Skip to main content

Advertisement

Log in

A Genome-Wide mQTL-seq Scan Identifies Potential Molecular Signatures Regulating Plant Height in Chickpea

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The current study employed a high-throughput genome-wide next-generation sequencing-led multiple QTL-seq (mQTL-seq) strategy in two inter- and intra-specific recombinant inbred line (RIL) mapping populations to identify the major genomic regions underlying robust quantitative trait loci (QTLs) regulating plant height in chickpea. The whole genome resequencing discovered 446,475 and 150,434 high-quality homozygous single nucleotide polymorphisms (SNPs) exhibiting polymorphism between tall and dwarf/semi-dwarf mapping parents and bulk/homozygous individuals selected from each of two chickpea RIL populations. These SNP-led mQTL-seq assays in RIL mapping populations scaled-down two longer major genomic regions (1.26–1.34 Mb) underlying robust plant height QTLs into the shorter high-resolution QTL intervals (653.2–756.3 kb) on chickpea chromosomes 3 and 8. This essentially delineated regulatory novel natural SNP allelic variants from brassinosteroid insensitive 1-receptor kinase 1 (BAK1) and gibberellin (GA) 20-oxidase genes governing plant height in chickpea. A strong impact of evolutionary bottlenecks including strong artificial/natural selection on two plant height gene loci during chickpea domestication was observed. The shoot apical meristem-specific expression aside from down-regulation of two plant height genes especially in dwarf/semi-dwarf as compared to tall parents and homozygous mapping individuals of two aforementioned RIL populations was apparent. The integrated genomics-assisted breeding strategy combining mQTL-seq with differential gene expression profiling and functional allelic diversity-based trait domestication study collectively identified potential natural allelic variants of candidate genes underlying major plant height QTLs in chickpea. These functionally relevant molecular signatures can be of immense use for marker-aided genetic enhancement to develop high seed- and pod-yielding non-lodging cultivars restructured with desirable plant height in chickpea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbo S, Berger J, Turner NC (2003) Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. Funct Plant Biol 30:1081–1087

    Article  Google Scholar 

  • Abbo S, van-Oss Pinhasi R, Gopher A, Saranga Y, Ofner I, Peleg Z (2014) Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends Plant Sci 19:351–360

    Article  CAS  PubMed  Google Scholar 

  • Bajaj D, Das S, Badoni S, Kumar V, Singh M, Bansal KC, Tyagi AK, Parida SK (2015a) Genome-wide high-throughput SNP discovery and genotyping for understanding natural (functional) allelic diversity and domestication patterns in wild chickpea. Sci Rep 5:11627

    Article  Google Scholar 

  • Bajaj D, Das S, Upadhyaya HD, Ranjan R, Badoni S, Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK (2015d) A genome-wide combinatorial strategy dissects complex genetic architecture of seed coat color in chickpea. Front Plant Sci 6:979

    Article  PubMed  PubMed Central  Google Scholar 

  • Bajaj D, Saxena MS, Kujur A, Das S, Badoni S, Tripathi S, Upadhyaya HD, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK (2015c) Genome-wide conserved non-coding microsatellite (CNMS) marker-based integrative genetical genomics for quantitative dissection of seed weight in chickpea. J Exp Bot 66:1271–1290

    Article  CAS  PubMed  Google Scholar 

  • Bajaj D, Upadhyaya HD, Khan Y, Das S, Badoni S, Shree T, Kumar V, Tripathy S, Gowda CLL, Singh S, Sharma S, Tyagi AK, Chattopadhyay D, Parida SK (2015b) A combinatorial approach of comprehensive QTL-based comparative genome mapping and transcript profiling identified a seed weight-regulating candidate gene in chickpea. Sci Rep 5:9264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger JD, Buck R, Henzell JM, Turner NC (2005) Evolution in the genus cicer vernalisation response and low temperature pod set in chickpea (C. arietinum L.) and its annual wild relatives. Aust J Agric Res 56:1191–1200

    Article  Google Scholar 

  • Blair MW, Iriarte G, Beebe S (2006) QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean × wild common bean (Phaseolus vulgaris L.) cross. Theor Appl Genet 112:1149–1163

    Article  CAS  PubMed  Google Scholar 

  • Burger JC, Champan MA, Burke JM (2008) Molecular insights into the evolution of crop plants. Am J Bot 95:113–122

    Article  PubMed  Google Scholar 

  • Checa OE, Blair MW (2008) Mapping QTL for climbing ability and component traits in common bean (Phaseolus vulgaris L.). Mol Breed 22:201–215

    Article  CAS  Google Scholar 

  • Das S, Singh M, Srivastava R, Bajaj D, Saxena MS, Rana JC, Bansal KC, Tyagi AK, Parida SK (2016) mQTL-seq delineates functionally relevant candidate gene harbouring a major QTL regulating pod number in chickpea. DNA Res 23:53–65

    CAS  PubMed  Google Scholar 

  • Das S, Upadhyaya HD, Bajaj D, Kujur A, Badoni S, Laxmi, Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK (2015) Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res 22:193–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deokar AA, Ramsay L, Sharpe AG, Diapari M, Sindhu A, Bett K, Warkentin TD, Tar’an B (2014) Genome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly. BMC Genomics 15:708

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao LF, Guo Y, Hao ZB, Qiu LJ (2013) Integration and “Overview” analysis of QTLs related to plant height in soybean. Yi Chuan 35:215–224

    Article  CAS  PubMed  Google Scholar 

  • Gaur PM, Samineni S, Tripathi S, Varshney RK, Gowda CLL (2014) Allelic relationships of flowering time genes in chickpea. Euphytica 203:295–308

    Article  Google Scholar 

  • Gowda SJM, Radzika P, Mhase LB, Jamadagni BM, Gupta VS, Kadro NY (2011) Mapping of QTLs governing agronomic and field traits in chickpea. J Appl Genet 52:9–21

    Article  CAS  PubMed  Google Scholar 

  • Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Snape J (2012) Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm. Mol Breed 29:159–171

    Article  Google Scholar 

  • Hamwieh A, Imtiaz M, Malhotra RS (2013) Multi-environment QTL analyses for drought-related traits in a recombinant inbred population of chickpea (Cicer arietinum L.). Theor Appl Genet 12:1025–1038

    Article  Google Scholar 

  • Hedden P (2003) The genes of the Green Revolution. Trends Genet 19:5–9

    Article  CAS  PubMed  Google Scholar 

  • Jaganathan D, Thudi M, Kale S, Azam S, Roorkiwal M, Gaur PM, Kishor PB, Nguyen H, Sutton T, Varshney RK (2015) Genotyping-by-sequencing based intra-specific genetic map refines a “QTL-hotspot” region for drought tolerance in chickpea. Mol Gen Genomics 290:559–571

    Article  CAS  Google Scholar 

  • Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Jeena G, Yadav M, Kant C, Sharma P, Yadav G, Bhatia S, Tyagi AK, Chattopadhyay D (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:715–729

    Article  CAS  PubMed  Google Scholar 

  • Jamalabadi JG, Saidi A, Karami E, Kharkesh M, Talebi R (2013) Molecular mapping and characterization of genes governing time to flowering, seed weight, and plant height in an intraspecific genetic linkage map of chickpea (Cicer arietinum). Biochem Genet 51:387–397

    Article  CAS  PubMed  Google Scholar 

  • Josie J, Alcivar A, Rainho J, Kassem MA (2007) Genomic regions containing QTL for plant height, internodes length, and flower color in soybean [Glycine max (L.) Merr.]. Bios 78:119–126

    Article  Google Scholar 

  • Karami E, Talebi R, Kharkesh M, Saidi A (2015) A linkage map of chickpea (Cicer arietinum L.) based on population from ILC3279 × ILC588 crosses: location of genes for time to flowering, seed size and plant height. Genetika 47:253–263

    Article  Google Scholar 

  • Kujur A, Bajaj D, Upadhyaya HD, Das S, Ranjan R, Shree T, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK (2015a) A genome-wide SNP scan accelerates trait-regulatory genomic loci identification in chickpea. Sci Rep 5:11166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kujur A, Bajaj D, Upadhyaya HD, Das S, Ranjan R, Shree T, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK (2015b) Employing genome-wide SNP discovery and genotyping strategy to extrapolate the natural allelic diversity and domestication patterns in chickpea. Front Plant Sci 6:162

    Article  PubMed  PubMed Central  Google Scholar 

  • Kujur A, Upadhyaya HD, Bajaj D, Gowda CLL, Sharma S, Tyagi AK, Parida SK (2016) Identification of candidate genes and natural allelic variants for QTLs governing plant height in chickpea. Sci Rep 6:27968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kujur A, Upadhyaya HD, Shree T, Bajaj D, Das S, Saxena MS, Badoni S, Kumar V, Tripathy S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK (2015c) Ultra-high density intra-specific genetic linkage maps accelerate identification of functionally relevant molecular tags governing important agronomic traits in chickpea. Sci Rep 5:9468

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Choudhary AK, Solanki RK, Pratap A (2011) Towards marker-assisted selection in pulses: a review. Plant Breed 130:297–313

    Article  CAS  Google Scholar 

  • Kumar B, Talukdar A, Bala I, Verma K, Lal SK, Sapra RL, Namita B, Chander S, Tiwari R (2014) Population structure and association mapping studies for important agronomic traits in soybean. J Genet 93:775–784

    Article  PubMed  Google Scholar 

  • Kumawat G, Raje RS, Bhutani S, Pal JK, Mithra AS, Gaikwad K, Sharma TR, Singh NK (2012) Molecular mapping of QTLs for plant type and earliness traits in pigeonpea (Cajanus cajan L. Millsp.). BMC Genet 13:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Lev-Yadun S, Gopher A, Abbo S (2000) The cradle of agriculture. Science 288:1602–1603

    Article  CAS  PubMed  Google Scholar 

  • Li F, Chen B, Xu K, Gao G, Yan G, Qiao J, Li J, Li H, Li L, Xiao X, Zhang T, Nishio T, Wu X (2016) A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Plant Sci 242:169–177

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signalling. Cell 110:213–222

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Li Y, Reif JC, Mette MF, Liu Z, Liu B, Zhang S, Yan L, Chang R, Qiu L (2013) Identification of quantitative trait loci underlying plant height and seed weight in soybean. Plant Genome 6:1–11

    Article  Google Scholar 

  • Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S (2014) QTL-seq identifies an early flowering QTL located near flowering locus T in cucumber. Theor Appl Genet 127:1491–1499

    Article  PubMed  Google Scholar 

  • Meyer RS, DuVal AE, Jensen HR (2012) Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol 196:29–48

    Article  PubMed  Google Scholar 

  • Mir RR, Kudapa H, Srikanth S, Saxena RK, Sharma A, Azam S, Saxena K, Penmetsa RV, Varshney RK (2014) Candidate gene analysis for determinacy in pigeonpea (Cajanus spp.). Theor Appl Genet 127:2663–2678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semi dwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17

    Article  CAS  PubMed  Google Scholar 

  • Nam KH, Li J (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signalling. Cell 110:203–212

    Article  CAS  PubMed  Google Scholar 

  • Palomeque L, Li-Jun L, Li W, Hedges B, Cober ER, Rajcan I (2009) QTL in mega-environments: II. Agronomic trait QTL co-localized with seed yield QTL detected in a population derived from a cross of high-yielding adapted × high-yielding exotic soybean lines. Theor Appl Genet 119:429–436

    Article  PubMed  Google Scholar 

  • Parween S, Nawaz K, Roy R, Pole AK, Venkata Suresh B, Misra G, Jain M, Yadav G, Parida SK, Tyagi AK, Bhatia S, Chattopadhyay D (2015) An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L.). Sci Rep 5:12806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  CAS  PubMed  Google Scholar 

  • Podolska G (2014) Plant lodging, effects, and control. In: Gliński J, Horabik J, Lipiec J (eds) Encyclopaedia of agrophysics, part of the series encyclopaedia of earth sciences series. Springer, Dordrecht, pp 609–610

  • Robins JG, Bauchan GR, Brummer EC (2007) Genetic mapping forage yield, plant height, and regrowth at multiple harvests in tetraploid alfalfa (Medicago sativa L.). Crop Sci 47:11–18

    Article  CAS  Google Scholar 

  • Rossi ME, Orf JH, Liu LJ, Dong Z, Rajcan I (2013) Genetic basis of soybean adaptation to North American vs. Asian mega-environments in two independent populations from Canadian × Chinese crosses. Theor Appl Genet 126:1809–1823

    Article  PubMed  Google Scholar 

  • Saha GC, Sarker A, Chen W, Vandemark GJ, Muehlbauer FJ (2013) Inheritance and linkage map positions of genes conferring agromorphological traits in Lens culinaris Medik. Intl J Agron 2013:618926

    Article  Google Scholar 

  • Sakamoto T, Kobayashi M, Itoh H, Tagiri A, Kayano T, Tanaka H, Iwahori S, Matsuoka M (2001) Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol 125:1508–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto T, Matsuoka M (2004) Generating high-yielding varieties by genetic manipulation of plant architecture. Curr Opin Biotechnol 15:144–147

    Article  CAS  PubMed  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416:701–702

    Article  CAS  PubMed  Google Scholar 

  • Saxena MS, Bajaj D, Das S, Kujur A, Kumar V, Singh M, Bansal KC, Tyagi AK, Parida SK (2014b) An integrated genomic approach for rapid delineation of candidate genes regulating agro-morphological traits in chickpea. DNA Res 21:695–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena MS, Bajaj D, Kujur A, Das S, Badoni S, Kumar V, Singh M, Bansal KC, Tyagi AK, Parida SK (2014a) Natural allelic diversity, genetic structure and linkage disequilibrium pattern in wild chickpea. PLoS One 9:e107484

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh VK, Khan AW, Jaganathan D, Thudi M, Roorkiwal M, Takagi H, Garg V, Kumar V, Chitikineni A, Gaur PM, Sutton T, Terauchi R, Varshney RK (2016) QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnol J 14:2110–2119

  • Sonah H, O'Donoughue L, Cober E, Rajcan I, Belzile F (2015) Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean. Plant Biotechnol J 13:211–221

    Article  CAS  PubMed  Google Scholar 

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci U S A 99:9043–9048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanton-Geddes J, Paape T, Epstein B, Briskine R, Yoder J, Mudge J, Bharti AK, Farmer AD, Zhou P, Denny R, May GD, Erlandson S, Yakub M, Sugawara M, Sadowsky MJ, Young ND, Tiffin P (2013) Candidate genes and genetic architecture of symbiotic and agronomic traits revealed by whole-genome, sequence-based association genetics in Medicago truncatula. PLoS One 8:e65688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Luan H, Qi Z, Shan D, Liu C, Hu G, Chen Q (2012) Mapping and meta-analysis of height QTLs in soybean. Legume Genomics Genet 3:1–7

    Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • Tar’an B, Warkentin T, Somers DJ, Miranda D, Vandenberg A, Blade S, Woods S, Bing D, Xue A, DeKoeyer D, Penner G (2003) Quantitative trait loci for lodging resistance, plant height and partial resistance to mycosphaerella blight in field pea (Pisum sativum L.). Theor Appl Genet 107:1482–1491

    Article  PubMed  Google Scholar 

  • Thudi M, Khan AW, Kumar V, Gaur PM, Katta K, Garg V, Roorkiwal M, Samineni S, Varshney RK (2016) Whole genome re-sequencing reveals genome-wide variations among parental lines of 16 mapping populations in chickpea (Cicer arietinum L.). BMC Plant Biol 16(Suppl1):10

  • Thudi M, Upadhyaya HD, Rathore A, Gaur PM, Krishnamurthy L, Roorkiwal M, Nayak SN, Chaturvedi SK, Basu PS, Gangarao NV, Fikre A, Kimurto P, Sharma PC, Sheshashayee MS, Tobita S, Kashiwagi J, Ito O, Killian A, Varshney RK (2014) Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLoS One 9:e96758

    Article  PubMed  PubMed Central  Google Scholar 

  • Toker C (2009) A note on the evolution of kabuli chickpeas as shown by induced mutations in Cicer reticulatum Ladizinsky. Genet Resour Crop Evol 56:7–12

    Article  Google Scholar 

  • Tullu A, Tar’an B, Warkentin T, Vandenberg A (2008) Construction of an intraspecific linkage map and QTL analysis for earliness and plant height in lentil. Crop Sci 48:2254–2264

    Article  Google Scholar 

  • Upadhyaya HD, Bramel PJ, Singh S (2001) Development of a chickpea core subset using geographic distribution and quantitative traits. Crop Sci 41:206–210

    Article  Google Scholar 

  • Upadhyaya HD, Dwivedi SL, Baum M, Varshney RK, Udupa SM, Gowda CLL, Hoisington D, Singh S (2008) Genetic structure, diversity and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.). BMC Plant Biol 8:106

    Article  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Song C, Saxena RK et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J, Krishnamurthy L, Jaganathan D, Koppolu J, Bohra A, Tripathi S, Rathore A, Jukanti AK, Jayalakshmi V, Vemula A, Singh SJ, Yasin M, Sheshshayee MS, Viswanatha KP (2014) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor Appl Genet 127:445–462

    Article  CAS  PubMed  Google Scholar 

  • Voorend W, Nelissen H, Vanholme R, De Vliegher A, Van Breusegem F, Boerjan W, Roldán-Ruiz I, Muylle H, Inzé D (2016) Overexpression of GA20-OXIDASE1 impacts plant height, biomass allocation and saccharification efficiency in maize. Plant Biotechnol J 14:997–1007

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253–279

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the Department of Biotechnology (DBT), Government of India, for the financial support provided to our genomics-assisted crop improvement laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarup K. Parida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parida, S.K., Srivastava, R. & Bajaj, D. A Genome-Wide mQTL-seq Scan Identifies Potential Molecular Signatures Regulating Plant Height in Chickpea. Plant Mol Biol Rep 35, 273–286 (2017). https://doi.org/10.1007/s11105-016-1021-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-016-1021-z

Keywords

Navigation