Skip to main content
Log in

Nitrate nutrition enhances nickel accumulation and toxicity in Arabidopsis plants

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Nickel (Ni) has become a major heavy metal contaminant. The form of nitrogen nutrition remarkably affects IRT1 expression in roots. IRT1 has an activity of transporting Ni2+ into root cells. Therefore, nitrogen-form may affect Ni accumulation and toxicity in plants. The assumption was investigated in this study.

Methods

The Arabidopsis plants were treated in Ni-contained growth solutions with either nitrate (NO3 ) or ammonium (NH4 +) as the sole N source. After 7-day treatments, Ni concentration, IRT1 expression, Ni-induced toxic symptoms and oxidative stress in plants were analyzed.

Results

The NO3 -fed plants contained a higher Ni concentration, had a greater IRT1 expression in roots, and developed more severe toxic symptoms in the youngest fully expanded leaves, compared with the NH4 +-fed plants. The Ni-induced growth inhibition was also more significant in NO3 -fed plants. Interestingly, Ni exposure resulted in greater hydrogen peroxide (H2O2) and superoxide radical (O2 . −) accumulations, more severe lipid peroxidation and more cell death in NO3 -fed plants, whereas the opposite was true for NH4 +-fed plants. Furthermore, the Ni-enhanced peroxidase (POD) and superoxide dismutase (SOD) activities were greater in NO3 -fed plants

Conclusion

NO3 nutrition promotes Ni uptake, and enhances Ni-induced growth inhibition and oxidative stress in plants compared with NH4 + nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NH4 + :

ammonium

H2O2 :

hydrogen peroxide

MDA:

malondialdehyde

Ni:

nickel

NO3 :

nitrate

O2 . − :

superoxide radical

POD:

peroxidase

SOD:

superoxide dismutase

References

  • Ahmad MSA, Ashraf M, Hussain M (2011) Phytotoxic effects of nickel on yield and concentration of macro- and micro-nutrients in sunflower (Helianthus annuus L.) achenes. J Hazard Mater 185(2–3):1295–1303

    Article  PubMed  CAS  Google Scholar 

  • Anke M, Angelow L, Glei M, Müller M, Illing H (1995) The biological importance of nickel in the food chain. Fresenius J Anal Chem 352(1–2):92–96

    Article  CAS  Google Scholar 

  • Bai TH, Li CY, Ma FW, Feng FJ, Shu HR (2010) Responses of growth and antioxidant system to root-zone hypoxia stress in two Malus species. Plant Soil 327(1–2):95–105

    Article  CAS  Google Scholar 

  • Baker CJ, Mock NM (1994) An improved method for monitoring cell death in a cell suspension and leaf disk assays using Evans blue. Plant Cell Tissue Organ Cult 39(1):7–12

    Article  Google Scholar 

  • Bernstein N, Shoresh M, Xu Y, Huang BR (2010) Involvement of the plant antioxidant response in the differential growth sensitivity to salinity of leaves vs roots during cell development. Free Radical Biol Med 49(7):1161–1171

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brenchley WE (1938) Comparative effects of cobalt, nickel and copper on plant growth. Ann Appl Biol 25(4):671–694

    Article  CAS  Google Scholar 

  • Cavalcanti FR, Lima JPMS, Ferreira-Silva SL, Viégas RA, Silveira JAG (2007) Roots and leaves display contrasting oxidative response during salt stress and recovery in cowpea. J Plant Physiol 164(5):591–600

    Article  PubMed  CAS  Google Scholar 

  • Daniel-Vedele F, Krapp A, Kaiser WM (2010) Cellular biology of nitrogen metabolism and signaling. In: Hell R, Mendel RR (eds) Cell biology of metals and nutrients. Springer, Berlin, pp 145–172

    Chapter  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57(5):779–795

    Article  PubMed  CAS  Google Scholar 

  • de Azevedo Neto AD, Prisco JT, Enéas-Filho J (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56(1):87–94

    Article  Google Scholar 

  • Denkhaus E, Salnikow K (2002) Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hematol 42(1):35–56

    Article  PubMed  CAS  Google Scholar 

  • Drzewiecka K, Mleczek M, Gąsecka M, Magdziak Z, Goliński P (2012) Changes in Salix viminalis L. cv. ‘Cannabina’ morphology and physiology in response to nickel ions–Hydroponic investigations. J Hazard Mater 217–218:429–438

    Article  PubMed  Google Scholar 

  • Gajewska E, Sklodowska M, Slaba M, Mazur J (2006) Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Biol Plant 50(4):653–659

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11

    Article  PubMed  CAS  Google Scholar 

  • He SY, He ZL, Yang XE, Baligar VC (2012) Mechanisms of nickel uptake and hyperaccumulation by plants and implications for soil remediation. Adv Agron 117:117–189

    Article  CAS  Google Scholar 

  • Jalloh MA, Chen JH, Zhen FR, Zhang GP (2009) Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress. J Hazard Mater 162:1081–1085

    Article  PubMed  CAS  Google Scholar 

  • Jin CW, Du ST, Chen WW, Li GX, Zhang YS, Zheng SJ (2009) Elevated carbon dioxide improves plant Fe nutrition through enhancing the Fe-deficiency-induced responses under Fe-limited conditions in tomato. Plant Physiol 150:272–280

    Article  PubMed  CAS  Google Scholar 

  • Kronzucker HJ, Britto DT, Davenport RJ, Tester M (2001) Ammonium toxicity and the real cost of transport. Trends Plant Sci 6(8):335–337

    Article  PubMed  CAS  Google Scholar 

  • Luo BF, Du ST, Lu KX, Liu WJ, Lin XY, Jin CW (2012) Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants. J ExpBot 63(8):3127–3136

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • McLaughlin MJ, Andrews SJ, Smart MK, Smolders E (1998) Effects of sulfate on cadmium uptake by Swiss chard: I. Effects of complexation and calcium competition in nutrient solutions. Plant Soil 202(2):211–216

    Article  CAS  Google Scholar 

  • Monsant AC, Tang C, Baker AJM (2008) The effect of nitrogen form on rhizosphere soil pH and zinc phytoextraction by Thlaspi caerulescens. Chemosphere 73(5):635–642

    Article  PubMed  CAS  Google Scholar 

  • Monsant AC, Wang Y, Tang C (2010) Nitrate nutrition enhances zinc hyperaccumulation in Noccaea caerulescens (Prayon). Plant Soil 336(1–2):391–401

    Article  CAS  Google Scholar 

  • Mullineaux PM, Baker NR (2010) Oxidative stress: antagonistic signaling for acclimation or cell death? Plant Physiol 154(2):521–525

    Article  PubMed  CAS  Google Scholar 

  • Nishida S, Tsuzuki C, Kato A, Aisu A, Yoshida J, Mizuno T (2011) AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant Cell Physiol 52(8):1433–1442

    Article  PubMed  CAS  Google Scholar 

  • Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163(4):753–758

    Article  CAS  Google Scholar 

  • Peijnenburg WJGM, Baerselman R, de Groot AC, Jager T, Posthuma L, Van Veen RPM (1999) Relating environmental availability to bioavailability: soil-type-dependent metal accumulation in the Oligochaete Eisenia Andrei. Ecotoxicol Environ Saf 44(3):294–310

    Article  PubMed  CAS  Google Scholar 

  • Qin YH, da Silva JAT, Bi JH, Zhang SL, Hu GB (2011) Response of in vitro strawberry to antibiotics. Plant Growth Regul 65:183–193

    Article  CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD (2008) Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium. Russ J Plant Physiol 55(1):1–22

    Article  CAS  Google Scholar 

  • Shaff JE, Schultz BA, Craft EJ, Clark RT, Kochian LV (2010) GEOCHEM-EZ: a chemical speciation program with greater power and flexibility. Plant Soil 330(1–2):207–214

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14(1):43–50

    Article  PubMed  CAS  Google Scholar 

  • Shukla N, Awasthi RP, Rawat L, Kumar J (2012) Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress. Plant Physiol Biochem 54:78–88

    Article  PubMed  CAS  Google Scholar 

  • Stanisavljević N, Savić J, Jovanović Ž, Miljuš-Djukić J, Radović S, Vinterhalter D, Vinterhalter B (2012) Antioxidative-related enzyme activity in Alyssum markgrafii shoot cultures as affected by nickel level. Acta Physiol Plant 34(5):1997–2006

    Article  Google Scholar 

  • Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and plant growth. Plant Cell 14(6):1223–1233

    Article  PubMed  CAS  Google Scholar 

  • Wang YF, Shyu HW, Chang YC, Tseng WC, Huang YL, Lin KH, Chou MC, Liu HL, Chen CY (2012) Nickel (II)-induced cytotoxicity and apoptosis in humanproximal tubule cells through a ROS- and mitochondria-mediated pathway. Toxicol Appl Pharm 259(2):177–186

    Article  CAS  Google Scholar 

  • Xie HL, Jiang RF, Zhang FS, McGrath SP, Zhao FJ (2009) Effect of nitrogen form on the rhizosphere dynamics and uptake of cadmium and zinc by the hyperaccumulator Thlaspi caerulescens. Plant Soil 318(1–2):205–215

    Article  CAS  Google Scholar 

  • Xu FJ, Li G, Jin CW, Liu WJ, Zhang SS, Zhang YS, Lin XY (2012) Aluminum-induced changes in reactive oxygen species accumulation, lipid peroxidation and antioxidant capacity in wheat root tips. Biol Plant 56:89–96

    Article  CAS  Google Scholar 

  • Yu Y, Wang X, Wang D, Huang K, Wang L, Bao L, Wu F (2012) Environmental characteristics comparison of Li-ion batteries and Ni–MH batteries under the uncertainty of cycle performance. J Hazard Mater 229–230:455–460

    Article  PubMed  Google Scholar 

  • Zhang FQ, Wang YS, Lou ZP, Dong JD (2007) Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67(1):44–50

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Natural Science Foundation of China (Grant No. 31270041), the Department of Science & Technology of Zhejiang Province (2011C22077). Innovation Research Training Programme of Zhejiang Province for College Students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Wei Jin.

Additional information

Yan Hu, Nai Shan Wang and Xu Jun Hu contributed equally to this work.

Responsible Editor: Juan Barcelo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Wang, N.S., Hu, X.J. et al. Nitrate nutrition enhances nickel accumulation and toxicity in Arabidopsis plants. Plant Soil 371, 105–115 (2013). https://doi.org/10.1007/s11104-013-1682-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1682-4

Keywords

Navigation