Skip to main content
Log in

Different Gene Expressions of Resistant and Susceptible Maize Inbreds in Response to Fusarium verticillioides Infection

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Ear rot, caused by Fusarium verticillioides (FV), is a destructive disease of maize as it reduces grain yield and increases risks of mycotoxin production, thus endangering livestock. To identify genes differentially expressed during FV infection, four cDNA libraries were constructed for suppression subtractive hybridization using RNA isolated from bracts of an FV-resistant inbred maize line, Bt-1, as well as an FV-susceptible maize inbred line, Ye478. A total of 145 clones were obtained following reverse dot-blot hybridization, and these were sequenced from these libraries. Similarity analysis revealed that of these genes, 93 were unique, including 68 of known function, 24 of unknown function, and a single novel gene. Most genes of known function were predominantly involved in plant defense such as cell defense, transcription regulation, signal transduction, and metabolism. Expression profiles of eight representative genes, using semiquantitative reverse transcription-polymerase chain reaction, confirmed that differential gene regulation during FV infection was involved. These findings suggested that these differentially expressed genes might be involved in FV defense responses in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali ML, Taylor JH, Jie L, Sun G, William M, Kasha KJ, Reid LM, Pauls KP (2005) Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum. Genome 48:521–533

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Capelli N, Diogon T, Greppin H, Simon P (1997) Isolation and characterization of a cDNA clone encoding an osmotin-like protein from Arabidopsis thaliana. Gene 191:51–56

    Article  PubMed  CAS  Google Scholar 

  • Casacuberta JM, Puigdomenech P, San Segundo B (1991) A gene coding for a basic pathogenesis-related (PR-like) protein from Zea mays. Molecular cloning and induction by a fungus (Fusarium moniliforme) in germinating maize seeds. Plant Mol Biol 16:527–536

    Article  PubMed  CAS  Google Scholar 

  • Casacuberta JM, Raventos D, Puigdomenech P, San Segundo B (1992) Expression of the gene encoding the PR-like protein PRms in germinating maize embryos. Mol Gen Genet 234:97–104

    PubMed  CAS  Google Scholar 

  • Chen W, Wu JY, Yuan HX (2002) Identification of resistance on maize germplasm to maize ear rot. J Maize Sci 10(59–60):101

    Google Scholar 

  • Chen N, Yang QL, Su MW, Pan LJ, Chi Y, Chen MN, He YN, Yang Z, Wang T, Wang M, Yu SL (2012) Cloning of six ERF family transcription factor genes from peanut and analysis of their expression during abiotic stress. Plant Mol Biol Rep 30(6):1415–1425. doi:10.1007/s11105-012-0456-0

    Article  CAS  Google Scholar 

  • Chungu C, Mather DE, Reid LM, Hamilton RI (1996) Inheritance of kernel resistance to Fusarium graminearum in maize. J Hered 87:382–385

    Article  Google Scholar 

  • Cordero MJ, Raventos D, San Segundo B (1992) Induction of PR proteins in germinating maize seeds infected with the fungus Fusarium moniliforme. Physiol Mol Plant Pathol 41:189–200

    Article  CAS  Google Scholar 

  • Cordero MJ, Raventos D, San Segundo B (1994a) Expression of a maize proteinase inhibitor gene is induced in response to wounding and fungal infection: systemic wound response of a monocot gene. Plant J 6:141–150

    Article  PubMed  CAS  Google Scholar 

  • Cordero MJ, Raventos D, San Segundo B (1994b) Differential expression and induction of chitinases and β-1, 3-glucanases in response to fungal infection during germination of 14 maize seeds. Mol Plant Microbe Interact 7:23–31

    Article  CAS  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci 98:13454–13459

    Article  PubMed  CAS  Google Scholar 

  • Diatchenko L, Lukyanov S, Lau YFC, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1999) Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods Enzymol 303:349–380

    Article  PubMed  CAS  Google Scholar 

  • Ding JQ, Wang XM, Chander S, Yan JB, Li JS (2008) QTL mapping of resistance to Fusarium ear rot using a RIL population in maize. Mol Breeding 22:395–403

    Article  Google Scholar 

  • Dong X (1998) SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol 1:316–323

    Article  PubMed  CAS  Google Scholar 

  • Edelmann MJ, Kessler BM (2008) Ubiquitin and ubiquitin-like specific proteases targeted by infectious pathogens: emerging patterns and molecular principles. Biochim Biophys Acta 1782:809–816

    Article  PubMed  CAS  Google Scholar 

  • Edreva A (2005) Pathogenesis-related proteins: research progress in the last 15 years. Gen Appl Plant Physiol 31:105–124

    CAS  Google Scholar 

  • Eulgem T (2005) Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci 10:71–78

    Article  PubMed  CAS  Google Scholar 

  • Fraire-Velazquez S, Lozoya-Gloria E (2003) Differential early gene expression in Phaseolus vulgaris to Mexican isolates of Colletotrichum lindemuthianum in incompatible and compatible interactions. Physiol Mol Plant Pathol 63:79–89

    Article  CAS  Google Scholar 

  • Fung RWM, Gonzalo M, Fekete C, Kovacs LG, He Y, Marsh E, McIntyre LM, Schachtman DP, Qiu WP (2008) Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol 146:236–249

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  PubMed  CAS  Google Scholar 

  • Greenberg JT (1997) Programmed cell death in plant–pathogen interactions. Annu Rev Plant Physiol Plant Mol Biol 48:525–545

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Wang Y, Bi JL, Yang XQ, Huang Y, Zhao X, Hu Y, Cai QN (2009) Constitutive and induced activities of defense-related enzymes in aphid-resistant and aphid-susceptible inbred lines of wheat. J Chem Ecol 35:176–182

    Article  PubMed  CAS  Google Scholar 

  • Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44:321–334

    Article  PubMed  CAS  Google Scholar 

  • Husaini AM, Rafiqi AM (2011) Role of osmotin in strawberry improvement. Plant Mol Biol Rep 30:1055–1064. doi:10.1007/s11105-011-0394-2

    Article  Google Scholar 

  • Jiang TB, Fountain J, Davis G, Kemerait R, Scully B, Lee RD, Guo BZ (2012) Root morphology and gene expression analysis in response to drought stress in maize (Zea mays). Plant Mol Biol Rep 30:360–369

    Article  CAS  Google Scholar 

  • Jin H, Martin C (1999) Multifunctionality and diversity within the plant MYB-gene family. Plant Mol Biol 41:577–585

    Article  PubMed  CAS  Google Scholar 

  • Johal GS, Briggs SP (1992) Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258:985–987

    Article  PubMed  CAS  Google Scholar 

  • Kim BG, Fukumoto T, Tatano S, Gomi K, Ohtani K, Tada Y, Akimitsu K (2009) Molecular cloning and characterization of a thaumatin-like protein-encoding cDNA from rough lemon. Physiol Mol Plant Pathol 7:1–8

    Google Scholar 

  • Kinkema M, Fan W, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12:2339–2350

    PubMed  CAS  Google Scholar 

  • Lebel E, Heifetz P, Thorne L, Uknes S, Ryals J, Ward E (1998) Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J 16:223–233

    Article  PubMed  CAS  Google Scholar 

  • Li YL, Long SS, Guo JZ, Zhang YH, Li Q, Wang W (2003) Changes of activities of PAL and POD and bands of POD isozyme of susceptible and resistant corn infected with Fusarium graminearum. Acta Bot Boreal Occident Sin 23:1927–1931

    CAS  Google Scholar 

  • Li DM, Staehelin C, Zhang YS, Peng SL (2009) Identification of genes differentially expressed in Mikania micrantha during Cuscuta campestris infection by suppression subtractive hybridization. J Plant Physiol 166:1423–1435

    Article  PubMed  CAS  Google Scholar 

  • Li ZM, Ding JQ, Wang RX, Chen JF, Sun XD, Chen W, Song WB, Dong HF, Dai XD, Xia ZL, Wu JY (2011) A new QTL for resistance to Fusarium ear rot in maize. J Appl Genet 52:403–406

    Article  PubMed  Google Scholar 

  • Liang Q, Hou MS (2004) The relation between the MRDV resistance and the peroxidase of maize varieties. J Yunnan Agric Univ 19(5):546–549

    CAS  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant–pathogen interactions. Curr Opin Plant Biol 8:409–414

    Article  PubMed  CAS  Google Scholar 

  • Multani DS, Meeley RB, Paterson AH, Gay J, Briggs SP, Johal GS (1998) Plant–pathogen microevolution: molecular basis for the origin of a fungal disease in maize. Proc Natl Acad Sci 95:1686–1691

    Article  PubMed  CAS  Google Scholar 

  • Munkvold GP (2003) Epidemiology of Fusarium diseases and their mycotoxins in maize ears. Eur J Plant Pathol 109:705–771

    Article  CAS  Google Scholar 

  • Murillo I, Jaeck E, Cordero MJ, San Segundo B (2001) Transcriptional activation of a maize calcium-dependent protein kinase gene in response to fungal elicitors and infection. Plant Mol Biol 45:145–158

    Article  PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Van Loon LC (1999) Salicylic acid-independent plant defence pathways. Trends Plant Sci 4:52–58

    Article  PubMed  Google Scholar 

  • Reid LM, Nicol RW, Ouellet T, Savard M, Miller JD, Young JC, Stewart DW, Schaafsma AW (1999) Interaction of Fusarium graminearum and F. moniliforme in maize ears: disease progress, fungal biomass, and mycotoxin accumulation. Phytopathology 89:1028–1037

    Article  PubMed  CAS  Google Scholar 

  • Robertson-Hoyt LA, Jines MP, Balint-Kurti PJ, Kleinschmidt CE, White DG, Payne GA, Maragos CM, Molnar TL, Holland JB (2006) QTL mapping for Fusarium ear rot and fumonisin contamination resistance in two maize populations. Crop Sci 46:1734–1743

    Article  CAS  Google Scholar 

  • Sano H, Ohashis Y (1995) Involvement of small GTP-binding proteins in defense signal-transduction pathways of higher plants. Proc Natl Acad Sci 92:4138–4144

    Article  PubMed  CAS  Google Scholar 

  • Sano H, Seo S, Orudgev E, Youssefian S, Ishizuka K, Ohashi Y (1994) Expression of the gene for a small GTP binding protein in transgenic tobacco elevates endogenous cytokinin levels, abnormally induces salicylic acid in response to wounding, and increases resistance to tobacco mosaic virus infection. Proc Natl Acad Sci 91:10556–10560

    Article  PubMed  CAS  Google Scholar 

  • Schenk PM, Kazan K, Manners JM, Anderson JP, Simpson RS, Wilson IW, Anderson JP, Somerville SC, Maclean DJ (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci 97:11655–11660

    Article  PubMed  CAS  Google Scholar 

  • Sekhon RS, Kuldau G, Mansfield M, Chopra S (2006) Characterization of Fusarium-induced expression of flavonoids and PR genes in maize. Physiol Mol Plant Pathol 69:109–117

    Article  CAS  Google Scholar 

  • Singh KB, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Xie ZY, Chen WQ, Glazebrook J, Chang HS, Han B, Zhu T, Zou GZ, Katagiri F (2003) Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringe. Plant Cell 15:317–330

    Article  PubMed  CAS  Google Scholar 

  • Thompson CE, Fernandes CL, de Souza ON, Salzano FM, Bonatto SL, Freitas LB (2006) Molecular modeling of pathogenesis-related proteins of family 5. Cell Biochem Biophys 44:385–394

    Article  PubMed  CAS  Google Scholar 

  • Van Loon LC, Gerritsen YAM (1989) Protease activity and pathogenesis-related proteins in virus infected Samsun NN tobacco leaves. Plant Sci 63:141–150

    Article  Google Scholar 

  • Vigier B, Reid LM, Dwyer LM, Stewart DW, Sinha RC, Arnason JT, Butler G (2001) Maize resistance to Gibberella ear rot: symptoms, deoxynivalenol, and yield. Can J Plant Pathol 23:99–105

    Article  CAS  Google Scholar 

  • Weidenborner M (2001) Foods and fumonisins. Eur Food Res Technol 212:262–273

    Article  CAS  Google Scholar 

  • Wen CJ, Chen XJ, Chen WR (2002) Fusarium ear rot of corn and methods used in resistance test. J Sichuan Agric Univ 20:321–323

    Google Scholar 

  • Yang Y, Klessig DF (1996) Isolation and characterization of a tobacco mosaic virus-inducible myb oncogene homolog from tobacco. Proc Natl Acad Sci 93:14972–14977

    Article  PubMed  CAS  Google Scholar 

  • Young ND (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol 34:479–501

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Ali ML, Taylor J, Liu J, Sun G, Liu W, Masilimany P, Gulati-Sakhuja A, Pauls KP (2008) A guanylyl cyclase-like gene is associated with Gibberella ear rot resistance in maize (Zea mays L.). Theor Appl Genet 116:465–479

    Article  PubMed  CAS  Google Scholar 

  • Yuan GS, Zhang ZM, Xiang K, Zhao MJ, Shen YO, Pan GT (2012) Large-scale identification of differentially expressed genes in maize inbreds susceptible and resistant to Fusarium ear rot. Plant Omics J 5:471–475

    CAS  Google Scholar 

  • Yun DJ, Ibeas JI, Lee H, Coca MA, Narasimhan ML, Uesono Y, Hasegawa PM, Pardo JM, Bressan RA (1998) Osmotin, a plant antifungal protein, subverts signal transduction to enhance fungal cell susceptibility. Mol Cell 1:807–817

    Article  PubMed  CAS  Google Scholar 

  • Zhang F, Wan XQ, Pan GT (2006) QTL mapping of Fusarium moniliforme ear rot resistance in maize. 1. Map construction with microsatellite and AFLP markers. J Appl Genet 47:9–15

    Article  PubMed  Google Scholar 

  • Zhang Y, Feng DS, Bao YG, Ma X, Yin N, Xu JQ, Wang HG (2012) A novel wheat related-to-ubiquitin gene TaRUB1 is responsive to pathogen attack as well as to both osmotic and salt stress. Plant Mol Biol Rep 31(1):151–159. doi:10.1007/s11105-012-0476-9

    Article  CAS  Google Scholar 

  • Zheng J, Fu J, Gou M, Huai J, Liu Y, Jian M, Huang Q, Guo X, Dong Z, Wang H, Wang G (2010) Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Plant Mol Biol 72:407–421

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Yunbi Xu and Dr. Xiaoyang Zhu for their comments on this manuscript. This project was financially supported by grants from the Natural National Science Foundation of China (nos. 30571173 and 31201274), Program for Changjiang Scholars and Innovative Research Team in University of China (grant no. IRT0453), and National High Technology Research and Development Program of China (863 Program) (no. 2012AA10A307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangtang Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, G., Zhang, Z., Xiang, K. et al. Different Gene Expressions of Resistant and Susceptible Maize Inbreds in Response to Fusarium verticillioides Infection. Plant Mol Biol Rep 31, 925–935 (2013). https://doi.org/10.1007/s11105-013-0567-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0567-2

Keywords

Navigation