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Abstract
Background Disentangling nutrient acquisition strategies
between trees and crops is central to understanding positive
nutrient interactions in agroforestry systems for improved
low-input agriculture. However, as plants are responsive to
a complex soil matrix at multiple scales, generalizable
diagnostics across diverse agroforests remains challenging.
Scope We synthesize research at various scales of the
tree-crop interface that are cumulatively hypothesized to
underpin nutrient acquisition strategies in agroforestry
systems. These scales span the whole root system to
fine-scale sites of acquisition actively engaged in biolog-
ical and chemical interactions with soil. We target vertical
and horizontal dimensions of acquisition patterns; local-
ized root-soil dynamics including biological associations;
root-scale plasticity for higher acquisition; and nutrient
additions via biological nitrogen fixation and deep soil
nutrient uplift. We consolidate methodological advances
and the effects of environmental change on well-
established nutrient interactions.

Conclusions Root distribution patterns remain one of the
most universal indicators of nutrient acquisition strategies in
a range of agroforestry systems, while root functional traits
are emerging as an effective root-scale indicator of nutrient
acquisition strategy. We validate that in agroforestry sys-
tems crop root functional traits reveal bivariate trade-offs
similar to, but weaker than, crops in monoculture, with
mechanistic links to nutrient acquisition strategies. While
interspecific root overlap may be associated with nutrient
competition, clear cases of enhanced chemically and
microbially meditated processes result in species- and
management-specific nutrient facilitation. We argue for
agroforestry science to use distinct and standardized nutri-
ent acquisition indicators and processes at multiple scales to
generate more nuanced, while also generalizable, diagnos-
tics of tree-crop interactions. And extensive research is
needed on how agroforestry practices stabilize key nutrient
acquisition patterns in the face of environmental change.

Keywords Agroecosystems . Ecosystem function .

Facilitation . Rhizosphere . Root distribution . Root
functional traits . Soil heterogeneity . Tree-crop
interactions

Introduction

Over the past two decades, there has been a considerable
expansion in research on alternative agricultural systems
(Altieri 1999; Wezel and Soldat 2009; Tomich et al.
2011). Applications of agroecological principles to the
design of agroecosystems have gained momentum as a
contemporary lens to critique, evaluate, and manage
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environmental and socio- economic issues surrounding
agricultural landscapes (Méndez et al. 2013; Isaac et al.
2018). Notably, the integration of trees to cropping
systems, or agroforestry, addresses many of the most
pressing issues of our time, including food security,
biodiversity loss, and climate change (Jose 2009;
Somarriba et al. 2012; Tscharntke et al. 2012). Based
on the well-described hypothesis that increasing biodi-
versity is associated with greater ecosystem function
(i.e., productivity, efficient nutrient cycling, positive
trophic interactions) (Cadotte et al. 2011; Cardinale
et al. 2012), biologically complex agroforestry systems
often reveal greater ecosystem functioning and a re-
duced reliance on chemical inputs (Drinkwater and
Snapp 2007; Malézieux et al. 2009; Martin and Isaac
2015). Such benefits have been observed from farm to
landscape levels of integration, and across temperate
and tropical agroecosystems. While these benefits are
a key target in future food production landscapes, such
success requires well developed diagnostics of the plant-
soil continuum.

Disentangling nutrient acquisition strategies and nutri-
ent transfer processes is fundamental to encourage posi-
tive nutrient interactions in agroforestry systems for im-
proved low-input agriculture (Hinsinger et al. 2011; Isaac
and Kimaro 2011). Cannell et al.’s (1996) paper “The
central agroforestry hypothesis: the trees must acquire
resources that the crop would not otherwise acquire” has
guided such principles in agroforestry design for optimal
belowground interactions for over two decades. The op-
timization of tree and crop root interactions for balanced
and non-competitive nutrient uptake has been the basis of
innumerable studies in agroforestry systems around the
world. Although there are multiple agroforestry system
typologies (e.g. agrisilvicultural, silvopastoral and
agrosilvopastoral), in tree-crop systems in particular, this
work has resulted in clear advances, notably, identifying
the drivers of soil phosphorus (P) sharing (see Hinsinger
et al. 2011), quantifying the transfer rates of fixed nitro-
gen (N) (see Nygren et al. 2012), and sequencing the
critical role of mycorrhizal fungi (see Carvalho et al.
2010). As the agroforestry literature on the role of enzy-
matic and microbial meditated processes advanced, so
too has the root ecology literature. Major advances have
been made in understanding root structure and function
(Erktan et al. 2018), notably the repositioning of the
importance of root order and functional classification
frameworks (McCormack et al. 2015), the rapidly
expanding knowledge on the role of roots in driving

critical microbial processes in the rhizosphere (de Vries
et al. 2012), and the evolving literature on root trait trade-
offs and consequences for predicting root acquisition
strategies based on morphological and chemical charac-
teristics (Weemstra et al. 2016).

Distinctive structural and functional characteristics of
tree root systems, relative to crop roots, remains a corner-
stone of agroforestry. However, roots can be highly re-
sponsive to environments employing concomitant, and at
times opposing, strategies for nutrient acquisition. Plants
acquire nutrients that are heterogeneously distributed in
time and space, and within a diverse and complex soil
matrix (Hodge 2004, 2006; de Kroon et al. 2009). Roots
must also navigate obstructions to root growth and inter-
act with plant neighbours and soil biota (Cahill et al.
2010; Bardgett et al. 2014). Thus, building on the work
of others, we emphasize the importance of genotype ×
environment interactions [genetic control - i.e. intrinsic
species/genotype nutrient acquisition strategies, and tree-
crop response to environment and management - i.e.
plasticity in nutrient acquisition within species/genotype]
in determining the realized nutrient acquisition of trees
and crops and resulting effects on crop nutrition and
productivity across diverse agroforests.

Figure 1 depicts key belowground indicators (root
system distribution patterns and individual root functional
traits) and processes (nutrient interception and chemical/
biological rhizosphere dynamics) at the tree-crop inter-
face in agroforestry systems. Cumulatively, we know that
the tree component of an agroforestry system can unlock
nutrient advantages by i) reductions in losses via a safety
net (see Bergeron et al. 2011; Kumar and Jose 2018), 2)
additions of ‘new’ nutrients via N2 fixation and uplift of
deep soil nutrients (see Nygren et al. 2012; Pierret et al.
2016) and, 3) changes in morphological and chemical
processes at the rhizosphere scale via root plasticity
and activity (see Munroe et al. 2015; Borden et al.
2019). Tree roots stratified below the crop root zone
capture unused nutrients that move down the soil profile.
This spatially stratified action in the soil profile is based
on the niche partitioning hypothesis to maximize closed
nutrient cycles in agroforestry systems (Ong and Leakey
1999), typically for very mobile nutrients such as nitrate
(NO3

−) moving in soils via mass flow. Associated with
the safety net process is nutrient pumping - the acquisition
of both mobile and weathered minerals deeper in the soil
profile (Lehmann 2003), the translocation of nutrients to
litter tissue, the deposition of litter on the soil surface via
litterfall, and the addition of nutrients to the top soil via
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decomposition processes (Mafongoya et al. 1998). Over-
all positive effects from nutrient pumping is, arguably,
conditioned on the biomass-ratio hypothesis (Grime
1998); ecosystem processes such as decomposition are
largely dependent on the most dominant species in the
community, often the tree component. Within the zone of
tree and crop root interactions, fine lateral roots are char-
acterized by a range of nutrient acquisitive traits
and conservative traits, thus forming a dominant axis of
nutrient acquisition strategies among and across species
(Weemstra et al. 2016; Isaac et al. 2017). Finally, this
zone of interspecific interaction is also characterized by
an array of chemically and microbially mediated mecha-
nisms (Kurppa et al. 2010; Hinsinger et al. 2011) that
result in site-specific nutrient competition or facilitation.

This assemblage of indicators and processes, with
well-established theoretical underpinnings, have

contributed to our understanding of nutrient dynamics
in agroforestry systems world-wide, yet has also encour-
aged highly variable scales of analysis resulting in a
need for agroforestry science to define base operating
scales. To do this, we present nutrient acquisition strat-
egies at different spatial scales that are relevant to com-
ponent trees and crops. These scales of belowground
measurements organize into three categories, standard-
ized to specific units within an agroforestry system: the
whole root system (total belowground biomass and
distribution), the lateral roots (growth and morphology
of nutrient acquiring organs), and the site of uptake
(zone of nutrient movement from the soil environment
into absorptive roots). The expression of these measured
plant compartments is driven by soil, neighbour and soil
× neighbour effects, all operating in highly heteroge-
nous environments. More recently, research has begun

Fig. 1 Nutrient acquisition in agroforestry systems. Indicators
(tree and crop root distribution and fine root functional traits)
and processes (deep soil nutrient capture and rhizosphere chemical
and microbial processes) are shown. The two boxes on the left

depict nutrient acquisition strategies at the whole root system scale
and the two boxes on the right depict nutrient acquisition strategies
at the sites of uptake

Plant Soil (2019) 444:1–19 3



to focus not only on soil and neighbour effects but also
on climatic effects.

This review draws on various literatures to describe
classic and contemporary views and findings on nutrient
acquisition in agroforestry systems. We synthesize re-
search at various scales of the tree-crop interface that are
cumulatively hypothesized to underpin acquisition strat-
egies in agroforestry systems. These scales span the
whole root system to fine-scale sites of acquisition ac-
tively engaged in biological and chemical interactions
with soil. We chart: 1) vertical and horizontal root sys-
tem scale patterns at the tree-crop interface, 2) localized
root-soil dynamics including biological associations, 3)
lateral root scale plasticity for higher acquisition, and 4)
new nutrient addition via biological N fixation and deep
soil nutrient uplift. We also consolidate methodological
advances as well as the effects of environmental change
on well-established tree crop nutrient interactions.

Nutrient acquisition at the tree-crop interface:
the whole root system to fine-scale sites of uptake

Vertical and horizontal nutrient acquisition patterns
among component species

Building upon early syntheses by Huxley (1985) on the
importance of investigating the tree-crop interface, ar-
guably the most widely studied belowground aspects of
agroforestry systems are the vertical root distributions of
trees and crops (Livesley et al. 2000; Dawson et al.
2001; Jose et al. 2001; Moreno et al. 2005; Mulia and
Dupraz 2006; Isaac et al. 2014a; Borden et al. 2017,
2019; Kumar and Jose 2018), with the implicit assump-
tion that nutrient acquisition strategies can be evaluated
based on patterns of roots with depth. Although the
location of roots does not necessarily indicate root ac-
tivity (Vanlauwe et al. 2002), in general, the vertical
distribution of plant roots typically shows a higher den-
sity of roots nearer the soil surface and decreases with
depth, matching the general distribution of soil nutrients
(Jobbágy and Jackson 2004).With that said, root system
architecture can vary widely across species (Das and
Chaturvedi 2008; Borden et al. 2017). In a tropical
hedgerow agroforestry system with N isotope applica-
tions with soil depth, uptake of 15N declined significant-
ly with depth for the shallower rooted N2-fixing tree
(Gliricidia sepium), whereas consistent uptake of 15N
occurred from all depths to 65 cm for the deeper-rooted

tree species (Peltophorum dasyrrachis) (Rowe et al.
2001). These interspecific differences in structure and
function of trees can have differential impacts on
belowground interactions with crops. For example,
Bouttier et al. (2014) reported reduced fine root
length densities and yield of hay next to shallow-
rooted poplar hybrids compared to when hay was
intercropped with deeper-rooted oak trees (Quercus
rubra). Thus, a primary management strategy for
optimal nutrient interactions continues to be the se-
lection of tree species with complementary root dis-
tributions to that of crops, which typically means
deeper rooted trees (Fig. 1).

Interspecific interactions, however, can also exert
strong control on the expression of root system architec-
ture (Callaway et al. 1991, 2003). Studies in agroforestry
systems reveal that the spatial distribution of roots can be
modified when grown in mixture with other species
(Mulia and Dupraz 2006; Isaac et al. 2014a; Cardinael
et al. 2015; Kumar and Jose 2018; Borden et al. 2019).
For example, there is evidence of trees (e.g. walnut
(Juglans regia × nigra cv. NG23), oak (Quercus ilex))
rooting more deeply when next to annuals (e.g. wheat,
grasses) (Moreno et al. 2005; Mulia and Dupraz 2006).
Similar plastic responses have been observed for tree crop
roots (e.g., cocoa (Theobroma cacao) adjusting root dis-
tribution in response to fast-growing pioneer shade tree
species, Terminalia ivorensis (Isaac et al. 2014a; Borden
et al. 2019). In their review of tree-crop root interactions,
Kumar and Jose (2018) note the importance of tree
density in determining the plastic response of roots in
agroforestry, with closer spaced trees and tree crops
resulting in stronger plastic response. Evidence of this
dens i t y -dependen t r oo t r e sponse re su l t ed
in complementarity in soil phosphorus (P) acquisition
found via root uptake partitioning of 32P labelling in
coconut-dicot tree agroforestry (Gowda and Kumar
2008), while potential resource complementarity via root
segregation between neighbouring cocoa and and fast
growing timber species (Isaac et al. 2014a) and cocoa
and the N2-fixing shade tree species, Gliricidia sepium
(Schwendenmann et al. 2010) have been confirmed with
natural abundance of stable isotopes (δ18O and δ2H). In a
Eucalyptus grandis andAcaciamangiummixture, Laclau
et al. (2013) report vertical stratification of fine roots,
relative to the corresponding monoculture stands, with a
neutral effect on performance. However, more work
needs to directly link the range of complementary root
plasticity to crop yield in agroforests.
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Nutrient acquisition in the horizontal dimension is
strongly controlled by the spatial arrangement of trees
and crops – e.g. root growth in tree rows vs. crop rows
(Thevathasan and Gordon 1997; Jose and Gillespie 1998;
McGrath et al. 2001; Mora and Beer 2013). The horizon-
tal extent of the tree-crop interface and its impact on
nutrient acquisition varies by species and ontogeny, or
tree size. However, the simultaneous effects of below-
ground competition along with directed nutrient inputs
from tree litter are challenging to tease apart. For exam-
ple, in temperate tree-based intercropping (TBI) systems,
variable soil organic carbon (C) and soil N patterns from
tree litter inputs were observed as far as ~10 m from tree
row (Bambrick et al. 2010). In shelterbelt systems, con-
tributions from fixed N from a leguminous shrub
(Caragana arborescens) declined from 40% to 20% of
crop N with increasing distance (4 m to 20 m) from shrub
row (Issah et al. 2015). Yet these important nutrient
contributions overlap with a concentrated zone of com-
petition; for example, in a TBI system, decline in some
crop yields were observed within 2 m from the tree row
(Thevathasan et al. 2012). Thus, belowground, divergent
effects on nutrient acquisition of component species are
likely occuring with distance from trees. In TBI systems,
shifts in legume crop N acquisition strategies with dis-
tance from tree have been detected, with a smaller root
and shoot biomass but a higher rate of N2 fixation near
the tree row (Isaac et al. 2014b). On a similar spatial
gradient, variation in maize rooting densities have been
observed, with lower crop root length but higher tree root
length closer to trees, suggesting stronger competition
with increasing proximity (Livesley et al. 2000). In con-
trast, no spatial effect, nor observed changes in tree fine
root length densities, were detected in N uptake with
distance from hedgerows (Peltophorum dasyrrachis and
Gliricidia sepium) (Rowe et al. 2001). Ultimately, the
realized horizontal nutrient acquisition patterns in agro-
forestry systems are highly dependent on root densities
with distance from trees, which will be strongly con-
trolled for by tree age and species.

Active management practices of tree and crop root
distribution can reduce belowground competition at the
tree-crop interface. Physical trenching or barriers may be
used to modify nutrient acquisition patterns with depth
and horizontal distance from the tree. For example, root
barriers established in a temperate TBI system led to
lower crop uptake of N from fertilizer, presumably due
to reduced competition from trees for mineralized N in
soil (Jose et al. 2000). However, modification of the

available soil volume for trees was suggested to increase
black walnut (Juglans nigra) rooting density in the small-
er soil volume and subsequently increased the allelopath-
ic juglone in the tree rows (Jose and Gillespie 1998), with
potential impacts on other species in non-excluded areas.
Pruning has also been shown to modify the depth at
which trees in agroforestry systems acquire nutrients
(Rowe et al. 2006), and is now being included in impor-
tant process-based agroforestry models that estimate root
architecture in 3-dimensions (Dupraz et al. 2019) How-
ever, we note that active suppression of direct competi-
tion between tree and crop roots may also be
circumventing other important sources of complementar-
ity and facilitation within common rooting zones that are
a function of root-root interactions.

Acquisition of deep soil nutrients

The importance of deep soil nutrient capture to agrofor-
estry systems has long been recognized; Robertson
(1994) modelled the importance of deep N uptake and
redistribution to crops in an Acacia senegal-Sorghum
bicolor system, Sanchez (1995) lists deep nutrient cap-
ture as a key pathway for newN, Hartemink et al. (1996)
measure NO3

− uptake from deep subsoils. Deep soil
nutrient acquisition is arguably most important in envi-
ronments where i) the risk of nutrient leaching is high,
ii) highly weathered tropical soil orders, such as
Ferralsols, are present, or iii) nutrient sources unavail-
able to crop roots are located in unweathered material.
Indeed, while there remain substantial gaps in knowl-
edge on deep root-soil interactions, such as rock
weathering and nutrient acquisition below ~1 m to 3 m
in the soil profile, recent research suggests that these
processes are key for improving geochemical cycling in
agroforestry systems (Pierret et al. 2016), and that these
processes are highly related to soil water dynamics in
the soil profile (Wu et al. 2016). For instance, Bergeron
et al. (2011) demonstrate an active NO3

− safety-net role
of poplar roots in a TBI system to a depth of 1 m. Studies
that descend beyond 3 m are limited, but in other man-
aged tree ecosystems, such as eucalyptus plantations,
deep root research shows active tree roots 10 m or
deeper (Laclau et al. 2001, 2013). Bordron et al.
(2019) found specific root uptake potential (nutrient
uptake per length of root) of Eucalyptus grandis was
highest at 50 cm depth for NO3

− (15N) and at 3 m depth
for potassium (K+) (using Rb+as an analogue) and cal-
cium (Ca2+) (using Sr2+ as an analogue) indicating
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strong nutrient acquisition by depth patterns. These
depths for nutrient acquisition are not uncommon in
agroforestry systems; shade tree roots have been clearly
identified to grow to depths greater than 1 m in coffee
(Coffea arabica) agroforestry systems (Padovan et al.
2015) and down to 3 m in cocoa agroforestry systems
(Abou Rajab et al. 2018). Nutrients can be taken up by
deep tree roots and deposited via litterfall in shallower
soils, consequently becoming accessible to crops, i.e.,
nutrient pumping effect. The effects of nutrient
pumping on soil nutrient profiles have been observed
for cations, in particular Ca2+ and K+ (Jobbágy and
Jackson 2004). In general, but in agroforestry specifi-
cally, the mechanisms and importance of these deep
soil processes deserve more research.

Crops can also have deep roots. Indeed, a relatively
large proportion of nutrients can be acquired by crops
from the larger volume of subsurface soils with lower
nutrient concentrations compared to the narrower topsoil
layer with higher nutrient concentrations (Lehmann
2003; Pierret et al. 2016). While perennial crops are more
likely to be deeply rooted, some annual crops such as
maize and winter wheat are known to have roots below
1m (Livesley et al. 2000). Indeed, maize has been shown
to acquire large amounts of 15N from 65 cm, despite low
root length density at this soil depth (Rowe et al. 2001).

Active root strategies: linking root growth
and placement to soil nutrient status

Root systems are considered modular in nature (Hodge
2006; de Kroon et al. 2009; McNickle et al. 2009) and
root system architecture is a product of modifications
within individual root systems in response to fine-scale
variation in soil, the nutrient status of the plant, and
intrinsic constraints of the genotype. Relatively higher
density of roots in a given soil volume has long been
understood as a plants’ response to capitalize on local-
ized, elevated soil resources (Hutchings and de Kroon
1994; Pritchard 1998). This process is attributable to
complex and integrated sensing and signalling mecha-
nisms that respond to the soil environment given internal
resource demands (Forde and Lorenzo 2001), and avail-
ability and mobility of those resources in soil (Hodge
2004). For example, due to the slow rate of diffusion of
PO4

− in soil solution, acquisition of P from soil is in-
creased through changes in non-patterned (i.e., environ-
mentally triggered) fine root branching and root hair
growth (López-Bucio et al. 2003; Lambers et al. 2006).

Evidence of active foraging by root systems in
agroforests shows preferential rooting into soil with
elevated nutrients, whether from natural variation in soil
nutrients or localized fertilization (McGrath et al. 2001;
van Kanten et al. 2005; Borden and Isaac 2019; Borden
et al. 2019). In a coffee-Erythrina poeppigiana agrofor-
estry system, Mora and Beer (2013) observed that the
scale of spatial patterns of coffee root length density
across a plot was associated with P, zinc (Zn), and
exchangeable bases. In cocoa agroforestry systems,
Borden et al. (2019) found expected high densities of
cocoa fine roots in the uppermost mineral soil, which
followed the vertical patterns in soil nutrient availability,
but also found important soil nutrient variation that
occurred laterally within the scale of individual root
systems. In that study, cocoa fine root densities were
spatially related to heterogeneously distributed, non-
manipulated levels of nutrient ions in soil: available
NO3

− and ammonium (NH4
+), and exchangeable K+

and Ca2+ (Borden et al. 2019). Interestingly, lateral root
foraging patterns of cocoa in response to soil nutrient
availability or in response to nutrient additions has also
been found to vary between monoculture and agrofor-
estry systems, suggesting differential nutrient demands
across management treatments play a role in controlling
the foraging strategies of crops in agroforestry (Borden
and Isaac 2019; Borden et al. 2019).

Numerous studies that manipulate soil conditions and
neighbour interactions under controlled conditions show
dramatic plasticity of root growth and placement in re-
sponse to soil nutrients and competitors within localized
patches (Mahall and Callaway 1992; Cahill et al. 2010;
Borden and Isaac 2019). In particular, root placement can
bemodified by the growth and activity of neighbour roots
in soil (Malamy 2005; Cahill et al. 2010). Root-root
interactions include resource-driven mechanisms, such
as roots sensing where neighbour roots have depleted soil
nutrients (zones of depletion, Fig. 1), and/or the release of
root-detectable compounds (Hinsinger et al. 2005). A
neighbour can deplete resources in the area immediately
surrounding the root, which may discourage root growth
and proliferation by another plant root into that same area,
but inhibitory or allelopathic chemicals can be released
from roots and also suppress root elongation or initiation
of neighbouring roots (Mahall and Callaway 1992;
Callaway et al. 2003). In agroforests, McGrath et al.
(2001) reported that roots of Theobroma grandiflorium
cultivated on P-depleted soils in the Amazon preferen-
tially grew in P-fertilized soil and that root growth and
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morphology was impor tan t fo r compe t ing
with neighbouring palm tree (Bactris gasipaes) roots.
Root competition and avoidance between crop and tree
roots at such localized scales can be challenging to assess
under field conditions without manipulations of soil nu-
trients and/or when the overall densities of roots are
already very high (McGrath et al. 2001) or
are insufficient to cause a response among component
species (Borden et al. 2019). We certainly require further
research to elucidate the drivers of overlap vs.
segregration of tree and crop roots observed in agrofor-
estry systems along soil resource gradients.

Root-soil and root-root interactions: nutrient release
and transfer

While niche partitioning in agroforestry systems can
improve overall resource acquisition efficiencies, there
will often be large spatial overlap of trees and crop root
systems. Yet, in these cases, spatial and temporal over-
lap in roots may not signal simple competition between
plants (see Schroth 1999).What occurs are a whole suite
of possibilities for complementarity or facilitation with
root-root and root-soil interactions. Spatial proximity
among active roots can lead to advantages related to
the promotion of nutrient availability in soil. Roots can
actively alter the chemistry in the rhizosphere to increase
nutrient concentration in soil (Fig. 1), for example via
exudation of H+/OH−, organic acids, or enzymes such as
phosphatase to promote P availability in soil solution
(George et al. 2002; Hinsinger et al. 2011). Root exu-
dates are a key C and nutrient source in soils and
are highly variable within a root system (Phillips et al.
2008). Exudates contribute substantially to benefits in
the root-soil interface (Danjon et al. 2013), and such
contributions in agroforestry systems are often derived
from the tree component. For instance, in maize-tree
agroforestry systems on Ferralsols, organic anion exu-
dation and acid phosphatase activity of tree roots mobi-
lized P in the rhizosphere (Radersma and Grierson
2004). In coffee systems on mixed alluvial soils, signif-
icantly higher NO3

− concentrations were detected in
agroforestry rhizospheric soils as compared to monocul-
tures (Munroe et al. 2015). In an Acacia senegal-wheat
(Triticum turgidum durum) agroforestry system,
rhizospheric soil exhibited low pH and higher inorganic
P in the presence of the tree root (Isaac et al. 2012).
Furthermore, there is emerging evidence of complex
multi-trophic interactions occurring in the rhizosphere

that can mediate root-root interactions (Mommer et al.
2016). Resource uptake and delivery of root-based or-
ganic inputs are occurring throughout the root systems
(Upson and Burgess 2013), which likely contributes to
complex interactions with soil microbial communities in
time and space (Mommer et al. 2016). The importance
of multi-trophic dimensions in rhizosphere processes in
agroforests is little understood but likely immense.

Leguminous tree roots with nodule development via
soil bacteria (Fig. 1) and subsequent biological N fixa-
tion, can substantively contribute to N sources for crop
uptake in agroforestry (Nygren et al. 2012; Munroe and
Isaac 2014; Kaba et al. 2019). Numerous studies have
estimated N2-fixation rates and quantified broad N in-
puts in agroforestry systems (Beer et al. 1998; Nygren
et al. 2000; Isaac et al. 2011). Annually, N2 fixation may
add from tens to hundreds of kilograms of N per hectare
to an agroforestry system (see Nygren et al. (2012) and
Munroe and Isaac (2014) for reviews on this topic),
indicating that the amount of N fixed by N2-fixing trees
in agroforestry systems is quite variable and highly
affected by climate, soil characteristics, mycorrhizal
status, and by management factors, such as nutrient
inputs, pruning frequency/intensity, and tree physiology.

Fixed N is delivered to crops in agroforestry through
two pathways: indirect via decomposition and mineral-
ization of organic compounds (leaf litter, dead roots and
nodules), and direct via root exudates, root transfer, and
common mycorrhizal networks. Nygren et al. (2013)
speculated that the higher density and overlap of roots
in surface soils for both cocoa and leguminous shade
tree Inga edulis led to facilitative transfer of N derived
from root nodules. Kurppa et al. (2010) used soil isoto-
pic enrichment to investigate the transfer of N
from leguminous shade trees, Gliricidia sepium and
Inga edulis, to cocoa saplings under semi-controlled
conditions in the field and found all transfer of fixed-N
was attributed to belowground transfer. In Caragana
arborescens shelterbelt systems, Issah et al. (2015) re-
port 40% of annual crop N uptake was derived from
fixed N using 15N isotopic dilution. Leguminous tree
and grass systems have shown a range of N transfer rates
via root-root interactions. Rao and Giller (1993) showed
a ~3% contribution between Leucaena diversifolia and
the grass Cenchrus ciliaris, while in a greenhouse study,
Jalonen et al. (2009) showed the grass Dichantium
aristatum absorbed 22% of N exuded from roots of the
leguminous tree Gliricidia sepium with ~4–14% of
grass N derived from leguminous tree root exudates.
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While the study of N2 fixation and N transfer within
tropical agroforestry has predominately drawn upon
methodologies originally developed for temperate agri-
culture, the unique spatial arrangement and morphologi-
cal characteristics of crops and N2-fixing trees within
agroforestry systems present unique challenges for con-
ceptualizing, as well as (sampling and) measuring, the
fate of fixed N. Importantly, field studies using natural
abundance techniques have shown clear spatial variabil-
ity in the magnitude of the contribution of fixed N to N
acquisition in agroforestry systems (Issah et al. 2015;
Meylan et al. 2017). Notable though, while the potential
for N2-fixing trees and shrubs to enhance soil fertility
within agroforestry systems is clear, the transfer of fixed-
N to associated crops, however, does not always occur.

Mycorrhizal [arbuscular mycorrhizal fungi (AMF)
and ectomycorrhizal fungi (EMF)] fungi associations
represent an active nutrient acquisition strategy of roots
as well as a mechanism for direct nutrient transfer be-
tween species within agroforestry systems. Trees and
tree-based intercropping systems are known to act as
reservoirs for abundant and diverse mycelial networks
for crops (Ingleby et al. 2007; Bainard et al. 2011).
Arbuscular mycorrhizal fungi form symbiotic associa-
tions with over 80% of all terrestrial plants (Sanders
2003), including most tropical trees and crop plants such
as coffee and cocoa (Kähkölä et al. 2012). Within an
agroforestry context, AMF and EMF contribute to the
direct transfer of N as well as other indirect processes
including enlarging soil volumes for nutrient access, soil
microsite exploration, and a suite of changes to P ab-
sorption kinetics and solubilization (Carvalho et al.
2010). While numerous studies have suggested the in-
volvement of mycorrhizal mediated transfer (Rao and
Giller 1993; Nygren and Leblanc 2009; Isaac et al.
2012), experimentation is limited in quantifying contri-
butions of common mycorrhizal networks to direct
transfer of nutrients. For instance, Jalonen et al. (2009)
showed nutrient flows through common mycorrhizal
networks between plants in agroforestry systems using
stable isotopes in a greenhouse experiment. However,
when the proportion of N transferred by fungi has been
detected, it has been small. Despite the difficulty in
studying direct transfer by common mycorrhizal net-
works, and the relatively small role they likely play,
recent research suggests that AMF can transfer substan-
tial N to their host plant from organic material (Leigh
et al. 2009). This has significant implications on the
ability of crops to acquire N from decomposing litter

of N2-fixing plants. For instance, Kähkölä et al. (2012)
found that AMF inoculation of cocoa saplings improved
N uptake from Inga edulis leaf litter by 0.5% and root
litter by 5%. Therefore, overall contributions of AMF to
N dynamics in agroforestry systems may be more im-
portant than, solely, direct transfer via common mycor-
rhizal networks.

Root-scale plasticity for higher nutrient acquisition

At the scale of individual lateral roots, a plant increases
its capacity to absorb soil resources by increasing the
amount of absorptive root surface area and/or the uptake
capacity of root surface area. This expression of root
plasticity, and thus measurable root trait variation, is in
part due to the integration of signals from the rooting
environment (Miner et al. 2005). Documenting system-
atic responses of traits to environmental conditions has
long been a main theme of community ecology (e.g.
Chapin et al. 1993) and more recently agroecosystems
(Martin and Isaac 2015; Wood et al. 2015). Root func-
tional traits have been used as indicators of competitive
ability among species in agroforestry, for example rela-
tively high specific root length in maize was speculated
to provide a competitive advantage in nutrient acquisi-
tion compared to intercropped trees (Livesley et al.
2000). However, despite the key role root trait variation
plays in resource acquisition potential (Cahill et al.
2010; Bardgett et al. 2014), and other ecosystem func-
tions such as soil stability (Rillig et al. 2015; Le
Bissonnais et al. 2018), there are very few analyses
and applications of functional traits at the root scale in
agroforestry systems (Martin and Isaac 2015). Evidence
from community ecology (Larson and Funk 2016;
Roumet et al. 2016; Weemstra et al. 2016) and agrofor-
estry systems (Isaac et al. 2017; Borden and Isaac 2019;
Martin et al. 2019) supports the hypothesis that certain
root functional traits covarying along a dominant axis of
resource acquiring to resource conserving traits (Fig. 1).
At one end of this spectrum, distinct root morphological
and chemical trait expression [i.e. high specific root
length, specific root area, specific root tip density (or
branching intensity), root N concentration] indicate re-
source acquisition while at the other end of the spec-
trum, large root diameter and high root C:N can indicate
resource conservation (Prieto et al. 2015; Fort et al.
2016; Weemstra et al. 2016). In some cases, these trait
trade-offs have been linked to established metrics of
plant performance in agroforestry systems [e.g. yield
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(Gagliardi et al. 2015) and N2 fixation rates (Martin
et al. 2019)].

Understanding how plants respond to multiple signals
from highly heterogeneous soil environments is arguably
more challenging. Root functional traits have been used
to empirically describe root response to a range of region-
al and localized soil chemical resources including macro-
and micro-nutrients, soil moisture regimes, and soil pH,
as well as multiple physical properties including soil
structure, texture, and aggregation (reviewed by
McCormack et al. 2015; Weemstra et al. 2016). In both
temperate and tropical agroforestry systems, root func-
tional trait expression tends toward the acquisitive end of
the acquisition to conservation axis when a crop is in
close proximity to a shade tree; specifically, studies have
found decreased root diameter and increased specific root
length in wheat (Duan et al. 2017), lower root tissue
density in cocoa (Borden et al. 2019), and higher root
tip abundance in coffee (Isaac et al. 2017). More acquis-
itive trait values commonly reported in species mixtures
may indicate higher belowground competition but also
higher nutrient cycling, although there are exceptions
(Abou Rajab et al. 2018). Notably, variation in acquisitive
root traits of coffee across different climatic regions have
largely been explained by whether the individual plant is
in an agroforestry system or not (Isaac et al. 2017).
Similar patterns are observed at the farm or agroforest
scale for cocoa (Borden and Isaac 2019). Futhermore,
individual cocoa plants in agroforestry systems expressed
large variation in specific root length, root diameter, and
root tissue density, which were coupled to availability of
specific nutrients in localized soil scales (Borden et al.
2019).

Trait-based research at the root scale provides a more
nuanced assessment of how variation in root functional
traits within a species – or intraspecific trait variability –
influence key ecosystem functions. From our research
on tree-crops in Central America and West Africa agro-
forestry systems, we show that while mean trait values
of crop species may indicate an overall strategy for soil
resources acquisition, there can be large range of vari-
ability among individual plants of the same species
(Fig. 2). Trait variation and key trait trade-offs that
define an individual plant’s strategy within a root system
can have implications for nutrient acquisition in agro-
forestry. Here we present five root functional traits [three
acquisitive (higher specific root length, root N, specific
root tip abundance) and two conservative traits (higher
root diameter and C to N ratio)] among over 180

individual plants across two dominant tree-crops (cocoa
and coffee) in two prevailing management scenarios
(monoculture and agroforestry). Patterns of hypothe-
sized bivariate relationships between root trait trade-
offs hold across tree crop species in monoculture and
agroforestry scenarios, regardless if the crop is
in mixture with an N2-fixing species or a timber species.
However, at the species scale, coffee and cocoa in
agroforestry systems express weaker root trait trade-
offs as compared to in monoculture, suggesting that
changes in an individual plant’s allocation to root ac-
quisitive traits do not necessarily mean a trade-off in
conservative trait values associated with root longevity.
For instance, higher specific root length of coffee in an
agroforestry system does not have the same relationship
with the C to N ratio in root tissue as it would in
monoculture. Similarly, higher root N in cocoa in an
agroforestry system is nearly completely decoupled
with expected changes in root diameter, while a
trade-off is observed for crop roots in monoculture.
Both of these examples illustrate the role of functional
traits as indicators of nutrient acquisition and long
term plant-soil feedbacks in these mature agroforestry
systems.

Advances in nutrient acquisition detection
methodology

In-field studies on nutrient acquisition in agroforestry
systems require methods that effectively measure nutri-
ent acquisition at appropriate scales. What has yet to be
addressed, to the best of our knowledge, is reconciling
the scale at which measurements are made that are
appropriate for the nutrient uptake pattern of interest.
Here we consolidate established methods and build
upon emerging approaches in direct and indirect in-
situ sampling (Table 1). To overcome complications
arising from multiple nutrients of interest with different
availabilities and mobilities in soil, using more than one
method will likely be the most effective to understand
overall plant strategies belowground and also to discern
the underlying mechanisms which drive competitive
and/or complementary interactions in agroforests. In
order to capture multi-scalar and comparable data on
belowground process, we suggest this methodological
consolidation as a type of methods standardization for
agroforestry systems science.
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Sampling the tree-crop × soil environment

Soil nutrient availability has been observed to vary
dramatically within agroforestry systems (Mora and

Beer 2013), where the spatial arrangement of trees and
crops can invoke distinct zones of soil fertility (Rigal
et al. 2019). As such, spatially-explicit sampling, that
avoids pooling of soil and plant samples, has been a

Fig. 2 Bivariate relationships
between acquisitive root traits (x-
axes) and conservative root traits
(y-axes) measured on individual
plants: coffee (n = 62) and cocoa
(n = 120) grown in monoculture
(M) or agroforestry (AF). Data
modified from Isaac et al. 2017
and Borden 2018. We present r2

and p-values with the sampling
site and block as random effects
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central methodological approach in agroforestry re-
search given a need to understand the spatial effects of
the component species (Lose et al. 2003; Borden et al.
2019). For methodologies focused on fine scale sites of
acquisition, there have been recent improvements made
to collection protocols, measurements, and categoriza-
tion of roots drawing from functional ecology literature
(Pérez-Harguindeguy et al. 2013; McCormack et al.
2015, 2017; Freschet and Roumet 2017; Iversen et al.
2017). Notably, these efforts include specifying and
parameterizing root measurements by their functional
role and their ecological significance (Mommer and
Weemstra 2012; Bardgett et al. 2014; Faucon et al.
2017). For example, resource uptake rate and mycorrhi-
zal associations of roots vary depending on the relative
location within the root system (i.e., root order) (Rewald
et al. 2011; Iversen 2014). Increasingly, emphasis is
placed on measuring functionally-relevant root organs,
instead of relying solely on the conventional, and more
arbitrary, 2 mm cut off that divides coarse structural
roots from more ephemeral fine roots responsible for
nutrient uptake. This is achieved by classifying tree
roots by root order, or more broadly differentiating
absorptive fine roots (approximately the first three
root orders, which are more strongly associated with
resource uptake) from transport fine roots (higher order
fine roots, which are more strongly associated with
resource transport) (McCormack et al. 2015). While
predictable patterns in root trait variation are emerging
from ecology (Weemstra et al. 2016; Freschet and
Roumet 2017), more work is needed within agroforestry
systems to link tree and crop root form to function. This
is especially true since intraspecific variation is of par-
ticular importance in cultivated systems (Martin and
Isaac 2015; Damour et al. 2018), and the integration of
trees is an important determinant in crop root functional
trait expression (Isaac et al. 2017; Borden and Isaac
2019; Borden et al. 2019; Martin et al. 2019).

Imaging nutrient acquisition structures
with non-destructive methods

Non-destructive methods are appealing given the chal-
lenges of studying nutrient uptake in situ, particularly for
larger root systems of trees or when repeated measure-
ments are desired. Furthermore, methods that estimate the
structure of root systems can support work that uses root
allocation patterns as indicators of nutrient acquisition.
Root topological models have been used to describe the

coarse root architecture of cocoa and Inga edulis shade
tree root systems, revealing root distribution in 3-
dimensions and estimating the location and extent of
component species overlap of N2-fixing tree and crop
roots (Nygren et al. 2013). Near-surface geo-imaging
technologies, such as ground-penetrating radar (GPR),
have also proven effective at describing coarse root ar-
chitecture when field conditions permit radar signal de-
tections of roots (e.g., dryer, not too clayey soil) (Isaac
and Anglaaere 2013). This imaging approach has effec-
tively been used to describe intraspecific variability of the
vertical distribution of coarse roots of tree crops across
different edaphic and agroforestry management condi-
tions (Isaac et al. 2014a) and interspecific variability
among trees in tree-based intercropping (TBI) systems
(Borden et al. 2017). An advantage in using these ap-
proaches is in the ability to more completely describe
extensive, irregularly distributed tree root systems, al-
though some additional physical sampling may be re-
quired for parameterizing topological models (Nygren
et al. 2013), or calibrating geo-imagery data (Borden
et al. 2017). However, to accurately gauge nutrient
acuqisiton, which is carried out predominantly by absorp-
tive fine roots, root structural metrics can be
complemented by data on fine roots and/or nutrient up-
take data (via isotopic analyses) to capture acquisition
patterns in different spatial dimensions (Isaac et al. 2014a;
Borden et al. 2017). While coarser resolution geo-
imaging technology is typically limited to perennial root
systems, the recent use of higher frequency (1.6 GHz)
GPR detected annual crop roots (winter wheat and energy
cane) (Liu et al. 2018) suggests potential for non-destruc-
tive, repeatable measurements of annual crop roots in
agroforestry systems. In situ image analysis of fine root
dynamics via photography or high-resolution scanners
installed on minirhizotrons have also proven particularly
useful, as recently demonstrated in a study across TBI
systems in France (Mohamed et al. 2018).

Isolating sites and transfer of soil nutrient acquisition
using isotopes

Stable isotope analyses have long been a relatively
robust method to non-destructively isolate locations of
soil nutrient acquisition and estimate rates of nutrient
uptake. Stable isotopes 15N and 18O and rare elements
Rb+ (K+ analogue) and Sr2+ (Ca2+ analogue) are effec-
tive in diagnosing key plant-soil interactions in agrofor-
estry systems. The two most common isotopic
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signatures used to assess root resource acquisition in soil
profiles, δ15N and δ18O, are linked to assessments of
nutrient (δ15N) and water (δ18O) uptake. As described in
previous sections, both the natural abundance and iso-
topic dilution methods are used to detect amounts of N2

fixation and N transfer as well as water acquisition
zones in agroforestry systems. Various plant tissues are
sampled (15N in leaves, 18O and 2H in stem water) and
accompanied by a range of important conditions to be
met for robust estimates. In all cases, the complexity of
agroforestry systems can introduce many limitations.
Reliable isotopic data to measure N transfer in agrofor-
estry systems must prioritize minimizing: i) skewing of
δ15N signatures via fractionation with in the soil-plant
systems, ii) using unrepresentative tissue samples, and
iii) misrepresentation of donor plant δ15N (Craine et al.
2015). Matching oxygen isotopic signatures in extracted
stem water and soil water to identify active root zones in
soil profiles is useful if two conditions are met: i) soil
horizons must have distinct values of isotope ratios that
are consistently different from each other and greater
than what would normally occur in a plant, and ii) no
fractionation of isotopes as the water molecules travel
up the plant (Dawson et al. 2002; Link et al. 2015). The
use of rare elements have been effectively used to de-
termine zones of acquisition in soil profiles, especially
in deep soils. Most notably, in a Eucalyptus grandis
plantation, Bordron et al. (2019) used NO3

−-15N, Rb+

and Sr2+ tracers at depths of 10, 50, 150 and 300 cm in a
sandy Ferralsol soil and showed high levels of function-
al specialization of roots in deep soil layers for low
mobility cations, as well as limited losses via leaching
under high fertilization. If all key plant and soil condi-
tions are met, isotopic analysis is an outstanding tool for
agroforestry science to advance detection capabilities of
nutrient acquisition patterns and quantify nutrient trans-
fer rates.

Modelling the root-soil nutrient continuum

Nutrient uptake models for individual plants are becom-
ing increasingly refined such that uptake rates can vary
across the root system – see Dunbabin et al. (2013) for
an in-depth synthesis of 3-dimensional root architectural
models and functional-structural plant modelling. This
has been a challenge for modelling nutrient uptake in
agroforestry systems given component tree species with
larger and long-lived root systems that may have large
variation in root function, both in space and in time.

Some of the more commonly used process-based
models that capture nutrient acquisition in agroforestry
systems account for plant architecture and root distribu-
tion of the component species. Nutrient uptakemodelled
in WaNuLCAS (van Noordwijk and Lusiana 1998) is
based on the total uptake potential of N at distinct soil
depths. Uptake potential is derived from the summed
crop and tree components capacity for uptake as indi-
cated by their root length and nutrient concentration in
soil, and the nutrient demands of the crop and tree
components as indicated by plant biomass. More recent
advancements in the Hi-sAFe model, parameterized for
temperate agroforests with deciduous trees, account for
vertical and horizontal N acquisition patterns of trees in
agroforests through 3-dimensional voxels that can in-
clude some key nutrient acquisition parameters such as
fine root lifespan and specific root length as well as
fraction of colonized roots (Dupraz et al. 2019). These
tree structure and acquisition patterns then impact the
crop component, including inputs of additional N from
senesced tree roots, although the belowground process-
es modelled (e.g. root architecture) are in need of field
validation studies (Dupraz et al. 2019). These types
of generalized process-based models are a mainstay in
the agroforestry literature (see Luedeling et al. 2016),
while species-specific models have lagged; for instance,
in coffee agroforestry, given limited data for full param-
eterization of process-based models (van Oijen et al.
2010). Moreover, parameterization of models that inte-
grate acquisition of nutrients other than N are lacking for
agroferstry systems. Altogether, there is a need for
spacially accurate representation of roots and associated
mycorrhizae and nutrient uptake potential within indi-
vidual root systems that are parameterized for mixed
species agroecosystems.

Pressing research: effects of environmental change
on nutrient acquisition strategies in agroforestry
systems

Agroforestry practices are increasingly promoted as an
adaptation strategy to climate change (Verchot et al.
2007; Schoeneberger et al. 2012; Mbow et al. 2014).
To date, research on climate change effects in agrofor-
estry systems has primarily focused on the water
availability-plant growth axis, addressed with distinc-
tive experimental designs to assess reduced rainfall and
high evapotranspiration potential, tree-crop water
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acquisition, and tree microclimates (Schwendenmann
et al. 2010; Nasielski et al. 2015; Abdulai et al. 2018).
Cumulatively, these processes can mitigate or accentu-
ate climate change impacts on crop growth and yield in
agroforestry systems. While this is certainly a critical
realm of agroforestry research, there is also urgency to
understanding how these processes interact with nutri-
ent dynamics. On one hand, where regional climates are
becoming wetter under higher precipitation, trees on
farms that improve retention of soil nutrients are likely
to be essential. On the other hand, in regions that are
becoming drier and hotter, we can expect changes to
ecosystem processes in agroforestry systems such as i)
lower quality tree litter inputs, ii) greater constraints on
nutrient mineralization and subsequent nutrient mobili-
ty, iii) reduced translocation of C to roots, and potential-
ly iv) acute effects of tree growth on crop performance.
Under suboptimal climatic conditions, including ex-
treme weather events, tree-crop nutrient acquisition pat-
terns will respond to multiple trade-offs in factors such
as shade levels, litter inputs, microclimate regulation
(humidity, wind), and hydraulic redistribution.

In general, there is a paucity of empirical work on the
effects of climatic change on nutrient acquisition in
agroforestry systems. We know that in coffee
agroforests in India, rainfall and/or irrigation effects
were notable in these studies; native timber trees
(Grevillea robusta) shed higher amounts of litter in dry
than in wet sites while mixtures of native shade trees
provided similar amounts of higher quality litter (Nesper
et al. 2018). However, as expected, rainfall and/or irri-
gation increased coffee yields (Boreux et al. 2016).
Similarly, in coffee agroforests in Central America, the
overall acquisition strategy of coffee roots was largely
controlled by sites of distinct climates representing a
range of mean annual precipitation and temperature
(Isaac et al. 2017). In TBI systems, water availability
controlled competition between Juglans nigra and
maize for mineralized N (Jose et al. 2000), while fine
root dynamics may be largely controlled by climate, as
suggested by the differential root elongation rates of
J. nigra (Mohamed et al. 2018). Under sub-optimal
climatic conditions, we know that key microbial com-
munities were more resilient in a temperate TBI system
(Furze et al. 2017), a Mediterranean agroforestry system
(Guillot et al. 2019), and a Zanthoxylum bungeanum-
based intercropped system (Sun et al. 2016). Relation-
ships between root trait expression and microbial com-
munities involved in soil C and N dynamics were

reported under droughty conditions (De Vries et al.
2016), but much work is needed to elucidate the inter-
active function of microbial-plant nutrient acquisition
patterns in agroforestry systems to achieve resilience
under environmental change.

Conclusions

We synthesize research at various scales of the below-
ground tree-crop interface that are cumulatively hypoth-
esized to underpin nutrient acquisition strategies and
crop performance in agroforestry systems. Understand-
ing the mechanisms related to nutrient acquisition that
contribute to overall complementary, facilitative, and/or
competitive interactions observed in agroforests re-
quires thorough consideration of the multiple scales at
which trees and crops interact with and acquire nutrients
in soil. These scales span the whole root system, which
dictate the magnitude and spatial extent of acquisition
patterns, to fine-scale sites of acquisition, which are
actively engaged in biological and chemical interactions
with soil. In this context, plot or farm research can
continue to rely on whole root systems scale of analysis
(root biomass, distribution patterns, and isotope uptake
patterns), which remain one of the most universal indi-
cators of nutrient acquisition strategies in a range of
agroforestry systems, to assess broad patterns in nutrient
acquisition between trees and crops. In contrast, mech-
anistic diagnostics undoubtedly require analyses at the
level of lateral roots or sites of nutrient uptake. For
example, interspecific root overlap can be associated
with nutrient competition, but clear cases of enhanced
chemically and microbially meditated processes result
in species- and management- specific nutrient facilita-
tion. To capture these multi-scalar dimensions of nutri-
ent acquisition, advancements in agroforestry research
necessitate measuring and analyzing the mechanism and
nutrient of interest at appropriate scales. To contribute to
this effort, we consolidate established methods, build
upon emerging approaches in direct and indirect in-situ
sampling, and suggest standardizing the scale × method
nexus.

The standardization of root functional traits in agro-
forestry research is a promising framework to capture
the multi-scalar nature of nutrient acquisition processes
in agroforestry systems. This framework addresses a
common challenge in agroforestry research –
constrained data from specific species within bounded
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abiotic conditions –making it difficult to generate broad
hypotheses or infer generalizable conclusions. Based on
new multi-sited, multi-species root trait analyses, we
demonstrate that in agroforestry systems, root functional
traits and trait trade-offs reveal bivariate patterns similar
to, but weaker than, crops in monoculture, with mecha-
nistic links to nutrient acquisition strategies. Plant func-
tional traits as diagnostic indicators in agroforestry sys-
tems remain a wide open and relatively unexplored line
of inquiry. We argue for agroforestry science to use
these distinct nutrient acquisition indicators at multiple
scales to generate more nuanced, while also more gen-
eralizable, diagnostics of tree-crop interactions.

Throughout our review, we show that hypotheses on
agroforestry belowground properties and processes are
generated based on key ecological theories, but also on
confirmed nutrient behaviour such as nutrient mobility
and transfer. Agroforestry research is often grounded in
providing applied information for on-farmmanagement,
however, agroforestry also has an important role in
contributing to broader ecological literature, such as
understanding the mechanisms that drive biodiversity-
ecosystem function relationships. But most pressing, the
extent and conditions in which agroforestry practices
mediate impacts of climatic extremes on crop perfor-
mance requires an understanding of how environmental
change destabilizes established root-microbial nutrient
acquisition strategies in diversified agroecosystems.
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