Skip to main content
Log in

Effects of Methylobacterium sp. on emergence, yield, and disease prevalence in three cultivars of potato (Solanum tuberosum L.) were associated with the shift in endophytic microbial community

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The effect of microbial preparations on plant growth and resistance to diseases depends on plant genotype and growth conditions limiting their use in agriculture. Various biocontrol effects, reported for the endophyte Methylobacterium sp. IMBG290, are possibly modulated through the endophyte community of the potato (Solanum tuberosum L.) host. In the current study, we analyzed growth promoting and biocontrol capacities of IMBG290 alone and when combined with commercial bacterial preparation under field conditions.

Methods

The effect of microbial inoculants on potato growth and disease prevalence was monitored during 2-year field experiment and matched with metagenomic analysis results of potato endophytic community.

Results

The effect of microbial inoculants on plant growth and disease prevalence varied from positive to negative depending on potato cultivar, bacterial treatment and environmental conditions. A cultivar-dependent synergistic effect of combined inoculation was observed. The positive effect of bacterial treatments was associated with a shift in the structure of communities of bacterial and fungal endophytes.

Conclusions

Cultivar-environment interaction associated with a shift in the endophytic microbial community play a role in the potato response to bacterial preparations. This should be considered when designing complex microbial inoculants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdo Z, Schüette UME, Bent SJ, Williams CJ, Forney LJ, Joyce P (2006) Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environ Microbiol 8:929–938

    Article  PubMed  Google Scholar 

  • Ardanov P, Sessitsch A, Häggman H, Kozyrovska N, Pirttilä AM (2012) Methylobacterium-induced endophyte community changes correspond with protection of plants against pathogen attack. PLoS ONE 7:e46802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ardanov P, Ovcharenko L, Zaets I, Kozyrovska N, Pirttilä AM (2011) Endophytic bacteria enhancing growth and disease resistance of potato (Solanum tuberosum L.). Biol Control 56:43–49

    Article  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Barton J, Fowler SV, Gianotti AF, Winks CJ, de Beurs M, Arnold GC, Forrester G (2007) Successful biological control of mist flower (Ageratina riparia) in New Zealand: agent establishment, impact and benefits to the native flora. Biol Control 40:370–385

    Article  Google Scholar 

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263

    Article  CAS  PubMed  Google Scholar 

  • Choi JH, Kim JH, Daneial M, Lebeault JM (1989) Optimization of growth medium and poly-β-hydroxybutyric acid production from methanol in Methylobacterium organophilum. Korean J Appl Microbiol Bioeng 17:392–396

    CAS  Google Scholar 

  • Choiseul J, Allen L, Carnegie SF (2006) Fungi causing dry tuber rots of seed potatoes in storage in Scotland. Potato Res. doi:10.1007/s11540-007-9020-y

    Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Culman SW, Bukowski R, Gauch HG, Cadillo-Quiroz H, Buckley DH (2009) T-REX: software for the processing and analysis of T-RFLP data. BMC Bioinform. doi:10.1186/1471-2105-10-171

    Google Scholar 

  • Diallo S, Crépin A, Barbey C, Orange N, Burini JF, Latour X (2011) Mechanisms and recent advances in biological control mediated through the potato rhizosphere. FEMS Microbiol Ecol 75:351–364

    Article  CAS  PubMed  Google Scholar 

  • Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friesen M (2011) Microbially mediated plant functional traits. Annu Rev Ecol Evol Syst. doi:10.1146/annurev-ecolsys-102710-145039

    Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750

    Article  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

  • Grosch R, Dealtry S, Schreiter S, Berg G, Mendonça-Hagler L, Smalla K (2012) Biocontrol of Rhizoctonia solani: complex interaction of biocontrol strains, pathogen and indigenous microbial community in the rhizosphere of lettuce shown by molecular methods. Plant Soil. doi:10.1007/s11104-012-1239-y

    Google Scholar 

  • Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  CAS  PubMed  Google Scholar 

  • Ikeda S, Kaneko T, Okubo T, Rallos LEE, Eda S, Mitsui H, Sato S, Nakamura Y, Tabata S, Minamisawa K (2009) Development of a bacterial cell enrichment method and its application to the community analysis in soybean stems. Microb Ecol 58:703–714

    Article  CAS  PubMed  Google Scholar 

  • Kalitskyy P, Kravchenko, Sharapa M (2005) Food potato. Technology of cultivation. Fundamental regulation. State Committee for Technical Regulation and Consumer Policy of Ukraine, Kyiv

  • Kloepper JW, Ryu C (2006) Bacterial endophytes as elicitors of induced systemic resistance. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer Berlin Heidelberg, Berlin, pp 33–52

    Chapter  Google Scholar 

  • Kozyrovska N, Negrutska V (2004) “Kleps” biological product for nutrition and protection of plants. Ukraine Patent 44189:15.12.2004

    Google Scholar 

  • Nilsson RH, Abarenkov K, Veldre V, Nylinder S, De Wit P, Brosche S, Alfredsson JF, Ryberg M, Kristiansson E (2010) An open source chimera checker for the fungal ITS region. Mol Ecol Resour 10:1076–1081

    Article  CAS  PubMed  Google Scholar 

  • O’Brien M, Mullins E (2009) Relevance of genetically modified crops in light of future environmental and legislative challenges to the agri-environment. Ann Appl Biol. doi:10.1111/j.1744-7348.2008.00304.x

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2013) Vegan: community ecology package. In: R package version 2.0-7. Available via CRAN http://CRAN.R-project.org/package=vegan Cited 10 Jul 2014

  • Podolich O, Ardanov P, Zaets I, Pirttilä AM, Kozyrovska N (2015) Reviving of the endophytic bacterial community as a putative mechanism of plant resistance. Plant Soil. doi:10.1007/s11104-014-2235-1

    Google Scholar 

  • Podolich O, Laschevskyy V, Ovcharenko L, Kozyrovska N, Pirttilä AM (2009) Methylobacterium sp. resides in unculturable state in potato tissues in vitro and becomes culturable after induction by Pseudomonas fluorescens IMGB163. J Appl Microbiol 106:728–737

    Article  CAS  PubMed  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443

    Article  PubMed  Google Scholar 

  • Rudrappa T, Biedrzycki ML, Bais HP (2008) Causes and consequences of plant-associated biofilms. FEMS Microbiol Ecol 64:153–166

    Article  CAS  PubMed  Google Scholar 

  • Sessitsch A, Rasche R (2008) 16S rRNA based terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis. In: Sorvari S, Pirttilä AM (eds) Prospects and applications for plant-associated microbes. A laboratory manual, part A: bacteria. Biobien Innovations, Turku, pp 23–30

    Google Scholar 

  • Shaharoona B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol 79:147–155

    Article  CAS  PubMed  Google Scholar 

  • Snieškiene V, Baležentiene L, Stankevičiene A, Meškauskiene V (2012) Intensity of fungal diseases of small-leaved lime (Tilia cordata Mill.) across urban greeneries of Lithuania. J Food Agric Environ 10:988–993

    Google Scholar 

  • Southern EM (1979) Measurement of DNA length by gel electrophoresis. Anal Biochem 100:319–323

    Article  CAS  PubMed  Google Scholar 

  • Sullivan RF, White JF (2000) Phoma glomerata as a mycoparasite of powdery mildew. Appl Environ Microbiol 66:425–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol 2:194–208

    Article  Google Scholar 

  • Teslyuk PS, Sydorchuk VI (2011) Catalogue of potato varieties. Nadstyr’ya, Lutsk

  • Turnbull AL, Liu Y, Lazarovits G (2012) Isolation of bacteria from the rhizosphere and rhizoplane of potato (Solanum tuberosum) grown in two distinct soils using semi selective media and characterization of their biological properties. Am J Potato Res. doi:10.1007/s12230-012-9253-4

    Google Scholar 

  • Velivelli SL, Sessitsch A, Prestwich BD (2015) The role of microbial inoculants in integrated crop management systems. Potato Res. doi:10.1007/s11540-014-9278-9

    Google Scholar 

  • Wafaa MH, Lashin MS, El Azzazy AM (2012) Large scale production and pilot trails of Tilletiopsis pallescens for biocontrol of mango powdery mildew. Eur J Sci Res 67:194–214

    Google Scholar 

  • Weyens N, Croes S, Dupae J, Newman L, van der Lelie D, Carleer R, Vangronsveld J (2010) Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ Pollut 158:2422–2427

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns TD, Lee S, Taylor J (1990) Analysis of phylogenetic relationship by amplification and direct sequencing of ribosomal RNA genes. In: Innis MA, Gelfond DH, Sainsky JJ, White TJ (eds) PCR protocol: a guide to method and applications. Academic, New York, pp 315–322

    Google Scholar 

  • Xu XM, Jeffries P, Pautasso M, Jeger MJ (2011) Combined use of biocontrol agents to manage plant diseases in theory and practice. Phytopathology 101:1024–1031

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present work was supported by the University of Oulu and by the Finnish Doctoral Program in Plant Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlo Ardanov.

Additional information

Responsible Editor: Stéphane Compant.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardanov, P., Lyastchenko, S., Karppinen, K. et al. Effects of Methylobacterium sp. on emergence, yield, and disease prevalence in three cultivars of potato (Solanum tuberosum L.) were associated with the shift in endophytic microbial community. Plant Soil 405, 299–310 (2016). https://doi.org/10.1007/s11104-015-2500-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2500-y

Keywords

Navigation