Skip to main content
Log in

Impacts of bulk soil microbial community structure on rhizosphere microbiomes of Zea mays

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

It has frequently been shown that plants interact with soils to shape rhizosphere microbiomes. However, previous work has not distinguished between effects of soil properties per se, and effects attributable to the resident microbial communities of those soils. We aimed to test whether differences in the structure of bulk soil microbial communities, within a given soil type, would carry over to impact the structure of the rhizosphere microbial community.

Methods

We used repeated chemical amendments to develop divergent bulk soil microbial community starting points from which rhizosphere development proceeded. Additionally, we contrasted rhizosphere microbiomes associated with two different cultivars of corn (Zea mays).

Results

A wide range of bacterial and archaeal taxa responded to chemical resource amendments, which reduced bulk soil microbiome diversities. Corn genotypes P9714XR and 35F40 had largely similar impacts on rhizosphere microbiome development, although significant differences were evident in select treatments. Notably, in cases where resource amendments altered bulk soil microbial community composition, legacy effects persisted into the rhizosphere.

Conclusions

Our results suggest that rhizosphere microbial communities may develop into different states depending on site history and prior selective events. This work advances our understanding of soil microbiome dynamics and responsiveness to change in the form of simple resource amendments and the development of the rhizosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aira M, Gómez-Brandón M, Lazcano C, Bååth E, Domínguez J (2010) Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol Biochem 42:2276–2281

    Article  CAS  Google Scholar 

  • Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360:1–13

    Article  CAS  Google Scholar 

  • Bakker MG, Bradeen JM, Kinkel LL (2013) Effects of plant host species and plant community richness on streptomycete community structure. FEMS Microbiol Ecol 83:596–606

    Article  CAS  PubMed  Google Scholar 

  • Baudoin E, Nazaret S, Mougel C, Ranjard L, Moënne-Loccoz Y (2009) Impact of inoculation with the phytostimulatory PGPR Azospirillum lipoferum CRT1 on the genetic structure of the rhizobacterial community of field-grown maize. Soil Biol Biochem 41:409–413

    Article  CAS  Google Scholar 

  • Bouffaud M-L, Kyselková M, Gouesnard B, Grundmann G, Muller D, Moënne-Loccoz Y (2012) Is diversification history of maize influencing selection of soil bacteria by roots? Mol Ecol 21:195–206

    Article  PubMed  Google Scholar 

  • Brady N (1999) The nature and properties of soils, 12th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  PubMed  Google Scholar 

  • Carson JK, Campbell L, Rooney D, Clipson N, Gleeson DB (2009) Minerals in soil select distinct bacterial communities in their microhabitats. FEMS Microbiol Ecol 67:381–388

    Article  CAS  PubMed  Google Scholar 

  • Castaldini M et al (2005) Impact of Bt corn on rhizospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms. Appl Environ Microbiol 71:6719–6729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chiarini L, Bevivino A, Dalmastri C, Nacamulli C, Tabacchioni S (1998) Influence of plant development, cultivar and soil type on microbial colonization of maize roots. Appl Soil Ecol 8:11–18

    Article  Google Scholar 

  • R Core Development Team (2011) R: a language and environment for statistical computing R foundation for statistical computing: Vienna, Austria

  • De-la-Pena C, Lei Z, Watson BS, Sumner LW, Vivanco JM (2008) Root-microbe communication through protein secretion. J Biol Chem 283:25247–25255

    Article  CAS  PubMed  Google Scholar 

  • Dohrmann AB, Kuting M, Junemann S, Jaenicke S, Schluter A, Tebbe CC (2013) Importance of rare taxa for bacterial diversity in the rhizosphere of Bt- and conventional maize varieties. ISME J 7:37–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Edwards J, Johnson C, Santos-Medellin C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1414592112

    Google Scholar 

  • Fang M, Kremer RJ, Motavalli PP, Davis G (2005) Bacterial diversity in rhizospheres of nontransgenic and transgenic corn. Appl Environ Microbiol 71:4132–4136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  • Girvan MS, Bullimore J, Pretty JN, Osborn AM, Ball AS (2003) Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl Environ Microbiol 69:1800–1809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herschkovitz Y, Lerner A, Davidov Y, Rothballer M, Hartmann A, Okon Y, Jurkevitch E (2005) Inoculation with the plant-growth-promoting rhizobacterium Azospirillum brasilense causes little disturbance in the rhizosphere and rhizoplane of maize (Zea mays). Microb Ecol 50:277–288

    Article  CAS  PubMed  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    Article  CAS  Google Scholar 

  • Klein E, Ofek M, Katan J, Minz D, Gamliel A (2013) Soil suppressiveness to Fusarium disease: shifts in root microbiome associated with reduction of pathogen root colonization. Phytopathology 103:23–33

    Article  PubMed  Google Scholar 

  • Leinster T, Cobbold CA (2012) Measuring diversity: the importance of species similarity. Ecology 93:477–489

    Article  PubMed  Google Scholar 

  • Li XZ, Rui JP, Mao YJ, Yannarell A, Mackie R (2014) Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar. Soil Biol Biochem 68:392–401

    Article  CAS  Google Scholar 

  • Lu Y, Wassmann R, Neue HU, Huang C (1999) Impact of phosphorus supply on root exudation, aerenchyma formation and methane emission of rice plants. Biogeochemistry 47:203–218

    Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marquez LM, Redman RS, Rodriguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–515

    Article  CAS  PubMed  Google Scholar 

  • Meharg AA, Killham K (1995) Loss of exudates from the roots of perennial ryegrass inoculated with a range of microorganisms. Plant Soil 170:345–349

    Article  CAS  Google Scholar 

  • Minz D, Ofek M, Hadar Y (2013) Plant rhizosphere microbial communities. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, pp 56–84

    Chapter  Google Scholar 

  • Nunan N, Wu K, Young IM, Crawford JW, Ritz K (2002) In situ spatial patterns of soil bacterial populations, mapped at multiple scales, in an arable soil. Microb Ecol 44:296–305

    Article  CAS  PubMed  Google Scholar 

  • Ofek M, Voronov-Goldman M, Hadar Y, Minz D (2014) Host signature effect on plant root-associated microbiomes revealed through analyses of resident vs. active communities. Environ Microbiol 16:2157–2167

    Article  CAS  PubMed  Google Scholar 

  • Oger P, Mansouri H, Nesme X, Dessaux Y (2004) Engineering root exudation of lotus toward the production of two novel carbon compounds leads to the selection of distinct microbial populations in the rhizosphere. Microb Ecol 47:96–103

    Article  CAS  PubMed  Google Scholar 

  • Pascault N, Nicolardot B, Bastian F, Thiebeau P, Ranjard L, Maron P-A (2010) In situ dynamics and spatial heterogeneity of soil bacterial communities under different crop residue management. Microb Ecol 60:291–303

    Article  PubMed  Google Scholar 

  • Peiffer JA et al (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci U S A 110:6548–6553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Philippot L, Kuffner M, Cheneby D, Depret G, Laguerre G, Martin-Laurent F (2006) Genetic structure and activity of the nitrate-reducers community in the rhizosphere of different cultivars of maize. Plant Soil 287:177–186

    Article  CAS  Google Scholar 

  • Picard C, Bosco M (2005) Maize heterosis affects the structure and dynamics of indigenous rhizospheric auxins-producing Pseudomonas populations. FEMS Microbiol Ecol 53:349–357

    Article  CAS  PubMed  Google Scholar 

  • Picard C, Bosco M (2006) Heterozygosis drives maize hybrids to select elite 2,4-diacethylphloroglucinol-producing Pseudomonas strains among resident soil populations. FEMS Microbiol Ecol 58:193–204

    Article  CAS  PubMed  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO (2007) SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acid Res 35:7188–7196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rainey PB (1999) Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol 1:243–257

    Article  CAS  PubMed  Google Scholar 

  • Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383

    Article  CAS  Google Scholar 

  • Schloss PD et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schreiter S, Ding G-C, Heuer H, Neumann G, Sandmann M, Grosch R, Kropf S, Smalla K (2014) Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Front Microbiol 5:144

    Article  PubMed Central  PubMed  Google Scholar 

  • Sergeeva E, Hirkala DLM, Nelson LM (2007) Production of indole-3-acetic acid, aromatic amino acid aminotransferase activities and plant growth promotion by Pantoea agglomerans rhizosphere isolates. Plant Soil 297:1–13

    Article  CAS  Google Scholar 

  • Shen H, Wang XC, Shi WM, Cao ZH, Yan XL (2001) Isolation and identification of specific root exudates in elephantgrass in response to mobilization of iron- and aluminum-phosphates. J Plant Nut 24:1117–1130

    Article  CAS  Google Scholar 

  • Ulrich A, Becker R (2006) Soil parent material is a key determinant of the bacterial community structure in arable soils. FEMS Microbiol Ecol 56:430–443

    Article  CAS  PubMed  Google Scholar 

  • Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–144

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Qian P-Y (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS ONE 4:e7401

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou X, Wu F (2012) Effects of amendments of ferulic acid on soil microbial communities in the rhizosphere of cucumber (Cucumis sativus L.). Eur J Soil Biol 50:191–197

    Article  CAS  Google Scholar 

  • Zolla G, Bakker MG, Badri DV, Chaparro JM, Sheflin AM, Manter DK, Vivanco J (2013) Understanding root-microbiome interactions. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere. Wiley, Hoboken, pp 743–754

    Chapter  Google Scholar 

Download references

Acknowledgments

Shawn Salley provided assistance in locating soils and performed the texture analysis. MGB was supported by a USDA NIFA Postdoctoral Fellowship grant (2011-67012-30938) for a portion of this work. Mention of trade names or commercial products is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. This article was the work of U.S. Government employees engaged in their official duties and is exempt from copyright.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew G. Bakker.

Additional information

Responsible Editor: Gera Hol.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 210 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakker, M.G., Chaparro, J.M., Manter, D.K. et al. Impacts of bulk soil microbial community structure on rhizosphere microbiomes of Zea mays . Plant Soil 392, 115–126 (2015). https://doi.org/10.1007/s11104-015-2446-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2446-0

Keywords

Navigation