Skip to main content
Log in

Characterization of a Novel Stress-Response Member of the MAPK Family in Malus hupehensis Rehd

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Malus hupehensis Rehd. var. pinyiensis Jiang (Pingyi Tiancha, PYTC) is a botanical variety of Malus (tea crabapple) originating from China. This species is characterized as apomictic, and it is highly capable of resisting water-logging, shade, cold, and various diseases. Mitogen-activated protein kinase (MAPK) cascades have been implicated in the regulation of stress and developmental signals in plants. In this study, an MAPK gene, MhMAPK, has been isolated from a PYTC complementary DNA (cDNA) library using rapid amplification of cDNA ends. The gene encodes a 373-amino-acid protein with high-sequence similarity to other previously reported plants MAPKs. MhMAPK contains all 11 MAPK conserved sub-domains and the phosphorylation motif TEY, and when fused to the green fluorescent protein, it is found to be localized in the nucleus of epidermal cells of onion. Transcripts of MhMAPK accumulate when PYTC is treated with 20% polyethylene glycol and 200 mM NaCl. These results indicated that MhMAPK may be functional within the nucleus by phosphorylating transcriptional factors. This, in turn, allows plants to rapidly respond to the environmental signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

MAPK:

mitogen-activated protein kinase

PYTC:

Pingyi Tiancha (Chinese name of Malus hupehensis Rehd. var. pinyiensis Jiang)

PCR:

polymerase chain reaction

RACE:

rapid amplification of cDNA ends

References

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez Gomez L, et al. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 2002;415:977–83. doi:10.1038/415977a.

    Article  PubMed  CAS  Google Scholar 

  • Bogre L, Ligterink W, Meskiene I, Barker PJ, Heberle-Bors E, Huskisson NS, et al. Wounding induces the rapid and transient activation of a specific MAP kinase pathways. Plant Cell 1997;9:75–83.

    Article  PubMed  Google Scholar 

  • Cheng S, Puryear J, Cairney J. A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 1993;11:113–6. doi:10.1007/BF02670468.

    Article  Google Scholar 

  • Cheong YH, Moon BC, Kim JK, Kim CY, Kim MC, Kim IH, et al. BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol 2003;132:1961–72. doi:10.1104/pp.103.023176.

    Article  PubMed  CAS  Google Scholar 

  • Dong CY, Liu TF, Qi JP. Expression of TGF-β1, ERK1, ERK2 and c-jun in human pancreatic cancer tissue and clinical significance. Chin J Pancreatol 2005;5:28–32.

    CAS  Google Scholar 

  • Hanks SK, Quinn AM, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 1988;241:42–52. doi:10.1126/science.3291115.

    Article  PubMed  CAS  Google Scholar 

  • Hardie DG. Plant protein serine threonine kinases: classification and functions. Annu Rev Plant Physiol Plant Mol Biol 1999;50:97–131. doi:10.1146/annurev.arplant.50.1.97.

    Article  PubMed  CAS  Google Scholar 

  • Hong SW, Jon JH, Kwak JM, Nam HG. Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatment in Arabidopsis thaliana. Plant Physiol 1997;113:1203–12. doi:10.1104/pp.113.4.1203.

    Article  PubMed  CAS  Google Scholar 

  • Hunter T. Protein kinases and phosphatases: the ying and yang of protein phosphorylation and signalling. Cell 1995;80:225–36. doi:10.1016/0092-8674(95)90405-0.

    Article  PubMed  CAS  Google Scholar 

  • Jeong M, Lee SK, Kim BG. A rice (Oryza sativa L.) MAP kinase gene, OsMAPK44, is involved in response to abiotic stresses. Plant Cell Tissue Organ Cult 2006;85:151–60. doi:10.1007/s11240-005-9064-0.

    Article  CAS  Google Scholar 

  • Jonak C, Kiegerl S, Ligterink W. Stress signaling in Plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA 1996;93:11274–9. doi:10.1073/pnas.93.20.11274.

    Article  PubMed  CAS  Google Scholar 

  • Jonak C, Ökrész L, Böger L, Hirt H. Complexity, cross talk and integration of plant MAP kinase signaling. Curr Opin Plant Biol 2002;5:415–24. doi:10.1016/S1369-5266(02)00285-6.

    Article  PubMed  CAS  Google Scholar 

  • Kim CY, Zhang S. Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco. Plant J 2004;38(1):142–51. doi:10.1111/j.1365-313X.2004.02033.x.

    Article  PubMed  CAS  Google Scholar 

  • Knetsch MLW, Wang M, Snaar Jagalaka BE. Abscisic acid induces mitogen-actevated protein kinase activation in Barley aleurone protoplasts. Plant Cell 1996;8:1061–7.

    Article  PubMed  CAS  Google Scholar 

  • Li YN. Study for the germplasm resources of Malus species. Beijing: China Agricultural Press; 2001. p. 121.

    Google Scholar 

  • Ligterink W, Kroj T, Nieden UZ. Receptor mediated activation of a MAP kinase in pathogen defense of plants. Science 1997;276:2054–7. doi:10.1126/science.276.5321.2054.

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y. Two transcription factors, DREB1 and DREB2, with an EREBP/ AP2 DNA binding domain separate two cellular signal transcription pathways in drought and low temperature responsive gene expression, respectively, in A rabidopsis. Plant Cell 1998;10:1391–406.

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Zhang GY, Shinozaki K. The Plant Mitogen-activated Protein (MAP) Kinase. Acta Bot Sin 2000;42:661–7.

    CAS  Google Scholar 

  • Machida Y, Nishihama R, Kitakura S. Progress in studies of plant homologs of mitogen-activated protein (MAP) kinase and potential upstream components in kinase cascades. Crit Rev Plant Sci 1997;16:481–96. doi:10.1080/713608155.

    Article  CAS  Google Scholar 

  • Menke FL, Kang HG, Chen Z, Park JM, Kumar D, Klessig DF. Tobacco transcription factor WRKY1 is phosphorylated by the MAP kinase SIPK and mediates HR-like cell death in tobacco. Mol Plant Microbe Interact 2005;18(10):1027–1034.

    Article  PubMed  CAS  Google Scholar 

  • Miao Y, Thomas ML, Anja S, Ulrike Z. Arabidopsis MEKK1 can take a short cut: it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter. Plant Mol Biol 2007;65(1–2):63–76. doi:10.1007/s11103-007-9198-z.

    Article  PubMed  CAS  Google Scholar 

  • Mikolajczyk M, Awotunde OS, Muszynska G, Klessig DF, Dobrowolska G. Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant Cell 2000;12:165–78.

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi T, Gotoh Y, Nishida E. Characterization of two cDNAs that encode MAP kinase homologues in Arabidopsis thaliana and analysis of the possible role of auxtin in activating such kinase activities in cultured cells. Plant J 1994;5:111–22. doi:10.1046/j.1365-313X.1994.5010111.x.

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, et al. A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Natl Acad Sci USA 1996;93:765–9. doi:10.1073/pnas.93.2.765.

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi T, Ichimura K, Irie K, Morris P, Giraudat J, Matsumoto K, et al. Identification of a possible MAP kinase cascade in Arabidopsis thaliana based on pairwise yeast two- hybrid analysis and functional complementation tests of yeast mutants. FEBS Lett 1998;437:56–60. doi:10.1016/S0014-5793(98)01197-1.

    Article  PubMed  CAS  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lombardo MC, Lamattina L. Nitric oxide mediates the indole acetic acid induction activation of a MAPK cascade involved in adventitious root development. Plant Physiol 2004;135:279–86. doi:10.1104/pp.103.038554.

    Article  PubMed  CAS  Google Scholar 

  • Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, et al. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 2000;103:1111–20. doi:10.1016/S0092-8674(00)00213-0.

    Article  PubMed  CAS  Google Scholar 

  • Seo S, Okamoto M, Seto H. Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science 1995;270:1988–92. doi:10.1126/science.270.5244.1988.

    Article  PubMed  CAS  Google Scholar 

  • Shoresh M, Gal-On A, Leibman D, Chet I. Characterization of a mitogen- activated protein kinase gene from cucumber required for trichoderma-conferred plant resistance. Plant Physiol 2006;142:1169–79. doi:10.1104/pp.106.082107.

    Article  PubMed  CAS  Google Scholar 

  • Waller F, Muller A, Chung KM, Yap YK, Nakamura K, Weiler E, et al. Expression of a WIPK-activated transcription factor results increase of endogenous salicylic acid and pathogen resistance in tobacco plants. Plant Cell Physiol 2006;47(8):1169–74. doi:10.1093/pcp/pcj079.

    Article  PubMed  CAS  Google Scholar 

  • Yang HQ, Jie YL. Studies of individual difference in seedlings of apple rootstock. J Shandong Agric Univ 1997;28:487–91.

    Google Scholar 

  • Yap YK, Kodama Y, Waller F, Chung KM, Ueda H, Nakamura K, et al. Activation of a novel transcription factor through phosphorylation by WIPK, a wound-induced mitogen-activated protein kinase in tobacco plants. Plant Physiol 2005;139:127–37. doi:10.1104/pp.105.065656.

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Klessig DF. Salicylic acid activates a 48-KD MAP kinase in Tobacco. Plant Cell 1997;9:809–24.

    Article  PubMed  CAS  Google Scholar 

  • Zhang TG, Liu YB, Xue LG. Molecular cloning and characterization of a novel MAP kinase gene in Chorispora bungeana. Plant Physiol Biochem 2006;44:78–84. doi:10.1016/j.plaphy.2006.01.001.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by projects 30571285 and 30671452 of the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongqiang Yang.

Additional information

MhMAPK Gen-Bank accession number is EF427897.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, K., Yang, H., Ran, K. et al. Characterization of a Novel Stress-Response Member of the MAPK Family in Malus hupehensis Rehd . Plant Mol Biol Rep 27, 69–78 (2009). https://doi.org/10.1007/s11105-008-0057-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-008-0057-0

Keywords

Navigation