Skip to main content

Advertisement

Log in

Modelling SOC response to land use change and management practices in sugarcane cultivation in South-Central Brazil

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

To study the impact of land use change (LUC) from native vegetation and pasture to sugarcane cultivation as well as to evaluate the effect of different management practices on long-term SOC dynamics using the CENTURY ecosystem model.

Methods

A soil data set of 85 study areas including sugarcane, pasture and annual crops from eleven counties distributed over the south-central region of Brazil was used for model validation and three future scenarios of sugarcane management were simulated: i) green harvesting (SC1); ii) green harvesting plus organic amendments (SC2) and iii) green harvesting plus low N inputs (SC3). Sugarcane harvest with burning was simulated as the baseline system (SCB).

Results

The model performance was good (R2 = 0.79) in replicating measured C stocks as well as reflecting the main trends of C stock changes due to LUC. Long-term simulations suggested that changes in the sugarcane harvest from burning to green harvesting would increase soil C stocks by an average of 0.21 Mg ha−1 year−1. The potential of C accumulation was projected to be higher when vinasse and filter cake are added to the soil, varying between 0.34 and 0.37 Mg C ha−1 year−1 in SC3 and SC2 respectively.

Conclusions

The Century model can be used as tool to study the impact of different soil managements in the SOC dynamics in sugarcane. C losses due to the conversion from pasture to sugarcane can be totally restored after 24, 17 and 18 years under SC1, SC2 and SC3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdala CG, Caldas S, Haridasan M, George E (1998) Above and belowground organic matter and root:shoot raio in a cerrado in Central Brazil. Brazilian J Ecol 02:13

    Google Scholar 

  • Ballcoelho B, Sampaio E, Tiessen H, Stewart J (1992) Root dynamics in plant and ratoon crops of sugar-cane. Plant Soil 142:297–305

    Article  Google Scholar 

  • Ballcoelho B, Tiessen H, Stewart J, Salcedo I, Sampaio E (1993) Residue Management effects on sugarcane yield and soil properties in Northeastern Brazil. Agron J 85:1004–1008

    Article  CAS  Google Scholar 

  • Basanta M, Dourado-Neto D, Reichardt K, et al. (2003) Management effects on nitrogen recovery in a sugarcane crop grown in Brazil. Geoderma 116:235–248

    Article  CAS  Google Scholar 

  • Batlle-Aguilar J, Brovelli A, Porporato A, Barry D (2010) Modelling soil carbon and nitrogen cycles during land use change. A review. Agronomy for Sustainable Development

  • Batlle-Bayer L, Batjes N, Bindraban P (2010) Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: a review. Agr ecosyst environ 137:47–58

    Article  CAS  Google Scholar 

  • Baver Ld, Brodie H, Tanimoto T, Trouse, Ac (1962) New approaches to the study of cane root systems. In: Proc S Afr Sug Technol Ass. pp Page

  • Bayer C, Martin-Neto L, Mielniczuk J, Pavinato A, Dieckow J (2006) Carbon sequestration in two Brazilian Cerrado soils under no-till. Soil till res 86:237–245

    Article  Google Scholar 

  • Bayer C, Amado T, Tornquist C, et al. (2011) Estabilização do carbono no solo e mitigação das emissões de gases de efeito estufa na agricultura conservacionista. Tópicos em ciência do solo 7:55–118

    Google Scholar 

  • Bergamaschi H, Costa S, Wheeler T, Challinor A (2013) Simulating maize yield in sub-tropical conditions of southern Brazil using Glam model. Pesqui Agropecu Bras 48:132–140

    Article  Google Scholar 

  • Bernoux M, Arrouays D, Cerri C, Bourennane H (1998) Modeling vertical distribution of carbon in oxisols of the western Brazilian Amazon (Rondonia). Soil Sci 163:941–951

    Article  CAS  Google Scholar 

  • Bordin I, Neves C, Medina C, Santos J, Torres E, Urquiaga S (2008) Matéria seca, carbono e nitrogênio de raízes de soja e milho em plantio direto e convencional. Pesqui Agropecu Bras 43:1785–1792

    Article  Google Scholar 

  • Bortolon E, Mielniczuk J, Tornquist C, Lopes F, Bergamaschi H (2011) Validation of the Century model to estimate the impact of agriculture on soil organic carbon in Southern Brazil. Geoderma 167:156–166

    Article  Google Scholar 

  • Brandani C, Abbruzzini T, Williams S, Easter M, Pellegrino Cerri C, Paustian K (2014) Simulation of management and soil interactions impacting SOC dynamics in sugarcane using the CENTURY Model. GCB Bioenergy 7(4):646–657

    Article  Google Scholar 

  • Braz S, Urquiaga S, Alves B, et al. (2013) Soil Carbon Stocks under Productive and Degraded Pastures in the Brazilian Cerrado. Soil Sci Soc Am J 77:914–928

    Article  CAS  Google Scholar 

  • Bricklemyer R, Miller P, Turk P, Paustian K, Keck T, Nielsen G (2007) Sensitivity of the Century model to scale-related soil texture variability. Soil Sci Soc Am J 71:784792

    Article  Google Scholar 

  • Bruce J, Frome M, Haites E, Janzen H, Lal R, Paustian K (1999) Carbon sequestration in soils. J Soil Water Conser 54:382–389

    Google Scholar 

  • Bustamante M, Nardoto G, Pinto A, Resende J, Takahashi F, Vieira L (2012) Potential impacts of climate change on biogeochemical functioning of Cerrado ecosystems. Braz J Biol 72:655–671

    Article  CAS  PubMed  Google Scholar 

  • Canellas L, Velloso A, Marciano C, Ramalho J, Rumjanek V, Rezende C, Santos G (2003) Propriedades químicas de um Cambissolo cultivado com cana-de-açúcar, com preservação do palhiço e adição de vinhaça por longo tempo. Bras. Ci. Solo 27:935944

    Google Scholar 

  • Carmo J, Filoso S, Zotelli L, et al. (2013) Infield greenhouse gas emissions from sugarcane soils in Brazil: effects from synthetic and organic fertilizer application and crop trash accumulation. GCB Bioenergy 5:267–280

    Article  Google Scholar 

  • Carvalho J, Raucci G, Cerri C, Bernoux M, Feigl B, Wruck F, Cerri C (2010) Impact of pasture, agriculture and crop-livestock systems on soil C stocks in Brazil. Soil Till Res 110:175–186

    Article  Google Scholar 

  • Ceddia M, Anjos L, Lima E, Ravelli Neto A, Silva L (1999) Sistemas de colheita da canade-açúcar e alterações nas propriedades físicas de um solo Podzólico Amarelo no Estado do Espírito Santo. Pesqui Agropecu Bras 34:1467–1473

    Article  Google Scholar 

  • Cerri C, Coleman K, Jenkinson D, Bernoux M, Victoria R, Cerri C (2003) Modeling soil carbon from forest and pasture ecosystems of Amazon, Brazil. Soil Sci Soc Am J 67:1879–1887

    Article  CAS  Google Scholar 

  • Cerri C, Paustian K, Bernoux M, Victoria R, Melillo J, Cerri C (2004) Modeling changes in soil organic matter in Amazon forest to pasture conversion with the Century model. Global Change Biol 10:815–832

    Article  Google Scholar 

  • Cerri C, Cerri C, Bernoux M et al. (2006) Potential of soil carbon sequestration in the Amazonian tropical rainforests. Carbon sequestration in soils of Latin America, 245266

  • Cerri C, Bernoux M, Maia S, et al. (2010) Greenhouse gas mitigation options in Brazil for land-use change, livestock and agriculture. Sci Agr 67:102–116

    Article  CAS  Google Scholar 

  • Conab Cnda (2008) Perfil do setor do açúcar e do álcool no Brasil: Situação observada em novembro de 2007, abril/2008 (ed Agronegócio Ddpaei-Sdid) CONAB, Brasilia, pp 1–76

  • Conab Cnda (2010) Perfil do setor do açúcar e do álcool no Brasil: edição para a safra 2008/2009 (ed Agronegócio Ddpaei-Sdid) CONAB, Brasilia, pp 77

  • Conab Cnda (2012) Perfil do setor do açúcar e do álcool no Brasil Safra 2009/2010. (ed Agronegócio Ddpaei-Sdid) CONAB, Brasilia, pp 1–62

  • Conab Cnda (2013) Perfil do setor do açúcar e do álcool no Brasil Safra 2011/2012. (ed Agronegócio Ddpaei-Sdid) CONAB, Brasilia, pp 1–88

  • Conab Cnda (2015) Acompanhamento da safra brasileira Cana-de-açúcar. Safra 2014/2015. (ed Agronegócio Ddpaei-Sdid) CONAB, Brasilia, pp 1–29

  • Coutinho L (1978) O conceito de cerrado. Revista brasileira de Botânica 1:17–23

    Google Scholar 

  • Da Silva A, Bono J, Pereira FDA (2014) Aplicação de vinhaça na cultura da cana-deaçúcar: Efeito no solo e na produtividade de colmos. R Bras Eng Agríc Ambiental 18:38–43

    Article  Google Scholar 

  • Davidson E, Ackerman I (1993) Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20:161–193

    Article  CAS  Google Scholar 

  • De Castro E, Kauffman J (1998) Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. J trop ecol 14:263–283

    Article  Google Scholar 

  • De Castro Gava G, De Oliveira M, De Almeida SM, Jerônimo E, Cruz J, Trivelin P (2010) Produção de fitomassa e acúmulo de nitrogênio em milho cultivado com diferentes doses de 15 N-uréia. Semina: Ciências Agrárias 31:851–862

    Google Scholar 

  • De Gusmão CI (2003) Brief history of conservation in the Atlantic forest. The Atlantic forest of South America: biodiversity status, threats, and outlook. Island Press, Washington, DC, pp. 31–42

    Google Scholar 

  • De Oliveira O, De Oliveira I, Alves B, Urquiaga S, Boddey R (2004) Chemical and biological indicators of decline/degradation of < i > Brachiaria</i > pastures in the Brazilian Cerrado. Agr ecosyst environ 103:89–300

    Article  Google Scholar 

  • De Oliveira E, Freire F, De Oliveira R, De Oliveira A, Dos Santos Freire M (2011) Acúmulo e alocação de nutrientes em cana-de-açúcar. Rev Cien Agron 42:579–588

    Google Scholar 

  • De Resende A, Xavier R, De Oliveira O, Urquiaga S, Alves B, Boddey R (2006) Longterm effects of pre-harvest burning and nitrogen and vinasse applications on yield of sugar cane and soil carbon and nitrogen stocks on a plantation in Pernambuco, NE Brazil. Plant Soil 281:339–351

    Article  Google Scholar 

  • De Souza Barros J, Chaves L, De Brito CI, De Azevedo Farias C, Pereirea W (2013) Estoque de carbono e nitrogênio em sistemas de manejo do solo, nos tabuleiros costeiros paraibanos. Revista Caatinga 26:35–42

    Google Scholar 

  • Demoraes J, Volkoff B, Cerri C, Bernoux M (1996) Soil properties under Amazon forest and changes due to pasture installation in Rondonia, Brazil. Geoderma 70:63–81

    Article  CAS  Google Scholar 

  • Do Vale At, Dias Ís, Santana Mae (2010) Relações entre propriedades químicas, físicas e energéticas da madeira de cinco espécies de cerrado. Cien Florest 20

  • Dolan M, Clapp C, Allmaras R, Baker J, Molina J (2006) Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management. Soil Till Res 89:221–231

    Article  Google Scholar 

  • Eiten G (1975) The vegetation of the Serra do Roncador. Biotropica 7(2):112

  • Embrapa - Centro Nacional de Pesquisa de Solos (2006) Sistema Brasileiro de Classificação de Solos 2 ed. , Embrapa Solos, Rio de Janeiro, 306 pp

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238

    Article  CAS  PubMed  Google Scholar 

  • Faroni, Ce (2004) Sistema radicular de cana-de-açúcar e identificação de raízes metabolicamente ativas. 2004. 68p. Dissertação (Mestrado)-Escola Superior de Agricultura Luiz de Queiroz, Piracicaba

  • Fearnside P, Righi C, Graça P, Keizer E, Cerri C, Nogueira E, Barbosa R (2009) Biomass and greenhouse-gas emissions from land-use change in Brazil's Amazonian “arc of deforestation”: The states of Mato Grosso and Rondônia. Forest Ecology and Management 258:1968–1978

    Article  Google Scholar 

  • Figueiredo C, Resck D, Carneiro M, Ramos M, Sá J (2013) Stratification ratio of organic matter pools influenced by management systems in a weathered Oxisol from a tropical agro-ecoregion in Brazil. Soil Res 51:133–141

    Article  Google Scholar 

  • Finoto EL, Bolonhezi D, Soares MBB, Martins ALM (2012) Produção de soja RR e ocorrência de plantas daninhas em áreas de reforma de cana crua com diferentes manejos na destruição da soqueira. Pesquisa and Tecnologia 9:1–9

    Google Scholar 

  • Fließbach A, Mäder P (2000) Microbial biomass and size-density fractions differ between soils of organic and conventional agricultural systems. Soil Biol Biochem 32:757–768

    Article  Google Scholar 

  • Galdos M, Cerri C, Cerri C (2009a) Soil carbon stocks under burned and unburned sugarcane in Brazil. Geoderma 153:347–352

    Article  CAS  Google Scholar 

  • Galdos M, Cerri C, Cerri C, Paustian K, Van Antwerpen R (2009b) Simulation of soil carbon dynamics under sugarcane with the Century model. Soil Sci Soc Am J 73:802–811

    Article  CAS  Google Scholar 

  • Glover J (1968) The behavior of the root system of sugar cane at and after harvest. In: Proc. S. Afr. Sug. Technol. Assoc. pp Page.

  • Grace J, José J, Meir P, Miranda H, Montes R (2006) Productivity and carbon fluxes of tropical savannas. J Biogeogr 33:387–400

    Article  Google Scholar 

  • Graham M, Haynes R, Meyer J (2002) Changes in soil chemistry and aggregate stability induced by fertilizer applications, burning and trash retention on a longterm sugarcane experiment in South Africa. Eur J Soil Sc 53:589–598

    Article  Google Scholar 

  • Guareschi RF, Brasil RB, Perin A, Ribeiro, JMM (2010) Produção de silagem de híbridos de milho e sorgo sem nitrogênio de cobertura em safra de verão. Pesq Agropec Trop 40:541–546

  • Hartemink A (2008) Sugarcane for bioethanol: soil and environmental issues. Adv Agron 99:125–182

    Article  CAS  Google Scholar 

  • Jantalia Cp, Resck Dv, Alves, Bj, Zotarelli L, Urquiaga S, Boddey, Rm (2007) Tillage effect on C stocks of a clayey Oxisol under a soybean-based crop rotation in the Brazilian Cerrado region. 95: 97–109

  • Junior G, Vilela L (2002) Pastagens no cerrado: baixa produtividade pelo uso limitado de fertilizantes. Cerrados, Embrapa

    Google Scholar 

  • Kelly R, Parton W, Crocker G, et al. (1997) Simulating trends in soil organic carbon in longterm experiments using the century model. Geoderma 81:75

    Article  Google Scholar 

  • Kirschbaum M, Paul K (2002) Modelling C and N dynamics in forest soils with a modified version of the CENTURY model. Soil Biol Biochem 34:341–354

    Article  CAS  Google Scholar 

  • Krull E, Baldock J, Skjemstad J (2003) Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Funct Plant Biol 30:207–222

    Article  Google Scholar 

  • La Scala JN, De Figueiredo EB, Panosso AR (2012) A review on soil carbon accumulation due to the management change of major Brazilian agricultural activities. Braz J Biol 72:775–785

    Article  Google Scholar 

  • Lapola D, Schaldach R, Alcamo J, Bondeau A, Koch J, Koelking C, Priess J (2010) Indirect land-use changes can overcome carbon savings from biofuels in Brazil. P Natl Acad Sci Usa 107:3388

    Article  CAS  Google Scholar 

  • Leite, Jm (2010) Acúmulo de fitomassa e de macronutrientes da cana-de-açúcar relacionados ao uso de fontes de nitrogênio. Unpublished M.Sc. Universidade de Sao Paulo Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, SP, Brazil, 90 pp.

  • Leite L, Mendonca E, Machado P, Fernandes E, Hcl N (2004) Simulating trends in soil organic carbon of an Acrisol under no-tillage and disc-plow systems using the Century model. Geoderma 120:283–295

    Article  CAS  Google Scholar 

  • Lepsch I, Menk J, Oliveira J (1994) Carbon storage and other properties of soils under agriculture and natural vegetation in São Paulo State, Brazil. Soil Use Manage 10:3442

    Article  Google Scholar 

  • Lilienfein J, Wilcke W (2003) Element storage in native, agri-, and silvicultural ecosystems of the Brazilian savanna. Plant soil 254:425–442

    Article  CAS  Google Scholar 

  • Lilienfein J, Wilcke W, Neufeldt H, Ayarza M, Zech W (1998) Landuse effects on organic carbon, nitrogen, and sulphur concentrations in macroaggregates of differently textured Brazilian oxisols. Zeitschrift für Pflanzenernährung und Bodenkunde 161:165–171

    Article  CAS  Google Scholar 

  • Lilienfein J, Wilcke W, Zimmermann R, Gerstberger P, Araújo G, Zech W (2001) Nutrient storage in soil and biomass of native Brazilian Cerrado. J Plant Nutr Soil Sc 164:487495

    Article  Google Scholar 

  • Luca E, Feller C, Cerri C, Barthès B, Chaplot V, Campos D, Manechini C (2008) Avaliação de atributos físicos e estoques de carbono e nitrogênio em solos com queima e sem queima de canavial. Rev Bras Cien Solo 32:789–800

    Article  Google Scholar 

  • Macedo I, Seabra J, Silva J (2008) Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and a prediction for 2020. Biomass and Bioenerg 32:582–595

    Article  CAS  Google Scholar 

  • Maia S, Ogle S, Cerri C, Cerri C (2009) Effect of grassland management on soil carbon sequestration in Rondônia and Mato Grosso states, Brazil. Geoderma 149:8491

    Article  Google Scholar 

  • Manzatto C, Assad E, Bacca J, Zaroni M, Pereira S (2009) Zoneamento agroecológico da cana-de-açúcar. Embrapa Solos, Rio de Janeiro

    Google Scholar 

  • Marchão R, Becquer T, Brunet D, Balbino L, Vilela L, Brossard M (2009) Carbon and nitrogen stocks in a Brazilian clayey Oxisol: 13-year effects of integrated crop– livestock management systems. Soil Till Res 103:442–450

    Article  Google Scholar 

  • Marques, Ta, Sasso, Cg, Sato, Am, Souza, Gm (2009) Queima do canavial: aspectos sobre a biomassa vegetal, fertilidade do solo e emissão de CO2 para atmosfera. Biosci J, 25

  • Mello F, Cerri C, Davies C, et al. (2014) Payback time for soil carbon and sugar-cane ethanol. Nat Clim Chang 4:605–609

    Article  CAS  Google Scholar 

  • Metherell A, Harding L, Cole C, Parton W (1993) Century soil organic matter model environment technical documentation, agroecosystem version 4.0, Great Plains System Research Unit. USDA-ARS, Fort Collins, CO

  • Mielniczuk J, Santos, Gda, Camargo, Fdo (1999) Matéria orgânica ea sustentabilidade de sistemas agrícolas. Fundamentos da matéria orgânica do solo. Ecossistemas tropicais e subtropicais. Porto Alegre, Genesis, 1–8

  • Nair, Pr, Tonucci Rg, Garcia R, Nair, Vd (2011) Silvopasture and carbon sequestration with special reference to the Brazilian savanna (Cerrado). In: Carbon Sequestration Potential of Agroforestry Systems. pp Page., Springer

  • Nassar A, Rudorff B, Antoniazzi L, Aguiar D, Bacchi M, Adami M (2008) Prospects of the sugarcane expansion in Brazil: impacts on direct and indirect land use changes. Wageningen Academic Publishers, Wageningen

    Google Scholar 

  • Nunes Júnior D (2005) O insumo torta de filtro. IDEA News, Ribeirão Preto

    Google Scholar 

  • Otto R (2012) Desenvolvimento radicular e produtividade da cana-de-açúcar relacionados a mineralização do N do solo e a adubação nitrogenada. Unpublished PhD University of Sao Paulo, Piracicaba, SP, Brazil, 120 pp

  • Otto R, Franco H, Faroni C, Vitti A, Trivelin P (2009) Fitomassa de raízes e da parte aérea da cana-de-açúcar relacionada à adubação nitrogenada de plantio. Pesqui Agropecu Bras 44:398–405

    Article  Google Scholar 

  • Parton W, Rasmussen P (1994) Long-term effects of crop management in wheat-fallow: II. Century model simulations. Soil Sci Soc Am J 58:530–536

    Article  Google Scholar 

  • Parton WJ, Schimel DS, Cole C, Ojima D (1987) Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc Am J 51:1173–1179

    Article  CAS  Google Scholar 

  • Parton WJ, Schimel DS, Ojima DS, et al. (1994) A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management. In: Bryant RB, Arnold RW (eds) Quantitative Modeling of Soil Farming Processes. SSSA Special Publication 39. ASA, CSSA, and SSA, Madison, pp. 147–167

    Google Scholar 

  • Paul E (1984) Dynamics of organic matter in soils. Plant soil 76:275–285

    Article  CAS  Google Scholar 

  • Peng C, Apps M, Price D, Nalder I, Halliwell D (1998) Simulating carbon dynamics along the boreal forest transect case study (BFTCS) in central Canada: 1. Model testing. Global Biogeochem Cy 12:381–392

    Article  CAS  Google Scholar 

  • Razafimbelo T, Barthes B, Larre-Larrouy M, De Luca E, Laurent J, Cc C, Feller C (2006) Effect of sugarcane residue management (mulching versus burning) on organic matter in a clayey Oxisol from southern Brazil. Agr ecosyst environ 115:285–289

    Article  Google Scholar 

  • Ribeiro JF, Walter BMT, Sano S, Almeida SD (1998) Fitofisionomias do bioma Cerrado. Cerrado: ambiente e flora

  • Robertson F, Thorburn P (2007) Management of sugarcane harvest residues: consequences for soil carbon and nitrogen. Aust J Soil Res 45:13–23

    Article  CAS  Google Scholar 

  • Sano E, Rosa R, Brito J, Ferreira L (2008) Notas Científicas Mapeamento semidetalhado do uso da terra do Bioma Cerrado. Pesq agropecu bras 43:153–156

    Google Scholar 

  • Sano E, Rosa R, Brito J, Ferreira L (2010) Land cover mapping of the tropical savanna region in Brazil. Environ Monit Assess 166:113–124

    Article  PubMed  Google Scholar 

  • Silva C, Sanches L, Bleich M, Lobo F, Nogueira J (2007) Produçao de serrapilheira no cerrado e floresta de transiçao Amazônia-Cerrado do Centro-Oeste Brasileiro. Acta Amazonica 37:543–548

    Article  Google Scholar 

  • Silva-Olaya, AM. Soil organic carbon dynamics in sugarcane crop in south-central Brazil (2014) PhD thesis (Soil and Plant Nutrition program) University of Sao Paulo, 100 p

  • Silva-Olaya A, Cerri C, La Scala N Jr, Dias C, Cerri C (2013) Carbon dioxide emissions under different soil tillage systems in mechanically harvested sugarcane. Environ Res Lett 8:015014

    Article  Google Scholar 

  • Simon J. Culturas bioenergeticas: produção de biomasa, decomposicao e liberacao de nitrogenio dos residuos culturais. (2009) Dissertation MSc. Statal University of Santa Maria, 51e p

  • Six J, Feller C, Denef K, Ogle S, Jcd S, Albrecht A (2002) Soil organic matter, biota and aggregation in temperate and tropical soils - Effects of no-tillage. Agronomie 22:755775

    Article  Google Scholar 

  • Smith P, Smith J, Powlson D, et al. (1997) A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81:153–225

    Article  Google Scholar 

  • Thorburn P, Meier E, Collins K, Robertson F (2012) Changes in soil carbon sequestration, fractionation and soil fertility in response to sugarcane residue retention are sitespecific. Soil Till Res 120:99–111

    Article  Google Scholar 

  • Tominaga T, Cássaro F, Bacchi O, Reichardt K, Oliveira J, Timm L (2002) Variability of soil water content and bulk density in a sugarcane field. Soil Res 40:604–614

    Article  Google Scholar 

  • Tornquist C, Mielniczuk J, Cerri C (2009) Modeling soil organic carbon dynamics in Oxisols of Ibirubá (Brazil) with the Century Model. Soil Till Res 105:33–43

    Article  Google Scholar 

  • Trivelin P, Franco H, Otto R, et al. (2013) Impact of sugarcane trash on fertilizer requirements for São Paulo, Brazil. Sci Agr 70:345–352

    Article  CAS  Google Scholar 

  • Valenti M, Cianciaruso M, Batalha M (2008) Seasonality of litterfall and leaf decomposition in a cerrado site. Braz J Biol 68:459–465

    Article  CAS  PubMed  Google Scholar 

  • Vallis I, Parton W, Keating B, Wood A (1996) Simulation of the effects of trash and N fertilizer management on soil organic matter levels and yields of sugarcane. Soil Till Res 38:115–132

    Article  Google Scholar 

  • Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and non-starch polyssacarides in relation to animal nutrition. Journal of Dairy Science, Lancaster, 74, 3583–3597

  • Walter, Mkc, Junior, Jz, De M, Weill, Am (2009) Denardin Je estimativa do estoque de carbono em áreas de soja visando a análise de cenários de linha de base para projetos de créditos de carbono

  • Wood Gh, Wood, Ra (1967) The estimation of cane root development and distribution using radiophosphorus. P South Afr Sug T 161

  • Zani, CF (2015) Evaluation of soil carbon stocks in response to management changes and irrigation practices in sugarcane production. Unpublished MSc University of Sao Paulo, Piracicaba, SP, Brazil, 108 pp

  • Zolin, Ca, Paulino J, Bertonha A, Freitas P, Folegatti, Mv (2011) Estudo exploratório do uso da vinhaça ao longo do tempo. I. Características do solo. Revista Brasileira de Engenharia Agrícola e Ambiental, 15, 22–28

Download references

Acknowledgments

This study was supported by São Paulo Research Foundation – FAPESP (2011/ 07105-7) and Shell Global Solutions (UK). We thank the Brazilian National Council for Scientific and Technological Development - CNPq for a graduate scholarship awarded to A.M Silva-Olaya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana M. Silva-Olaya.

Additional information

Responsible Editor: Ingrid Koegel-Knabner.

Electronic supplementary material

ESM 1

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva-Olaya, A.M., Cerri, C.E.P., Williams, S. et al. Modelling SOC response to land use change and management practices in sugarcane cultivation in South-Central Brazil. Plant Soil 410, 483–498 (2017). https://doi.org/10.1007/s11104-016-3030-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-3030-y

Keywords

Navigation