Skip to main content
Log in

Overexpression of the ABA-Dependent AREB1 Transcription Factor from Arabidopsis thaliana Improves Soybean Tolerance to Water Deficit

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Among current strategies for the development of drought-tolerant plants, engineering transcription factors that regulate the expression of genes related to abiotic stress is promising. Soybean plants overexpressing the transcription factor AtAREB1, which is involved in abscisic acid (ABA)-dependent stress responses, were generated using biolistics. Embryos of cultivar BR16, which is considered drought sensitive, were co-transformed with two plant expression vectors, 35S::AtAREB1 and 35S::ahas. Among the lines obtained, the drought tolerance of A24.10 and A2889.12 was assessed because these lines overexpressed the AtAREB1 gene and had a low copy number of the transgene. Another line, A2057.03, was also selected because it had a high copy number of the transgene (more than 100 copies) and low levels of transgene expression. Among the two low-copy lines, the A24.10 plants exhibited a slightly lower number of leaves and a shortening of the internode length; however, no growth retardation was observed for the line A2057.03. Water stress tolerance was particularly improved in the low-copy lines A24.10 and A2889.12. Plants of these lines were able to survive a water stress period of 5 days and exhibited no leaf damage, i.e., dried areas in the leaves 3 days after rewatering. Furthermore, these lines exhibited better growth and physiological performance under water-deficit (higher relative rate of shoot length, stomatal conductance, and photosynthesis) when compared to the wild type. Our results show the potential for improving drought tolerance by overexpressing AtAREB1 in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altpeter F, Baisakh N, Beachy R et al (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breeding 15:305–327

    Article  Google Scholar 

  • Bray EA (1994) Alterations in gene expression in response to water-deficit. In: Basra AS (ed) Stress-induced gene expression in plants. Harwood Academic, Amsterdam, pp 1–23

    Google Scholar 

  • Bubner B, Baldwin IT (2004) Use of real-time PCR for determining copy number and zygosity in transgenic plant. Plant Cell Rep 23:263–271

    Article  PubMed  CAS  Google Scholar 

  • Busk PK, Pages M (1998) Regulation of abscisic acid-induced transcription. Plant Mol Biol 37:425–435

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Chen Z, Kang J, Kang D, Gu H, Qin G (2012) AtMYB14 regulates cold tolerance in Arabidopsis. Plant Mol Biol. doi:10.1007/s11105-012-0481-z

  • Corrêa LT, Riano-Pachon DM, Schrago CG, Dos Santos RV, Mueller-Roeber B, Vincentz M (2008) The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS One 3(8):e2944

    Article  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small amounts of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Fehr WR, Caviness CE, Burnmood DT, Pernnigton JS (1971) Stage of development description for soybeans [Glycine max (L.) Merrill]. Crop Sci 11:929–931

    Article  Google Scholar 

  • Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269–279

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–3488

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525

    Article  PubMed  CAS  Google Scholar 

  • Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2006) ABA-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci U S A 103:1988–1993

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspensions of cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Gao SQ, Chen M, Xu ZS, Zhao CP, Li L, Xu HJ, Tang YM, Zhao X, Ma YZ (2011) The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants. Plant Mol Biol 75:537–553

    Article  PubMed  CAS  Google Scholar 

  • Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J, Morris PC, Bouvier-Durand M, Vartanian N (1994) Current advances in abscisic acid action and signalling. Plant Mol Biol 26:1557–1577

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Porras JL, Riano-Pachon DM, Dreyer I, Mayer JE, Mueller-Roeber B (2007) Genome wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice. BMC Genomics 8:260

    Article  PubMed  Google Scholar 

  • Hao Y-J, Wei W, Song Q-X et al (2011) Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J 68:302–313

    Article  PubMed  CAS  Google Scholar 

  • Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Article  PubMed  CAS  Google Scholar 

  • Jones HD (2005) Wheat transformation: current technology and applications to grain development and composition. J Cereal Sci 41:137–147

    Article  CAS  Google Scholar 

  • Kim S, Kang JY, Cho DI, Park JH, Kim SY (2004) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J 40:75–87

    Article  PubMed  CAS  Google Scholar 

  • Kim J-S, Mizoi J, Yoshida T et al (2011) An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant Cell Physiol 52:2136–2146

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi F, Maeta E, Terashima A, Takumi S (2008) Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings. Physiol Plant 134(1):74–86

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Kang JY, Park HJ, Kim MD, Bae MS, Choi HI, Kim SY (2010) DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity. Plant Physiol 153:716–727

    Article  PubMed  CAS  Google Scholar 

  • Li X-G, Chen S-B, Lu Z-X, Chan T-J, Zeng Q-C, Zu Z (2002) Impact of copy number on transgene expression in tobacco. Acta Bot Sin 44:120–123

    CAS  Google Scholar 

  • Liao Y, ZhangJS CSY, Zhang WK (2008a) Role of GmbZIP132 under abscisic acid and salt stresses. J Integr Plant Biol 50:221–230

    Article  PubMed  CAS  Google Scholar 

  • Liao Y, Zou HF, Wei W, Hao YJ, Tian AG, Huang J, Liu YF, Zhang JS, Chen SY (2008b) Soybean GmbZIP144, GmbZIP162 and GmbZIP178 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta 228:225–240

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Cao X-L, Bai R, Yao N, Li L-B, He C-F (2012) Isolation and characterization of the cold-induced Phyllostachysedulis AP2/ERF family transcription factor peDREB1. Plant Mol Biol Report 30(3):679–689

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆Ct method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Marcotte WR Jr, Russell SH, Quatrano RS (1989) Abscisic acid-responsive sequences from the em gene of wheat. Plant Cell 1:969–976

    PubMed  CAS  Google Scholar 

  • Maruyama K, Todaka D, Mizoi J, Yoshida T, Kidokoro S, Matsukura S, Takasaki H, Sakurai T, Yamamoto YY, Yoshiwara MK, Sakakibara H, Shinozaki K, Shinozaki-Yamaguchi K (2012) Identification of cis-acting promoter elements in cold and dehydration-induced transcriptional pathways in Arabidopsis, rice and soybean. DNA Res 19:37–49

    Article  PubMed  CAS  Google Scholar 

  • Meyer R, Candrian U, Luè-Thy J (1994) Detection of pork in heated meat products by polymerase chain reaction (PCR). J AOAC Int 77:617–622

    PubMed  CAS  Google Scholar 

  • Mlynárová L, Loonen A, Heldens J, Jansen RC, Keizer P, Stiekema WJ, Nap JP (1994) Reduced position effect in mature transgenic plants conferred by the chicken lysozyme matrix-associated region. Plant Cell 6:417–426

    PubMed  Google Scholar 

  • Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9:230–249

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  PubMed  CAS  Google Scholar 

  • Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148

    Article  PubMed  CAS  Google Scholar 

  • Oya T, Nepomuceno AL, Neumaier N, Farias JRB, Tobita S, Ito O (2004) Drought tolerance characteristics of Brazilian soybean cultivars. Plant Prod Sci 7:129–137

    Article  Google Scholar 

  • Pawlowski WP, Somers DA (1996) Transgene inheritance in plants genetically engineered by microprojectile bombardment. Mol Biotechnol 6:17–30

    Article  PubMed  CAS  Google Scholar 

  • Polizel A, Medri ME, Nakashima K, Yamanaka N, Farias JR, de Oliveira MC, Marin SR, Abdelnoor RV, Marcelino-Guimarães FC, Fuganti R, Rodrigues FA, Stolf-Moreira R, Beneventi MA, Rolla AA, Neumaier N, Yamaguchi-Shinozaki K, Carvalho JF, Nepomuceno AL (2011) Molecular, anatomical and physiological properties of a genetically modified soybean line transformed with rd29A:AtDREB1A for the improvement of drought tolerance. Genet Mol Res 10(4):3641–3656

    Article  PubMed  CAS  Google Scholar 

  • Qu G-Z, Zang L, Xilin H, Gao C, Zheng T, Li K-L (2011) Co-transfer of LEA and bZip genes from Tamarix confers additive salt and osmotic stress tolerance in transgenic tobacco. Plant Mol Biol Report 30(2):512–518

    Article  Google Scholar 

  • Rech EL, Vianna GR, Aragão FJL (2008) High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat Protoc 3:1–10

    Article  Google Scholar 

  • Reeves WM, Lynch TJ, Mobin R, Finkelstein RR (2011) Direct targets of the transcription factors ABA-insensitive (ABI)4 and ABI5 reveal synergistic action by ABI4 and several bZIP ABA response factors. Plant Mol Biol 75:347–363

    Article  PubMed  CAS  Google Scholar 

  • Saint-Pierre C, Crossa JL, Bonnett D, Yamaguchi-Shinozaki K, Reynolds MP (2012) Phenotyping transgenic wheat for drought resistance. J Exp Botany 2:1–10

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis Y (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Stolf-Moreira R, Lemos EGM, Abdelnoor RV, Beneventi MA, Rolla AAP, Pereira SS, Oliveira MCN, Nepomuceno A, Marcelino-Guimarães FC (2011) Identification of reference genes for expression analysis by real-time quantitative PCR in drought-stressed soybean. Pesq Agrop Brasileira 46:58–65

    Article  Google Scholar 

  • Svitashev SK, Pawlowski WP, Makarevitch I, Plank DW, Somers DA (2002) Complex transgene locus structures implicate multiple mechanisms for plant transgene rearrangement. Plant J 32:433–445

    Article  PubMed  CAS  Google Scholar 

  • Tran L-S, Nishiyama R, Yamaguchi-Shinozaki K, Shinozaki K (2010) Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops 1:32–38

    Article  PubMed  Google Scholar 

  • Walling JG, Shoemaker R, Young N, Mudge J, Jackson S (2006) Chromosome-level homeology in paleopolyploid soybean (Glycine max) revealed through integration of genetic and chromosome maps. Genetics 172:1893–1900

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672–685

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Qian Q, Wang H, Huang D (2007) Hereditary behavior of bar gene cassette is complex in rice mediated by particle bombardment. J Genet Genomics 34:824–835

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Japan International Research Center for Agricultural Sciences, Japan International Cooperation Agency, Japan Science and Technology Agency, Empresa Brasileira de Pesquisa Agropecuária, and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Lima Nepomuceno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbosa, E.G.G., Leite, J.P., Marin, S.R.R. et al. Overexpression of the ABA-Dependent AREB1 Transcription Factor from Arabidopsis thaliana Improves Soybean Tolerance to Water Deficit. Plant Mol Biol Rep 31, 719–730 (2013). https://doi.org/10.1007/s11105-012-0541-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-012-0541-4

Keywords

Navigation