Skip to main content
Log in

Do lignification and silicification of the cell wall precede silicon deposition in the silica cell of the rice (Oryza sativa L.) leaf epidermis?

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Rice is a well-known silica-accumulating plant. The dumbbell-shaped silica bodies in the silica cells in rice leaf epidermis are formed via biosilicification, but the underlying mechanisms are largely unknown.

Methods

Leaves at different developmental stages were collected to investigate silica cell differentiation by analyzing structures and silicon localization in the silica cells.

Results

Exogenous silicon application increased both shoot and root biomass. When silicon was supplied, silica cells in the leaf epidermis developed gradually into a dumbbell-shape and became increasingly silicified as leaves aged. Silicon deposition in the silica cells was not completed until the leaf was fully expanded. Multiple lines of evidence suggest that lignification of silica cell walls precedes silicon deposition in the lumen of silica cells. The organized needle-like silica microstructures were formed by moulding the inner cell walls and filling up the lumen of the silica cell following leaf maturation.

Conclusions

Two processes were involved in silicon deposition: (1) the silica cell wall was lignified and silicified, and then (2) the silicon was deposited gradually in silica cells as leaves aged. Silica body formation was not completed until the leaf was fully mature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ball TB, Brotherson JD, Garder JS (1993) A topologic and morphometric study of variation in idioblasts from inkhorn wheat (Triticum monococcum L.). Can J Bot 71:1182–1192

    Article  Google Scholar 

  • Ball TB, Gardner JS, Anderson N (1999) Identifying inflorescence idioblasts from selected species of wheat (Triticum Monococcum, T. Dicoccon, T. Dicoccoides, and T. Aestivum) and Barley (Hordecum Vulgare and H. Spontaneum) (Gramineae). Am J Bot 86:1615–1623

    Article  PubMed  CAS  Google Scholar 

  • Barber DA, Shone MT (1966) The absorption of silica from aqueous solution by plant. J Exp Bot 17:569–578

    Article  CAS  Google Scholar 

  • Berlyn GP, Mickshe JP (1976) Botanical microtechnique and cytochemistry. Iowa State University Press, Ames

    Google Scholar 

  • Blackman E (1968) The pattern and sequence of opaline silica deposition in Rye (Secale cereale L.). Ann Bot 32:207–218

    Google Scholar 

  • Cooke J, Leishman MR (2011) Is plant ecology more siliceous than we realise? Trends Plant Sci 16:61–68

    Article  PubMed  CAS  Google Scholar 

  • Cooke J, Leishman MR (2012) Tradeoffs between foliar silicon and carbon-based defenses: evidence from vegetation communities of contrasting soil types. Oikos 121:2052–2060

    Article  Google Scholar 

  • Coradin T, Lopez PJ (2003) Biogenic silica patterning: simple chemistry or subtle biology. ChemBioChem 4:251–259

    Article  PubMed  CAS  Google Scholar 

  • Crabtree RH (1998) A new type of hydrogen bond. Science 282:2000–2001

    Article  CAS  Google Scholar 

  • Currie HA, Perry CC (2007) Silica in plants: biological, biochemical and chemical studies. Ann Bot 100:1383–1389

    Article  PubMed  CAS  Google Scholar 

  • Dayananda P, Kaufman PB, Franklin CI (1983) Detection of silica in plants. Am J Bot 70:1079–1084

    Article  Google Scholar 

  • Epstein E (1999) Silicon. Annu Rev Plant Physiol Plant Mol Biol 50:641–664

    Article  PubMed  CAS  Google Scholar 

  • Harrison CC (1996) Evidence for intramineral macromolecules containing protein from plant silicas. Phytochemistry 41:37–42

    Article  PubMed  CAS  Google Scholar 

  • Hartley RD, Jones LHP (1972) Silicon compounds in xylem exudates of plants. J Exp Bot 23:637–640

    Article  CAS  Google Scholar 

  • Hodson MJ, Sangster AG (1988) Observation on the distribution of mineral elements in the leaf of wheat (Triticum aestivum L.), with particular reference to silicon. Ann Bot 62:463–471

    Google Scholar 

  • Hodson MJ, Sangster AG, Parry DW (1985) An ultrastructural study on the developmental phases and silicification of the glume of Phalaris canariensis L. Ann Bot 55:649–655

    Google Scholar 

  • Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot 96:1027–1046

    Article  PubMed  CAS  Google Scholar 

  • Horst WJ, Marshner H (1978) Effect of silicon on manganese tolerance of beans plants (Phaseolus vulgaris L.). Plant Soil 50:287–304

    Article  CAS  Google Scholar 

  • Iler RK (1979) The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry. JohnWiley&Sons, NewYork

    Google Scholar 

  • Inanaga S, Okasaka A (1995) Calcium and silicon binding compounds in cell walls of rice shoots. Soil Sci Plant Nutr 41:103–110

    Article  CAS  Google Scholar 

  • Kaufman PB, Petering LB, Smith JG (1970) Ultrastructural development of cork-silica cell pairs in Avena internodal epidermis. Bot Gaz 131:173–185

    Article  Google Scholar 

  • Kaufman PB, Dayanandan P, Takeoka Y, Bigelow WC, Jones JD, Iler R (1981) Silica in shoots of higher plants. In: Simpson TL, Volcani BE (eds) Silicon and siliceous structures in biological systems. Springer, New York, pp 409–449

    Chapter  Google Scholar 

  • Kaufman PB, Dayanandan P, Franklin CI, Takeoka Y (1985) Structure and function of silica bodies in the epidermal system of grass shoots. Ann Bot 55:487–507

    Google Scholar 

  • Kauss H, Seehaus K, Franke R, Gilbert S, Robert A, Kröger N (2003) Silica deposition by a strongly cationic proline-rich protein from systemically resistant cucumber plants. Plant J 33:87–96

    Article  PubMed  CAS  Google Scholar 

  • Keeping MG, Kvedaras OL (2008) Silicon as a plant defence against insect herbivory: response to Massey, Ennos and Hartley. J Anim Ecol 77:631–633

    Article  PubMed  Google Scholar 

  • Korndörfer GH, Lepsch I (2001) Effect of silicon on plant growth and crop yield. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier Press, Amsterdam, pp 133–147

    Chapter  Google Scholar 

  • Kröger N (2007) Prescribing diatom morphology: toward genetic engineering of biological nanomaterials. Curr Opin Chem Biol 11:662–669

    Article  PubMed  Google Scholar 

  • Kröger N, Lenhmann G, Rachel R, Sumper M (1997) Characterization of a 200-kDa diatom protein that is specifically associated with a silica-based substructure of the cell wall. Eur J Biochem 250:99–105

    Article  PubMed  Google Scholar 

  • Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132

    Article  PubMed  Google Scholar 

  • Kröger N, Deutzmann R, Bergsdorf C, Sumper M (2000) Species-specific polyamines from diatoms control silicamorphology. Proc Natl Acad Sci USA 97:14133–14138

    Article  PubMed  Google Scholar 

  • Kröger N, Deutzmann R, Sumper M (2001) Silica-precipitating peptides from diatoms. The chemical structure of silaffin-A from Cylindrotheca fusiformis. J Biol Chem 276:26066–26070

    Article  PubMed  Google Scholar 

  • Liang YC, Wong JWC, Wei L (2005a) Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere 58:475–483

    Article  PubMed  CAS  Google Scholar 

  • Liang YC, Si J, Römheld V (2005b) Silicon uptake and transport is an active process in Cucumis sativus. New Phytol 167:797–804

    Article  PubMed  CAS  Google Scholar 

  • Lopez PJ, Desclés J, Allen AE, Bowler C (2005) Prospects in diatom research. Curr Opin Biotechnol 16:180–186

    Article  PubMed  CAS  Google Scholar 

  • Lux A, Luxová M, Morita S, Abe J, Inanaga S (1999) Endodermal silicification in developing seminal roots of lowland and upland cultivars of rice (Oryza sativa L.). Can J Bot 77:955–960

    CAS  Google Scholar 

  • Lux A, Luxova M, Abe J, Tanimoto E, Hattori T, Inanaga S (2003) The dynamics of silicon deposition in the sorghum root endodermis. New Phytol 158:437–441

    Article  CAS  Google Scholar 

  • Ma JF, Takahashi E (2002a) Functions of silicon in plant growth. In: Soil, fertilizer, and plant silicon research in Japan. Elsevier Press, Amsterdam pp 5–26

  • Ma JF, Takahashi E (2002b) Silicon uptake and accumulation in plants. In: Soil, fertilizer, and plant silicon research in Japan. Elsevier Press, Amsterdam pp 73–106

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Murata Y, Yano M, Ishiguro M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–213

    Article  PubMed  CAS  Google Scholar 

  • Massey FP, Hartley SE (2009) Physical defences wear you down: progressive and irreversible impacts of silica on insect herbivores. J Anim Ecol 78:281–291

    Article  PubMed  Google Scholar 

  • Milligan AJ, Morel FM (2002) A proton buffering role for silica in diatoms. Science 297:1848–1850

    Article  PubMed  CAS  Google Scholar 

  • Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56:1255–1261

    Article  PubMed  CAS  Google Scholar 

  • Motomura H, Fuji T, Suzuki M (2004) Silica deposition in relation to ageing of leaf tissues in Sasa veitchii (Carrière) rehder (Poaceae: Bambusoideae). Ann Bot 93:235–248

    Article  PubMed  CAS  Google Scholar 

  • Motomura H, Fuji T, Suzuki M (2006) Silica deposition in abaxial epidermis before the opening of leaf blades of Pleioblastus chino (Poaceae, Bambusoideae). Ann Bot 97:513–519

    Article  PubMed  CAS  Google Scholar 

  • Parry DW, Smithson F (1958) Techniques for studying opaline silica in grass leaves. Ann Bot 22:543–549

    Google Scholar 

  • Parry DW, Hodson MJ, Newman RH (1985) The distribution of silicon deposits in the fronds of pteridium aquilinum L. Ann Bot 55:77–83

    CAS  Google Scholar 

  • Perry CC, Keeling-Tucker T (1998) Crystalline silica prepared at room temperature from aqueous solution in the presence of intrasilica bioextracts. Chem Commun 23:2587–2588

    Article  Google Scholar 

  • Perry CC, Keeling-Tucker T (2000) Biosilicification: the role of the organic matrix in structure control. J Biol Inorg Chem 5:537–550

    Article  PubMed  CAS  Google Scholar 

  • Perry CC, Willeams RJP, Fry SC (1987) Cell wall biosynthesis during silicifation of grass hairs. J Plant Physiol 126:437–448

    Article  CAS  Google Scholar 

  • Piperno DR (2006) The production, deposition, and dissolution of phytoliths. In: Phytoliths: A comprehensive guide for archaeologists and paleoecologists. AltaMira Press, Lanham pp 1–37

  • Piperno DR, Pearsall DM, Benfer RA Jr, Kealhofer L, Zhao ZJ, Jiang QH (1999) Idioblast morphology. Science 283:S1265–S1266

    Google Scholar 

  • Poulsen N, Sumper M, Kröger N (2003) Biosilica formation in diatoms: characterization of native silaffin-2 and its role in silica morphogenesis. Proc Natl Acad Sci USA 100:12075–12080

    Article  PubMed  CAS  Google Scholar 

  • Reynolds EW (1963) The use of lead citrate at high pH as an electron-opaque stain electron microscopy. J Cell Biol 17:208–212

    Article  PubMed  CAS  Google Scholar 

  • Rogalla H, Römheld V (2003) Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant Cell Environ 25:549–555

    Article  Google Scholar 

  • Sakai WS, Sanford WG (1984) A developmental study of silicification in the abaxial epidermal cells of sugarcane leaf blades using scanning electron microscope and energy dispersive X-ray analysis. Am J Bot 71:1315–1322

    Article  CAS  Google Scholar 

  • Sangster AG (1978) Silicon in the roots of higher plants. Am J Bot 65:929–935

    Article  CAS  Google Scholar 

  • Sangster AG, Parry DW (1976) Endodermal silicon deposits and their linear distribution in developing roots of Sorghum bicolor (L) Moench. Ann Bot 40:361–371

    Google Scholar 

  • Sangster AG, Parry DW (1981) Ultrastructure of silica deposits in higher plants. In: Simpson TL, Volcani BE (eds) Silicon and siliceous structures in biological systems. Springer, New York, pp 383–407

    Chapter  Google Scholar 

  • SAS Institute Inc (1989) Introductory guide for personal computers, version 6.12 edition. SAS Institute Inc, USA

    Google Scholar 

  • Shetty R, Jensen B, Shetty NP, Hansen M, Hansen CW, Starkey KR, Jorgensen HJL (2012) Silicon induced resistance against powdery mildew of roses caused by Podeosphaera Pannosa. Plant Pathol 61:120–131

    Article  CAS  Google Scholar 

  • Shi XH, Zhang CC, Wang H, Zhang FS (2005) Effect of Si on the distribution of Cd in rice seedlings. Plant Soil 272:53–60

    Article  CAS  Google Scholar 

  • Sposito G (1989) The chemistry of soils. Oxford Univ. Press, New York, p 277

    Google Scholar 

  • Sugimura Y, Mori T, Nitta I, Kotani E, Furusawa T, Tatsumi M, Kusakari S, Wada M, Morita Y (1999) Calcium deposition in idioblasts of mulberry leaves. Ann Bot 83:543–550

    Article  CAS  Google Scholar 

  • Waterkeyn L, Bienfait A, Peeters A (1982) Callose silica epidermiques: rapports avec la transpiration cuticularie. Cellule 73:267–287

    Google Scholar 

  • Yamaji N, Ma J (2008) A transporter regulating silicon distribution in rice shoots. Plant Cell 20:1381–1389

    Article  PubMed  CAS  Google Scholar 

  • Yeo AR, Flowers SA, Rao G, Welfare N, Senanayake N, Flowers TJ (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transportational bypass flow. Plant Cell Environ 22:559–565

    Article  CAS  Google Scholar 

  • Yoshida S, Ohinshi Y, Kitagishi K (1962) Chemical forms, mobility and deposition of silicon in rice plant. Soil Sci Plant Nutr 8:15–21

    Article  Google Scholar 

  • Yoshida S, Forno DA, Cock JH, Cock JH, Gomez KA (1976) Routine procedure for growing rice plants in culture solution. In: Laboratory manual for physiological studies of rice, 3th edn. The International Rice Research Institute, Philippines. pp 61–66

  • Zhang WX, Wang LL (1998) Idioblast in leaves of 7 Oryza species. J China Agric Univ 3:21–25 (in Chinese)

    Google Scholar 

Download references

Acknowledgment

This study was funded by Innovative Group Grant 31121062 from the National Natural Science Foundation of China, and the National Natural Science Foundation of China (G30170550). We thank Dr. D. Zhang, Ms. H. Zhou, Ms. F. Hao and Mr. Y. Yan for their kind helps in preparing the samples and conducting the microanalysis with the SEM-EDX-ray and TEM-EDX-ray. We also thank Dr. Y. Lu and Dr. A. Henry for their help in correcting English writing. The English in this document has been checked by at least two professional editors, both are native English speakers. We also thank the two anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaochun Zhang.

Additional information

Responsible Editor: Philip John White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Wang, L., Zhang, W. et al. Do lignification and silicification of the cell wall precede silicon deposition in the silica cell of the rice (Oryza sativa L.) leaf epidermis?. Plant Soil 372, 137–149 (2013). https://doi.org/10.1007/s11104-013-1723-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1723-z

Keywords

Navigation