thalassiosira pseudonana. BMC Genom 13:499

    Article  CAS  Google Scholar 

  • Simon DF, Descombes P, Zerges W, Wilkinson KJ (2008) Global expression profiling of Chlamydomonas reinhardtii exposed to trace levels of free cadmium. Environ Toxicol Chem 27:1668

    Article  CAS  PubMed  Google Scholar 

  • Specht E, Miyake-Stoner S, Mayfield S (2010) Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 32:1373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun TH et al (2010) Coordinated regulation of gene expression for carotenoid metabolism in Chlamydomonas reinhardtii. J Integr Plant Biol 52:868

    Article  CAS  PubMed  Google Scholar 

  • Takaichi S (2011) Carotenoids in algae: distributions, biosyntheses and functions. Mar Drugs 9:1101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toepel J et al (2013) New insights into Chlamydomonas reinhardtii hydrogen production processes by combined microarray/RNA-seq transcriptomics. Plant Biotechnol J 11:717

    Article  CAS  PubMed  Google Scholar 

  • Tran M et al (2013a) Production of anti-cancer immunotoxins in algae: ribosome inactivating proteins as fusion partners. Biotechnol Bioeng 110:2826

    Article  CAS  PubMed  Google Scholar 

  • Tran M et al (2013b) Production of unique immunotoxin cancer therapeutics in algal chloroplasts. Proc Natl Acad Sci USA 110:E15

    Article  PubMed Central  PubMed  Google Scholar 

  • Vanderschuren H, Lentz E, Zainuddin I, Gruissem W (2013) Proteomics of model and crop plant species: status, current limitations and strategic advances for crop improvement. J Proteomics 93:5

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Yuan H, Zhang L, Zhang Y (2012) Recent advances on multidimensional liquid chromatography–mass spectrometry for proteomics: from qualitative to quantitative analysis—a review. Anal Chim Acta 731:1

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Guarnieri MT, Smolinski S, Ghirardi M, Pienkos PT (2013) De novo transcriptomic analysis of hydrogen production in the green alga Chlamydomonas moewusii through RNA-Seq. Biotechnol Biofuels 6:118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yohn C, Mendez M, Behnke C, Brand A (2011) Stress-induced lipid trigger. Patent No WO/2011 97261:11

    Google Scholar 

  • Yu Y et al (2013) Development of Synechocystis sp. PCC 6803 as a phototrophic cell factory. Mar Drugs 11:2894

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Guarnieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guarnieri, M.T., Pienkos, P.T. Algal omics: unlocking bioproduct diversity in algae cell factories. Photosynth Res 123, 255–263 (2015). https://doi.org/10.1007/s11120-014-9989-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-014-9989-4

Keywords

Navigation