Skip to main content

Advertisement

Log in

Response of the soil microbial community composition and biomass to a short-term Spartina alterniflora invasion in a coastal wetland of eastern China

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Plant invasion has been reported to alter ecosystem carbon (C) and nitrogen (N) cycling processes and pools. The mechanisms involved in how plant invasion affects the soil microbial community—the primary mediator of soil C and N cycling—remain poorly understood. The objective of this study was therefore to evaluate the effect of plant invasion on the soil microbial community in a coastal wetland of eastern China.

Methods

We investigated the impact of an exotic C4 perennial grass, Spartina alterniflora, on the soil microbial community structure based on phospholipid fatty acids (PLFAs) analysis and chloroform fumigation-extraction by comparing it to that of bare flat and native C3 plants Suaeda salsa and Phragmites australis communities.

Results

Spartina alterniflora invasion significantly increased soil microbial biomass C and the total and various types of PLFAs compared with bare flat, Suaeda salsa and Phragmites australis communities. Increased concentrations of soil moisture, electrical conductivity, water-soluble organic carbon (WSOC), and total, labile and recalcitrant soil organic C and N, and decreased soil pH in Spartina alterniflora community explained 65.9 % of the total variability in the PLFAs. WSOC and soil labile organic N were strongly correlated with PLFAs, whereas soil pH was negatively related to PLFAs.

Conclusions

A 10-year Spartina alterniflora invasion significantly altered soil microbial biomass and community structure by increasing available substrate. The changes in soil microbial biomass and community structure may in turn enhance soil C and N sequestration in a coastal wetland of eastern China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allison VJ, Miller RM, Jastrow JD, Matamala R, Zak DR (2005) Changes in soil microbial community structure in a tallgrass prairie chronosequence. Soil Sci Soc Am J 69:1412–1421

    Article  CAS  Google Scholar 

  • An SQ, Gu BH, Zhou CF, Wang ZS, Deng ZF, Zhi YB, Li HL, Chen L, Yu DH, Liu YH (2007) Spartina invasion in China: implications for invasive species management and future research. Weed Res 47:183–191

    Article  Google Scholar 

  • Bååth E, Anderson TH (2003) Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem 35:955–963

    Article  Google Scholar 

  • Bailey VL, Smith JL, Bolton H (2002) Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biol Biochem 34:997–1007

    Article  CAS  Google Scholar 

  • Banerjee S, Helgason B, Wang LF, Winsley T, Ferrari BC, Siciliano SD (2016) Legacy effects of soil moisture on microbial community structure and N2O emissions. Soil Biol Biochem 95:40–50

    Article  CAS  Google Scholar 

  • Barnard RL, Osborne CA, Firestone MK (2013) Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J 7:2229–2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernal B, Mitsch WJ (2012) Comparing carbon sequestration in temperate fresh-water wetland communities. Glob Chang Biol 18:1636–1647

    Article  Google Scholar 

  • Bingeman CW, Varner JE, Martin WP (1953) The effect of the addition of organic materials on the decomposition of an organic soil. Soil Sci Soc Am Proc 29:692–696

    Google Scholar 

  • Blagodatsky S, Smith P (2012) Soil physics meets soil biology: towards better mechanistic prediction of greenhouse gas emissions from soil. Soil Biol Biochem 47:78–92

    Article  CAS  Google Scholar 

  • Bossio DA, Scow KM (1998) Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb Ecol 35:265–278

    Article  CAS  PubMed  Google Scholar 

  • Bossio DA, Fleck JA, Scow KM, Fujii R (2006) Alteration of soil microbial communities and water quality in restored wetlands. Soil Biol Biochem 38:1223–1233

    Article  CAS  Google Scholar 

  • Brearley FQ, Elliott DR, Iribar A, Sen RB (2016) Arbuscular mycorrhizal community structure on co-existing tropical legume trees in French Guiana. Plant Soil. doi:10.1007/s11104-016-2818-0

    Google Scholar 

  • Cairney JWG, Meharg AA (2002) Interactions between ectomycorrhizal fungi and soil saprotrophs: implications for decomposition of organic matter in soils and degradation of organic pollutants in the rhizosphere. Can J Bot 80:803–809

    Article  Google Scholar 

  • Cao YS, Fu SL, Zou XM, Cao HL, Shao YH, Zhou LX (2010) Soil microbial community composition under Eucalyptus plantations of different age in subtropical China. Eur J Soil Biol 46:128–135

    Article  CAS  Google Scholar 

  • Chen DM, Zhou LX, Wu JP, Hsu J, Lin YB, Fu SL (2012) Tree girdling affects the soil microbial community by modifying resource availability in two subtropical plantations. Appl Soil Ecol 53:108–115

    Article  Google Scholar 

  • Cheng W, Johnson DW, Fu S (2003) Rhizosphere effects on decomposition: controls of plant species, phenology, and fertilisation. Soil Sci Soc Am J 67:1418–1427

    Article  CAS  Google Scholar 

  • Cheng XL, Luo YQ, Chen JQ, Lin GH, Chen JK, Li B (2006) Short-term C4 plant Spartina alterniflora invasions change the soil carbon in C3 plant-dominated tidal wetlands on a growing estuarine island. Soil Biol Biochem 38:3380–3386

    Article  CAS  Google Scholar 

  • Cheng XL, Chen JQ, Luo YQ, Henderson R, An SQ, Zhang QF, Chen JK, Li B (2008) Assessing the effects of short-term Spartina alterniflora invasion on labile and recalcitrant C and N pools by means of soil fractionation and stable C and N isotopes. Geoderma 145:177–184

    Article  CAS  Google Scholar 

  • Chowdhury N, Marschner P, Burns R (2011) Response of microbial activity and community structure to decreasing soil osmotic and matric potential. Plant Soil 344:241–254

    Article  CAS  Google Scholar 

  • Cusack DF, Silver WL, Torn MS, Burton SD, Firestone MK (2011) Change in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests. Ecology 92:621–632

    Article  PubMed  Google Scholar 

  • Dimitriu PA, Grayston SJ (2010) Relationship between soil properties and patterns of bacterial beta-diversity across reclaimed and natural boreal forest soils. Microb Ecol 59:563–573

    Article  PubMed  Google Scholar 

  • Dong WY, Zhang XY, Dai XQ, Fu XL, Yang FT, Liu XY, Sun XM, Wen XF, Schaeffer S (2014) Changes in soil microbial community composition in response to fertilization of paddy soils in subtropical China. Appl Soil Ecol 84:140–147

    Article  Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523

    Article  CAS  Google Scholar 

  • Elgersma KJ, Ehrenfeld JG (2011) Linear and non-linear impacts of a non-native plant invasion on soil microbial community structure and function. Biol Invasions 13:757–768

    Article  Google Scholar 

  • Fierer N, Jackson R (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC (2009) Global patterns in belowground communities. Ecol Lett 12:1238–1249

    Article  PubMed  Google Scholar 

  • Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843

    Article  CAS  Google Scholar 

  • Fontaine S, Henault C, Aamor A, Bdioui N, Bloor JMG, Maire V, Mary B, Revaillot S, Maron PA (2011) Fungi mediate long term sequestration of carbon and nitrogen in soil throughout their priming effect. Soil Biol Biochem 43:86–96

    Article  CAS  Google Scholar 

  • Frostegård A, Bååth E, Tunlid A (1993) Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fattyacid analysis. Soil Biol Biochem 25:723–730

    Article  Google Scholar 

  • Fu XL, Yang FT, Wang JL, Di YB, Dai XQ, Zhang XY, Wang HM (2015) Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation. Sci Total Environ 502:280–286

    Article  CAS  PubMed  Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climate warming. Ecol Appl 1:182–195

    Article  Google Scholar 

  • Hargreaves SK, Hofmockel KS (2014) Physiological shifts in the microbial community drive changes in enzyme activity in a perennial agroecosystem. Biogeochemistry 117:67–79

    Article  CAS  Google Scholar 

  • Hawkes CV, Wren IF, Herman DJ, Firestone MK (2005) Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol Lett 8:976–985

    Article  Google Scholar 

  • Haynes RJ (2000) Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand. Soil Biol Biochem 32:211–219

    Article  CAS  Google Scholar 

  • Högberg MN, Baath E, Nordgren A, Arnebrant K, Högberg P (2003) Contrasting effects of nitrogen availability on plant carbon supply to mycorrhizal fungi and saprotrophs—a hypothesis based on field observations in boreal forests. New Phytol 160:225–238

    Article  Google Scholar 

  • Högberg MN, Hogbeg P, Myrold DD (2007) Is microbial community composition in boreal forest soils determined by pH, C to N ratio, the trees or all three? Oecologia 150:590–601

    Article  PubMed  Google Scholar 

  • Hu Y, Wang L, Tang YS, Li YL, Chen JH, Xi XF, Zhang YN, Fu XH, Wu JH, Sun Y (2014) Variability in soil microbial community and activity between coastal and riparian wetlands in the Yangtze River estuary: potential impacts on carbon sequestration. Soil Biol Biochem 70:221–228

    Article  CAS  Google Scholar 

  • Huang XM, Liu SR, Wang H, Hu ZD, Li ZG, You YM (2014) Changes of soil microbial biomass carbon and community composition through mixing nitrogen-fixing species with Eucalyptus urophylla in subtropical China. Soil Biol Biochem 73:42–48

    Article  CAS  Google Scholar 

  • Huang G, Cao YF, Wang B, Li Y (2015a) Effects of nitrogen addition on soil microbes and their implications for soil C emission in the Gurbantunggut Desert, center of the Eurasian Continent. Sci Total Environ 515–516:215–224

    PubMed  Google Scholar 

  • Huang YM, Liu D, An SS (2015b) Effects of slope aspect on soil nitrogen and microbial properties in the Chinese Loess region. Catena 125:135–145

    Article  CAS  Google Scholar 

  • Joergensen RG, Wichern F (2008) Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol Biochem 40:2977–2991

    Article  CAS  Google Scholar 

  • Kamble PN, Gaikwad VB, Kuchekar SR, Bååth E (2014) Microbial growth, biomass, community structure and nutrient limitation in high pH and salinity soils from Pravaranagar (India). Eur J Soil Biol 65:87–95

    Article  CAS  Google Scholar 

  • Knapp AK, Briggs JM, Collins SL, Archer SR, Bret-Harte MS, Ewers BE, Peters DP, Young DR, Shaver GR, Pendall E, Cleary MB (2008) Shrub encroachment in North American grasslands: shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Glob Chang Biol 143:615–623

    Article  Google Scholar 

  • Kong CH, Wang P, Zhao H, Xu XH, Zhu YD (2008) Impact of allelochemical exuded from allelopathic rice on soil microbial community. Soil Biol Biochem 40:1862–1869

    Article  CAS  Google Scholar 

  • Kourtev PS, Ehrenfeld JG, Häggblom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology 83:3152–3166

    Article  Google Scholar 

  • Kourtev PS, Ehrenfeld JG, Häggblom M (2003) Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol Biochem 35:895–905

    Article  CAS  Google Scholar 

  • Kramer TD, Warren RJ, Tang YY, Bradford MA (2012) Grass invasions across a regional gradient are associated with declines in belowground carbon pools. Ecosystems 158:1271–1282

    Article  Google Scholar 

  • Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon decomposition and incorporation into microbial biomass estimated by 14C labeling. Soil Biol Biochem 41:210–219

    Article  CAS  Google Scholar 

  • Lazzaro L, Giuliani C, Fabiani A, Agnelli AE, Pastorelli R, Lagomarsino A, Benesperi R, Calamassi R, Foggi B (2014) Soil and plant changing after invasion: the case of Acacia dealbata in a Mediterranean ecosystem. Sci Total Environ 497–498:491–498

    Article  PubMed  Google Scholar 

  • Liang X, He CQ, Zhu XE, Chen XP, Lei YR, Zhang H, Qin Z, Qi XT (2016) Effect of exotic Spartina alterniflora on fungal symbiosis with native plants Phragmites australis and Scirpus mariqueter, and model plants Lolium perenne L. and Trifolium repens. Aquat Bot 130:50–58

    Article  Google Scholar 

  • Liao JD, Boutton TW (2008) Soil microbial biomass response to woody plant invasion of grassland. Soil Biol Biochem 40:1207–1216

    Article  CAS  Google Scholar 

  • Liao CZ, Luo YQ, Jiang LF, Zhou XH, Wu XW, Fang CM, Chen JK, Li B (2007) Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China. Ecosystems 10:1351–1361

    Article  CAS  Google Scholar 

  • Liao CZ, Peng RH, Luo YQ, Zhou XH, Wu XW, Fang CM, Chen JK, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714

    Article  CAS  PubMed  Google Scholar 

  • McHugh JM, Dighton J (2004) Influence of mycorrhizal inoculation, inundation period, salinity, and phosphorus availability on the growth of two salt marsh grasses, Spartina alterniflora Lois. and Spartina cynosuroides (L.) Roth., in nursery systems. Restor Ecol 12:533–545

    Article  Google Scholar 

  • Myers RT, Zak DR, White DC, Peacock A (2001) Landscape-level patterns of microbial community composition and substrate in upland forest ecosystems. Soil Sci Soc Am J 65:359–367

    Article  CAS  Google Scholar 

  • Nakamura A, Tun CC, Asakawa S, Kimura M (2003) Microbial community responsible for the decomposition of rice straw in a paddy field: estimation by phospholipid fatty acid analysis. Biol Fertil Soils 38:288–295

    Article  CAS  Google Scholar 

  • Phillips RL, Zak DR, Holmes WE, White DC (2002) Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone. Oecologia 131:236–244

    Article  Google Scholar 

  • Ponder F, Tadros M (2002) Phospholipid fatty acids in forest soil four years after organic matter removal and soil compaction. Appl Soil Ecol 19:173–182

    Article  Google Scholar 

  • Rousk J, Brookes PC, Bååth E (2010) The microbial PLFA composition as affected by pH in an arable soil. Soil Biol Biochem 42:516–520

    Article  CAS  Google Scholar 

  • Rovira P, Vallego VR (2000) Examination of thermal and acid hydrolysis procedures in characterization of soil organic matter. Commun Soil Sci Plan 31:81–100

    Article  CAS  Google Scholar 

  • Sampedro L, Jeannotte R, Whalen JK (2006) Trophic transfer of fatty acids from gut microbiota to the earthworm Lumbricus terrestris L. Soil Biol Biochem 38:2188–2198

    Article  CAS  Google Scholar 

  • Schaeffer SM, Ziegler SE, Belnap J, Evans RD (2012) Effects of Bromus tectorum invasion on microbial carbon and nitrogen cycling in two adjacent undisturbed arid grassland communities. Biogeochemistry 111:427–441

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd ed., Academic press

  • Smith AP, Marín-Spiotta E, de Graaff MA, Balser TC (2014) Microbial community structure varies across soil organic matter aggregate pools during tropical land cover change. Soil Biol Biochem 77:292–303

    Article  CAS  Google Scholar 

  • Strickland MS, Rousk J (2010) Considering fungal: bacterial dominance in soils—methods, controls, and ecosystem implications. Soil Biol Biochem 42:1385–1395

    Article  CAS  Google Scholar 

  • Suzuki C, Nagaoka K, Shimada A, Takenaka M (2009) Bacterial communities are more dependent on soil type than fertilizer type, but the reverse is true for fungal communities. Soil Sci Plant Nutr 55:80–90

    Article  CAS  Google Scholar 

  • Swallow M, Quideau SA, MacKenzie MD, Kishchuk BE (2009) Microbial community structure and function: the effect of silvicultural burning and topographic variability in northern Alberta. Soil Biol Biochem 41:770–777

    Article  CAS  Google Scholar 

  • Tamura M, Tharayil N (2014) Plant litter chemistry and microbial priming regulate the accrual, composition and stability of soil carbon in invaded ecosystems. New Phytol 203:110–124

    Article  CAS  PubMed  Google Scholar 

  • Throop HL, Lajtha K, Kramer M (2013) Density fractionation and 13C reveal changes in soil carbon following woody encroachment in a desert ecosystem. Biogeochemistry 112:409–422

    Article  CAS  Google Scholar 

  • Tian Z, Fang SB, Yin CS, Zhang YJ, An SQ, Cheng H (2013) Evaluation of spatial correlation between landscape pattern changes and heavy metals spatial interpolation analysis along Yancheng coast. J Shanghai Ocean Univ 22:912–921

    Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Waldrop MP, Firestone MK (2004) Microbial community utilization of recalcitrant and simple carbon compounds: impact of oak-woodland plant communities. Oecologia 138:275–284

    Article  PubMed  Google Scholar 

  • Wang F, Wall G (2010) Mudflat development in Jiangsu Province, China: practices and experiences. Ocean Coast Manag 53:691–699

    Article  Google Scholar 

  • Whitting GJ, Chanton JP (2001) Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus B 53:521–528

    Article  Google Scholar 

  • Wilkinson SC, Anderson JM, Scardelis SP, Tisiafouli M, Taylor A, Wolters V (2002) PLFA profiles of microbial communities in decomposing conifer litters subject to moisture stress. Soil Biol Biochem 34:189–200

    Article  CAS  Google Scholar 

  • Wilsey BJ, Polley HW (2006) Aboveground productivity and root-shoot allocation differ between native and introduced grass species. Oecologia 150:300–309

    Article  PubMed  Google Scholar 

  • Wu JP, Liu ZF, Wang XL, Sun YX, Zhou LX, Lin YB, Fu SL (2011) Effects of understory removal and tree girdling on soil microbial community composition and litter decomposition in two Eucalyptus plantations in South China. Funct Ecol 25:921–931

    Article  Google Scholar 

  • Yang W, Zhao H, Chen XL, Yin SL, Cheng XL, An XQ (2013) Consequences of short-term C4 plant Spartina alterniflora invasions for soil organic carbon dynamics in a coastal wetland of Eastern China. Ecol Eng 61:50–57

    Article  Google Scholar 

  • Yang HS, Koide RT, Zhang Q (2016a) Short-term waterlogging increases arbuscular mycorrhizal fungal species richness and shifts community composition. Plant Soil. doi:10.1007/s11104-016-2850-0

    Google Scholar 

  • Yang W, An SQ, Zhao H, Xu LQ, Qiao YJ, Cheng XL (2016b) Impacts of Spartina alterniflora invasion on soil organic carbon and nitrogen pools sizes, stability, and turnover in a coastal salt marsh of eastern China. Ecol Eng 86:174–182

    Article  Google Scholar 

  • Yao YH, Qing H, An SH, He J, Wang Y (2010) Growth and biomass allocation of differently-aged populations of Spartina alterniflora. Acta Ecol Sin 30:5200–5208

    Google Scholar 

  • Yuan JJ, Ding WX, Liu DY, Kang H, Freeman C, Xiang J, Lin YX (2015) Exotic Spartina alterniflora invasion alters ecosystem–atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China. Glob Chang Biol 21:1567–1580

    Article  PubMed  Google Scholar 

  • Zeller B, Liu JX, Buchmann N, Richter A (2008) Tree girdling increases soil N mineralization in two spruce stands. Soil Biol Biochem 40:1155–1166

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Basic Research Program of China (grant no. 2013CB430400), China Postdoctoral Science Foundation (grant no. 2016M590440), and the Strategic Priority Research Program B of the Chinese Academy of Sciences (grant no. XDB15010200). We thank Zhihui Shi for assistance with the fieldwork, Shuxia Fu for PLFAs extraction, and all of the members of the Jiangsu Yancheng Wetland National Nature Reserve for Rare Birds for supporting in this work. Last but not least, we appreciate two anonymous reviewers and chief editor for their insightful comments and valuable suggestions on this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Leng or Xiaoli Cheng.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Elizabeth M Baggs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Yan, Y., Jiang, F. et al. Response of the soil microbial community composition and biomass to a short-term Spartina alterniflora invasion in a coastal wetland of eastern China. Plant Soil 408, 443–456 (2016). https://doi.org/10.1007/s11104-016-2941-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2941-y

Keywords

Navigation