Skip to main content
Log in

Physiological and molecular responses to magnesium nutritional imbalance in plants

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

Magnesium (Mg) is pivotal for many biochemical and physiological processes in plants. Mg biological functions include a key role in photosynthesis, in protein synthesis, as well as in nucleotide metabolism. However, Mg nutrition of plants remains little examined compared with other essential elements.

Scope

The review summarizes the current knowledge on physiological targets of Mg imbalances. Recently generated transcriptome profiles in response to Mg shortage and excess are also presented.

Conclusions

Sugar accumulation in source leaves is a major consequence of Mg shortage that can limit plant growth most probably by down regulation of photosynthesis activity. Newly identified molecular targets of Mg imbalance are appraised in relation to their potential contribution to Mg deficiency phenotypic emergence. In particular a potential role of the circadian clock and change in phytohormones concentration and/or signalling in the orchestration of the Mg deficiency response is possible. The development of markers for incipient Mg deficiency appears to be a challenging task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aitken RL, Dickson T, Hailes KJ, Moody PW (1999) Response of field-grown maize to applied magnesium in acidic soil in northeastern Australia. Aust J Agric Res 50:191–198

    Article  CAS  Google Scholar 

  • Andersson I (2008) Catalysis and regulation in Rubisco. J Exp Bot 59:1555–1568

    Article  PubMed  CAS  Google Scholar 

  • Anza M, Riga P, Garbisua C (2005) Time course of antioxidant responses of Capsicum annuum subjected to a progressive magnesium deficiency. Ann Appl Biol 146:123–134

    Article  CAS  Google Scholar 

  • Ayala-Silva T, Beyl CA (2005) Changes in spectral reflectance of wheat leaves in response to specific macronutrient deficiency. Adv Space Res 35:305–317

    Article  PubMed  CAS  Google Scholar 

  • Ayre BG (2011) Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning. Mol Plant 4:377–394

    Article  PubMed  CAS  Google Scholar 

  • Balakrishnan K, Rajendran C, Kulandaivelu G (2001) Differential responses of iron, magnesium, and zinc deficiency on pigment composition, nutrient content, and photosynthetic activity in tropical fruit crops. Photosynthetica 38:477–479

    Article  Google Scholar 

  • Bennett WF (1997) Nutrients deficiencies and toxicities in crop plants. The American Phythopathological Society Press, St. Paul

    Google Scholar 

  • Berezin I, Mizrachy-Dagry T, Brook E, Mizrahi K, Elazar M, Zhuo S, Saul-Tcherkas V, Shaul O (2008) Overexpression of AtMHX in tobacco causes increased sensitivity to Mg2+, Zn2+, and Cd2+ ions, induction of V-ATPase expression, and a reduction in plant size. Plant Cell Rep 27:939–949

    Article  PubMed  CAS  Google Scholar 

  • Bouma D, Dowling EJ, Wahjoedi H (1979) Some effects of potassium and magnesium on the growth of subterranean clover (Trifolium subterraneum). Ann Bot 43:529–538

    CAS  Google Scholar 

  • Boxler-Baldoma C, Lutz C, Heumann HG, Siefermann-Harms D (2006) Structural changes in the vascular bundles of light-exposed and shaded spruce needles suffering from Mg deficiency and ozone pollution. J Plant Physiol 163:195–205

    Article  PubMed  CAS  Google Scholar 

  • Brady KU, Kruckeberg AR, Bradshaw H (2005) Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol Syst 36:243–266

    Article  Google Scholar 

  • Broadley MR, White PJ (2010) Eats roots and leaves. Can edible horticultural crops address dietary calcium, magnesium and potassium deficiencies? Proc Nutr Soc 69:601–612

    Article  PubMed  CAS  Google Scholar 

  • Cai J, Chen L, Qu H, Lian J, Liu W, Hu Y, Xu G (2012) Alteration of nutrient allocation and transporter genes expression in rice under N, P, K, and Mg deficiencies. Acta Physiol Plant 34:939–946

    Article  CAS  Google Scholar 

  • Cakmak I, Kirkby EA (2008) Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol Plant 133:692–704

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I, Marschner H (2006) Magnesium deficiency enhances resistance to paraquat toxicity in bean leaves. Plant Cell Env 15:955–960

    Article  Google Scholar 

  • Cakmak I, Hengeler C, Marschner H (1994a) Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J Exp Bot 45:1245–1250

    Article  CAS  Google Scholar 

  • Cakmak I, Hengeler C, Marschner H (1994b) Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. J Exp Bot 45:1251–1257

    Article  CAS  Google Scholar 

  • Candan N, Tarhan L (2003) Relationship among chlorophyll-carotenoid content, antioxidant enzyme activities and lipid peroxidation levels by Mg2+ deficiency in the Mentha pulegium leaves. Plant Physiol Biochem 41:35–40

    Article  CAS  Google Scholar 

  • Ceppi MG, Oukarroum A, Nuran C, Strasser RJ, Schansker G (2012) The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: a study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress. Physiol Plant 144:277–288

    Article  PubMed  CAS  Google Scholar 

  • Chan CWM, Wohlbach DJ, Rodesch MJ, Sussman MR (2008) Transcriptional changes in response to growth of Arabidopsis in high external calcium. FEBS Lett 58:967–976

    Article  Google Scholar 

  • Chanroj S, Lu Y, Padmanaban S, Nanatani K, Uozumi N, Rao R, Sze H (2011) Plant-specific cation/H+ exchanger 17 and its homologs are endomembrane K+ transporters with roles in protein sorting. J Biol Chem 286:33931–33941

    Article  PubMed  CAS  Google Scholar 

  • Chiou TJ, Bush DR (1998) Sucrose is a signal molecule in assimilate partitioning. Proc Natl Acad Sci USA 95:4784–4788

    Article  PubMed  CAS  Google Scholar 

  • Conn SJ, Conn V, Tyerman SD, Kaiser BN, Leigh RA, Gilliham M (2011) Magnesium transporters, MGT2/MRS2-1 and MGT3/MRS2-5, are important for magnesium partitioning within Arabidopsis thaliana mesophyll vacuoles. New Phytol 190:583–594

  • Covington MF, Maloof JN, Straume M, Kay SA, Harmer SL (2008) Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol 9:R130

    Google Scholar 

  • Cowan JA (2002) Structural and catalytic chemistry of magnesium dependent enzymes. Biometals 15:225–235

    Article  PubMed  CAS  Google Scholar 

  • Dannehl H, Wietoska H, Heckmann H, Godde D (1996) Changes in D1-protein turnover and recovery of photosystem II activity precede accumulation of chlorophyll in plants after release from mineral stress. Planta 199:34–42

    Article  CAS  Google Scholar 

  • Ding Y, Luo W, Xu G (2006) Characterisation of magnesium nutrition and interaction of magnesium and potassium in rice. Ann Appl Biol 149:111–123

    Article  CAS  Google Scholar 

  • Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ, Webb AA (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633

    Article  PubMed  CAS  Google Scholar 

  • Engels C, Kirkby E, White PJ (2012) Mineral nutrition, yield and source-sink relationships. In: Marschner P (ed) Mineral nutrition of higher plants; 3rd edn. Elsevier Ltd., pp 85–131

  • Ericsson T, Kahr M (1995) Growth and nutrition of birch seedlings at varied relative addition rates of magnesium. Tree Physiol 15:85–93

    Article  PubMed  CAS  Google Scholar 

  • Farré EM (2012) The regulation of plant growth by the circadian clock. Plant Biol 14:401–410

    Article  PubMed  Google Scholar 

  • Fischer ES (1997) Photosynthetic irradiance curves of Phaseolus vulgaris under moderate or severe magnesium deficiency. Photosynthetica 33:385–390

    CAS  Google Scholar 

  • Fischer ES, Bremer E (1993) Influence of magnesium deficiency on rates of leaf expansion, starch and sucrose accumulation and net assimilation in Phaseolus vulgaris. Physiol Plant 89:271–276

    Article  CAS  Google Scholar 

  • Fischer ES, Lohaus G, Heineke D, Heldt HW (1998) Magnesium deficiency results in accumulation of carbohydrates and amino acids in source and sink leaves of spinach. Physiol Plant 102:16–20

    Article  CAS  Google Scholar 

  • Gardner RC (2003) Genes for magnesium transport. Curr Opin Plant Biol 6:263–267

    Article  PubMed  CAS  Google Scholar 

  • Godde D, Dannehl H (1994) Stress-induced chlorosis and increase in D1-protein turnover precede photoinhibition in spinach suffering under magnesium/sulphur deficiency. Planta 195:291–300

    Article  CAS  Google Scholar 

  • Graf A, Smith AM (2011) Starch and the clock: the dark side of plant productivity. Trends Plant Sci 16:169–175

    Article  PubMed  CAS  Google Scholar 

  • Grzebisz W (2009) Magnesium—food and human health. J Elem, 299–323

  • Hall JD, Bar R, Al-Abbas AH, Crane FL (1972) Ultrastructure of chloroplasts in mineral-deficient maize leaves. Plant Physiol 50:404–409

    Article  PubMed  CAS  Google Scholar 

  • Hariadi Y, Shabala S (2004) Screening broad beans (Vicia faba) for magnesium deficiency. II. Photosynthetic performance and leaf bioelectrical responses. Funct Plant Biol 31:539–549

    Article  CAS  Google Scholar 

  • Harmer SL (2009) The circadian system in higher plants. Annu Rev Plant Biol 60:357–377

    Article  PubMed  CAS  Google Scholar 

  • Harpaz-Saad S, Mee Yoon G, Mattoo AK, Kieber JJ (2012) The formation of ACC and competition between polyamines and ethylene for SAM. In: McManus MT (ed). Annual plant reviews volume 44: The plant hormone ethylene. Blackwell Publishing Ltd, pp 53–81

  • Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, Skrumsager Møller I, White P (2012) Functions of macronutrients. In: Marschner P (ed) Mineral nutrition of higher plants; 3rd edn. Elsevier Ltd., pp 135–189

  • Haydon JM, Bell LJ, Webb AR (2011) Interactions between plant circadian clocks and solute transport. J Exp Bot 62:2333–2348

    Article  PubMed  CAS  Google Scholar 

  • Hermans C, Verbruggen N (2005) Physiological characterization of magnesium deficiency in Arabidopsis thaliana. J Exp Bot 56:2153–2161

    Article  PubMed  CAS  Google Scholar 

  • Hermans C, Verbruggen N (2008) Enhancement of magnesium content in plants by exploiting ionomics and transcriptomics. In: Yardley AW (ed) Dietary magnesium: new research. Nova Science Publishers, pp 159–175

  • Hermans C, Johnson GN, Strasser RJ, Verbruggen N (2004) Physiological characterisation of magnesium deficiency in sugar beet: acclimation to low magnesium differentially affects photosystems I and II. Planta 220:344–355

    Article  PubMed  CAS  Google Scholar 

  • Hermans C, Bourgis F, Faucher M, Delrot S, Strasser RJ, Verbruggen N (2005) Magnesium deficiency in sugar beet alters sugar partitioning and phloem loading in young mature leaves. Planta 220:441–449

    Article  Google Scholar 

  • Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do deficiencies of essential mineral elements alter biomass allocation? Trends Plant Sci 11:610–617

    Article  PubMed  CAS  Google Scholar 

  • Hermans C, Vuylsteke M, Coppens F, Craciun A, Inzé D, Verbruggen N (2010a) The early transcriptomic changes induced by magnesium deficiency in Arabidopsis thaliana reveal the alteration of circadian clock genes expression in roots and the triggering of ABA-responsive genes. New Phytol 187:119–131

    Article  PubMed  CAS  Google Scholar 

  • Hermans C, Vuylsteke M, Coppens F, Cristescu S, Harren FJM, Inzé D, Verbruggen N (2010b) System analysis of the responses to long term magnesium deficiency and restoration in Arabidopsis thaliana. New Phytol 187:132–144

    Article  PubMed  CAS  Google Scholar 

  • Hermans C, Chen J, Coppens F, Inzé D, Verbruggen N (2011) Low magnesium status in plants enhances tolerance to cadmium exposure. New Phytol 192:428–436

    Article  PubMed  CAS  Google Scholar 

  • Hörtensteiner S (2009) Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci 14:155–162

    Article  PubMed  Google Scholar 

  • Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. Biochim Biophys Acta 1807:977–988

    Article  PubMed  Google Scholar 

  • Huang W, Pérez-García P, Pokhilko A, Millar AJ, Antoshechkin I, Riechmann JL, Mas P (2012) Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator. Science 336:75–79

    Article  PubMed  CAS  Google Scholar 

  • Hutin C, Nussaume L, Moise N, Moya I, Kloppstech K, Havaux M (2003) Early light-induced proteins protect Arabidopsis from photooxidative stress. Proc Natl Acad Sci USA 100:4921–4926

    Google Scholar 

  • Iqbal N, Nazar R, Syeed S, Masood A, Khan NA (2011) Exogenously-sourced ethylene increases stomatal conductance, photosynthesis, and growth under optimal and deficient nitrogen fertilization in mustard. J Exp Bot 62:4955–4963

    Article  PubMed  CAS  Google Scholar 

  • Jing H-C, Schippers JHM, Hille J, Dijkwel PP (2005) Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis. J Exp Bot 56:2915–2923

    Google Scholar 

  • Jung J-Y, Shin R, Schachtman DP (2009) Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis. Plant Cell 21:607–621

    Google Scholar 

  • Kaftan D, Brumfeld V, Nevo R, Scherz A, Reich Z (2002) From chloroplasts to photosystems: in situ scanning force microscopy on intact thylakoid membranes. EMBO J 21:6246–6253

    Article  Google Scholar 

  • Kamiya T, Yamagami M, Hirai MY, Fujiwara T (2012) Establishment of an in planta magnesium monitoring system using CAX3 promoter-luciferase in Arabidopsis. J Exp Bot 63:355–363

    Article  PubMed  CAS  Google Scholar 

  • Karley AJ, White PJ (2009) Moving cationic minerals to edible tissues: potassium, magnesium, calcium. Curr Opin Plant Biol 12:291–298

    Article  PubMed  CAS  Google Scholar 

  • Laing W, Greer D, Sun O, Beets P, Lowe A, Payn T (2000) Pysiological impacts of Mg deficiency in Pinus radiata: growth and photosynthesis. New Phytol 146:47–57

    Article  CAS  Google Scholar 

  • Lavon R, Salomon R, Goldschmidt EE (1999) Effect of potassium, magnesium, and calcium deficiencies on nitrogen constituents and chloroplast components in Citrus leaves. J Am Soc Hort Sci 124:158–162

    CAS  Google Scholar 

  • Li L, Tutone AF, Drummond RSM, Gardner RC, Luan S (2001) A novel family of magnesium transport genes in Arabidopsis. Plant Cell 13:2761–2775

    PubMed  CAS  Google Scholar 

  • Ling LL, Peng LZ, Cao L, Jiang CL, Chun CP, Zhang GY, Wang ZX (2009) Effect of magnesium deficiency on photosynthesis characteristic of Beibei 447 Jinchen orange. J Fruit Sci 26:275–280

    CAS  Google Scholar 

  • Lu Y-K, Chen Y-R, Yang C-M (1995) Influence of Fe- and Mg deficiency on the thylakoid membranes of a chlorophyll-deficient ch5 mutant of Arabidopsis thaliana. Bot Bull Acad Sin 36:175–179

    CAS  Google Scholar 

  • Marschner H, Cakmak I (1989) High light intensity enhances chlorosis and necrosis in leaves of zinc, potassium and magnesium deficient bean (Phaseolus vulgaris L.) plants. J Plant Physiol 134:308–315

    Article  CAS  Google Scholar 

  • McWatters HG, Devlin PF (2011) Timing in plants–a rhythmic arrangement. FEBS Lett 585:1474–1484

    Article  PubMed  CAS  Google Scholar 

  • Mehne-Jakobs B (1995) The influence of magnesium deficiency on carbohydrate concentrations in Norway spruce (Picea abies) needles. Tree Physiol 15:577–584

    Article  PubMed  CAS  Google Scholar 

  • Messenger AS, Hruby BA (1992) Excess calcium and magnesium associated with lower crown mortality of pin oak. J Arboriculture 18:241–248

    Google Scholar 

  • Mitchell AD, Loganathan P, Payn TW, Tillman RW (1999) Effect of calcined magnesite on soil and Pinus radiata foliage magnesium in pumice soils of New Zealand. Aust J Soil Res 37:545–560

    Article  CAS  Google Scholar 

  • Mizuno T, Yamashino T (2008) Comparative transcriptome of diurnally oscillating genes and hormone-responsive genes in Arabidopsis thaliana: insight into circadian clock-controlled daily responses to common ambient stresses in plants. Plant Cell Physiol 49:481–487

    Article  PubMed  CAS  Google Scholar 

  • Nakamichi N (2011) Molecular mechanisms underlying the Arabidopsis circadian clock. Plant Cell Physiol 52:1709–1718

    Article  PubMed  CAS  Google Scholar 

  • Oswald O, Martin T, Dominy PJ, Graham IA (2001) Plastid redox state and sugars: interactive regulators of nuclear-encoded photosynthetic gene expression. Proc Natl Acad Sci USA 98:2047–2052

    Article  PubMed  CAS  Google Scholar 

  • Pego JV, Kortstee AJ, Huijser C, Smeekens SCM (2000) Photosynthesis, sugars and the regulation of gene expression. J Exp Bot 51:407–416

    Article  PubMed  CAS  Google Scholar 

  • Prombona A, Argyroudi-Akoyunoglou J (2004) Diverse signals synchronise the circadian clock controlling the oscillations in chlorophyll content of etiolated Phaseolus vulgaris leaves. Plant Sci 167:117–127

    Article  CAS  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signaling. Trends Plant Sci 15:395–401

    Article  PubMed  CAS  Google Scholar 

  • Ren G, An K, Liao Y, Zhou X, Cao Y, Zhao H, Ge X, Kuai B (2007) Identification of a novel chloroplast protein atnye1 regulating chlorophyll degradation during leaf senescence in arabidopsis. Plant Physiol 144:1429–1441

    Article  PubMed  CAS  Google Scholar 

  • Ridolfi M, Garrec JP (2000) Consequences of an excess Al and a deficiency in Ca and Mg for stomatal functioning and net carbon assimilation of beech leaves. Ann For Sci 57:209–218

    Article  Google Scholar 

  • Riga P, Anza M (2003) Effect of magnesium deficiency on pepper growth parameters. Implications for the determination of Mg-critical value. J Plant Nutr 26:1581–1593

    Article  CAS  Google Scholar 

  • Rizza A, Boccaccini A, Lopez-Vidriero I, Costantino P, Vittorioso P (2011) Inactivation of the ELIP1 and ELIP2 genes affects Arabidopsis seed germination. New Phytol 190:896–905

    Article  PubMed  CAS  Google Scholar 

  • Römheld V (2012) Diagnosis of deficiency and toxicity of nutrients. In: Marschner P (ed) Mineral nutrition of higher plants; 3rd edn. Elsevier Ltd., pp 299–311

  • Rossini S, Casazza AP, Engelmann EC, Havaux M, Jennings RC, Soave C (2006) Suppression of both ELIP1 and ELIP2 in Arabidopsis does not affect tolerance to photoinhibition and photooxidative stress. Plant Physiol 141:1264–1273

    Article  PubMed  CAS  Google Scholar 

  • Ruan J, Ma L, Yang Y (2012) Magnesium nutrition on accumulation and transport of amino acids in tea plants. J Sci Food Agric 92:1375–1383

    Article  PubMed  CAS  Google Scholar 

  • Shaul O (2002) Magnesium transport and function in plants: the tip of the iceberg. Biometals 15:309–323

    Article  PubMed  CAS  Google Scholar 

  • Shaul O, Hilgemann DW, Aldmeida-Engler J, Van Montagu M, Inzé D, Galili G (1999) Cloning and characterization of a novel Mg2+/H+ exchanger. EMBO J 18:3973–3980

    Article  PubMed  CAS  Google Scholar 

  • Strasser RJ, Srivastava A, Govindjee (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. J Photochem Photobiol 61:32–42

    Article  CAS  Google Scholar 

  • Sun OJ, Payn TW (1999) Magnesium nutrition and photosynthesis in Pinus radiata: clonal variation and influence of potassium. Tree Physiol 19:535–540

    Article  PubMed  CAS  Google Scholar 

  • Sun OJ, Gielen GJHP, Tattersall Smith RSC, Thorn AJ (2001) Growth, Mg nutrition and photosynthetic activity of Pinus radiata: evidence that NaCl addition counteracts the impact of low Mg supply. Trees 15:335–340

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Tewari PK, Kumar P, Tewari N, Srivastava S, Sharma PN (2004) Macronutrient deficiencies and differential antioxidant responses-influence on the activity and expression of superoxide dismutase in maize. Plant Sci 166:687–694

    Article  CAS  Google Scholar 

  • Tewari PK, Kumar P, Sharma PN (2006) Magnesium deficiency induced oxidative stress and antioxidant responses in mulberry plants. Sci Hort 108:7–14

    Article  Google Scholar 

  • Thain SC, Vandenbussche F, Laarhoven LJJ, Dowson-Day MJ, Wang ZY, Tobin EM, Harren FJM, Millar AJ, Van Der Straeten D (2004) Circadian rhythms of ethylene emission in Arabidopsis. Plant Physiol 136:3751–3761

    Google Scholar 

  • Tommasini R, Vogt E, Fromenteau M, Hörtensteiner S, Matile P, Amrhein N, Martinoia E (1998) An ABC-transporter of Arabidopsis thaliana has both glutathione-conjugate and chlorophyll catabolite transport activity. Plant J 13:773–780

    Article  PubMed  CAS  Google Scholar 

  • Troyanos YE, Hipps NA, Moorby J, Kingswell G (2000) The effects of external potassium and magnesium concentrations’ on the magnesium and potassium inflow rates and growth of micropropagated cherry rootstocks, ‘F.12/1’ (Prunus avium L.) and ‘Colt’ (Prunus avium L.) X Prunus pseudocerasus L. Plant Soil 225:73–82

    Article  CAS  Google Scholar 

  • Tzvetkova-Chevolleau T, Franck F, Alawady AE, Dall'Osto L, Carriere F, Bassi R, Grimm B, Nussaume L, Havaux M (2007) The light stress-induced protein ELIP2 is a regulator of chlorophyll synthesis in Arabidopsis thaliana. Plant J 50:795–809

    Article  PubMed  CAS  Google Scholar 

  • Vacek S, Podrázský V, Hejcman M, Remeš J (2006) Effect of Mg fertilization on yellowing disease of Norway spruce at higher elevations of the Šumava Mts., Czech Republic. J Forest Sci 52:474–481

    CAS  Google Scholar 

  • Vaughn MW, Harrington GN, Bush DR (2002) Sucrose-mediated transcriptional regulation of sucrose symporter activity in the phloem. Proc Natl Acad Sci USA 99:10876–10880

    Article  PubMed  CAS  Google Scholar 

  • Venkatesan S, Jayaganesh S (2010) Characterisation of magnesium toxicity, its influence on amino acid synthesis pathway and biochemical parameters of tea. Res J Phytochem 4:67–77

    Article  CAS  Google Scholar 

  • Visscher AM, Paul AL, Kirst M, Guy CL, Schuerger AC, Ferl RJ (2010) Growth performance and root transcriptome remodeling of Arabidopsis in response to Mars-like levels of magnesium sulfate. PLoS One 5:e12348

    Article  PubMed  Google Scholar 

  • Waters BM (2011) Moving magnesium in plant cells. New Phytol 190:510–513

    Article  PubMed  CAS  Google Scholar 

  • Wei Q, Guo Y, Kuai B (2011) Isolation and characterization of a chlorophyll degradation regulatory gene from tall fescue. Plant Cell Rep 30:1201–1207

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Nehnevajova E, Köllmer I, Novak O, Strnad M, Krämer U, Schmülling T (2010) Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell 22:3905–3920

    Article  PubMed  Google Scholar 

  • White PJ, Bradshaw JE, Finlay M, Dale B, Ramsay G, Hammond JP, Broadley MR (2009) Relationships between yield and mineral concentrations in potato tubers. HortSci 44:6–11

    Google Scholar 

  • Wilkinson S, Welch R, Mayland H, Grunes D (1990) Magnesium in plants: uptake, distribution, function and utilization by man and animals. Metal Ions Biol Syst 26:33–56

    CAS  Google Scholar 

  • Williams L, Salt DE (2009) The plant ionome coming into focus. Curr Opin Plant Biol 12:247–249

    Article  PubMed  CAS  Google Scholar 

  • Yang GH, Yang LT, Jiang HX, Li Y, Wang P, Chen LS (2012) Physiological impacts of magnesium-deficiency in Citrus seedlings: photosynthesis, antioxidant system and carbohydrates. Trees. doi:10.1007/s00468-012-0699-2

  • Zhao H, Zhou Q, Zhou M, Li C, Gong X, Liu C, Qu C, Wang L, Si W, Hong F (2012) Magnesium deficiency results in damage of nitrogen and carbon cross-talk of maize and improvement by cerium addition. Biol Trace Elem Res 148:102–109

    Article  PubMed  CAS  Google Scholar 

  • Zientara K, Wawrzynska A, Lukomska J, Lopez-Moya JR, Liszewska F, Assuncao AG, Aarts MG, Sirko A (2009) Activity of the AtMRP3 promoter in transgenic Arabidopsis thaliana and Nicotiana tabacum plants is increased by cadmium, nickel, arsenic, cobalt and lead but not by zinc and iron. J Biotech 139:258–263

    Article  CAS  Google Scholar 

Download references

Acknowledgments

C.H. is research associate of the Fonds pour la Recherche Scientifique-FNRS. Research at LPGMP is partly supported by Action de Recherche Concertée (ARC) ‘Nutrition and circadian rhythms in plants’. We thank Simon Conn for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hermans.

Additional information

Responsible Editor: Ismail Cakmak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PPT 544 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verbruggen, N., Hermans, C. Physiological and molecular responses to magnesium nutritional imbalance in plants. Plant Soil 368, 87–99 (2013). https://doi.org/10.1007/s11104-013-1589-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1589-0

Keywords

Navigation