Skip to main content
Log in

Effects of lead stress on anti-oxidative enzymes and stress-related hormones in seedlings of Excoecaria agallocha Linn

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

This study aimed to evaluate the responses of anti-oxidative enzymes and stress-related hormones in E. agallocha to different levels of Pb stresses at different exposure time.

Methods

The study was carried out in greenhouse, and the pot trials were conducted to investigate the stress responses of root and leaf to Pb exposure in seedlings of E. agallocha.

Results

Pb stress posed higher toxic effects on root than leaf at day 49. At days 1, 7and 49, the activities of superoxide dismutase and peroxidases increased significantly, especially in leaves. Significant increases of malondialdehyde content were also observed at day 1 but significant increases of proline were only found at day 49 in leaf. Increases of salicylic acid and jasmonic acid were mainly observed in the leaves at day 1.

Conclusions

E. agallocha was sensitive to Pb stress and damages, but tended to acclimate to low levels of Pb stresses by increasing and maintaining high levels of SOD and POD activities even at the later stage of exposure (day 49). Increases of endogenous SA and JA concentrations at day 1 might also involve in the plant’s tolerance to Pb stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agoramoorthy G, Chen FA, Hsu MJ (2008) Threat of heavy metal pollution in halophytic andmangrove plants of Tamil Nadu, India. Environ Pollut 155:320–326

    Article  PubMed  CAS  Google Scholar 

  • Aziz A, Martin-Tanguy J, Larher F (1998) Stress-induced changes in polyamine and tyramine levels can regulate praline accumulation in tomato leaf discs treated with sodium chloride. Physiol Plantarum 104:195–202

    Article  CAS  Google Scholar 

  • Balbi V, Devoto A (2008) Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol 177:301–318

    Article  PubMed  CAS  Google Scholar 

  • Bates LS (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Blikhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Breckle SW (1991) Growth under stress. Heavy metals. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, USA

    Google Scholar 

  • Chen CT, Chen TH, Lo KF, Chiu CY (2004) Effects of proline on copper transport in rice seedlings under excess copper stress. Plant Sci 166:103–111

    Article  CAS  Google Scholar 

  • Chiu CY, Hsiu FS, Chen SS, Chou CH (1995) Reduced toxicity of Cu and Zn to mangrove seedlings in saline environments. Bot Bull Acad Sin 36:19–24

    CAS  Google Scholar 

  • Davies MS (1991) Effect of toxic concentrations of metals on root growth and development. In: Atkinson D (ed) Plant root growth: an ecological perspective. Blackwell Scientific Publication, Oxford

    Google Scholar 

  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L.). J Exp Bot 52:1101–1109

    Article  PubMed  CAS  Google Scholar 

  • Elstner EF, Heupel A (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem 70:616–620

    Article  PubMed  CAS  Google Scholar 

  • Fielding JL, Hall JL (1978) A biochemical and cytochemical study of peroxidase activity in roots of Pisum sativum. II. Distribution of enzymes in relation to root development. J Exp Bot 29:983–991

    Article  CAS  Google Scholar 

  • Godbold DL, Hüttermann A (1985) Effect of zinc, cadmium and mercury on root elongation of Picea abies (Karst.) seedlings, and the significance of these metals to forest die-back. Environ Pollut 38:375–381

    Article  CAS  Google Scholar 

  • Guinn G, Brummett DL, Beier RC (1986) Purification and measurement of abscisic acid and indoleacetic acid by high performance liquid chromatography. Plant Physiol 81:997–1002

    Article  PubMed  CAS  Google Scholar 

  • Gupta DK, Nicoloso FT, Schetinger MRC, Rossato LV, Pereira LB, Castro GY, Srivastava S, Tripathi RD (2009) Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater 172:479–484

    Article  PubMed  CAS  Google Scholar 

  • Gwozdz EA, Przymusinski R, Rucinska R, Deckert J (1997) Plant cell responses to heavy metals: molecular and physiological aspects. Acta Physiol Plant 19:459–465

    Article  CAS  Google Scholar 

  • Hajiboland R, Amirazad F (2010) Growth, photosynthesis and antioxidant defense system in Zn-deficient red cabbage plants. Plant Soil Environ 56:209–217

    CAS  Google Scholar 

  • Harbison P (1986) Mangrove muds-a sink and a source for trace metals. Mar Pollut Bull 17:246–250

    Article  CAS  Google Scholar 

  • Irvine I, Birch GF (1998) Distribution of heavy metals in surficial sediments of Port Jackson, Sydney, New South Wales. Aust J Earth Sci 45:297–304

    Article  CAS  Google Scholar 

  • Islam E, Yang X, Li T, Liu D, Jin X, Meng F (2007) Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 147:806–816

    Article  PubMed  CAS  Google Scholar 

  • Knight JA, Voorhees RP (1990) Peroxidation of linolenic acid-catalysis by transition metal ions. Annu Clin Lab Sci 20:347–352

    CAS  Google Scholar 

  • Koeduka T, Matsui K, Hasegawa M, Akakabe Y, Kajiwara T (2005) Rice fatty acid a-dioxygenase is induced by pathogen attack and heavy metal stress: activation through jasmonate signaling. J Plant Physiol 162:912–920

    Article  PubMed  CAS  Google Scholar 

  • Kosugi H, Kikugawa K (1985) Thiobarbituric acid reaction of aldehyes and oxidized lipids in glacial acetic acid. Lipids 20:915–920

    Article  CAS  Google Scholar 

  • Kováčik J, Klejdus B, Kaduková J, Bačkor M (2009) Physiology of Matricaria chamomilla exposed to nickel excess. Ecotoxicol Environ Safety 72:603–609

    Article  PubMed  Google Scholar 

  • Krishnamurty KV, Shpirt E, Reddy M (1976) Trace metal extraction of soils and sediments by nitric acid hydrogen peroxide. At Absorpt Newsl 15:8–71

    Google Scholar 

  • Kumari A, Sheokand S, Kumari S (2010) Nitric oxide induced alleviation of toxic effects of short term and long term Cd stress on growth, oxidative metabolism and Cd accumulation in Chickpea. Brazil J Plant Physiol 22:271–284

    Article  Google Scholar 

  • Lacerda LD (1998) Trace metals biogeochemistry and diffuse pollution in mangrove ecosystems. ISME Mangrove Ecosystems Occasional papers, 2:1–61.

    Google Scholar 

  • Lee TM, Chang YC (1999) An increase of ornithine amino- transferase-mediated proline synthesis in relation to high plants. Adv Bot Res 22:45–96

    Google Scholar 

  • Liu D, Li TQ, Jin XF, Yang XE, Islam E, Mahmood Q (2008) Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of Sedum alfredii. J Integr Plant Biol 50:129–140

    Article  PubMed  CAS  Google Scholar 

  • MacFarlane GR (2002) Leaf biochemical parameters in Avicennia marina (Forsk.) Vierh as potential biomarkers of heavy metal stress in estuarine ecosystems. Mar Pollut Bull 44:244–256

    Article  PubMed  CAS  Google Scholar 

  • MacFarlane GR, Burchett MD (2002) Toxicity, growth and accumulation relationships of copper, lead and zinc in the Grey Mangrove Avicennia marina (Forsk.) Veirh. Mar Environ Res 54:65–84

    Article  PubMed  CAS  Google Scholar 

  • MacFarlane GR, Koller CE, Blomberg SP (2007) Accumulation and partitioning of heavy metals in mangroves: A synthesis of field-based studies. Chemosphere 69:1454–1464

    Article  PubMed  CAS  Google Scholar 

  • Majumder AL, Sengupta S, Goswami L (2010) Osmolyte regulation in abiotic stress. Abiot Stress Adapt Plants 2010:349–370

    Google Scholar 

  • Maksymiec W (2007) Signaling responses in plants to heavy metal stress. Acta Physiol Plant 29:177–187

    Article  CAS  Google Scholar 

  • Maksymiec W, Wianowska D, Dawidowicz AL, Radkiewicz S, Mardarowicz M, Krupa Z (2005) The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. J Plant Physiol 162:1338–1346

    Article  PubMed  CAS  Google Scholar 

  • Metwally A, Finkermeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    Article  PubMed  CAS  Google Scholar 

  • Ong Che RG (1999) Concentration of 7 heavy metals in sediments and mangrove root samples from Mai Po, Hong Kong. Mar Pollut Bull 39:269–279

    Article  Google Scholar 

  • Padmavathiamma KP, Li LY (2010) Phytoavailability and fractionation of lead and manganese in a contaminated soil after application of three amendments. Biores Technol 101:5667–5676

    Article  CAS  Google Scholar 

  • Pál M, Horváth E, Janda T, Páldi E, Szalai G (2005) Cadmium stimulates accumulation of salicylic acid and its putative precursors in maize (Zea mays L.) plants. Physiol Plantarum 125:356–364

    Article  Google Scholar 

  • Peters EC, Gassman NJ, Firman JC, Richmond RH, Power EA (1997) Ecotoxicology of tropical marine ecosystems. Environ Toxicol Chem 16:12–40

    Article  CAS  Google Scholar 

  • Popova LP, Maslenkova LT, Yordanova RY, Ivanova AP, Krantev AP, Szalai G, Janda T (2009) Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem 47:224–231

    Article  PubMed  CAS  Google Scholar 

  • Prasad MNV (2004) Heavy metal stress in plants: from biomolecules to ecosystems, Springer-verlag.

  • Saenger P, McConchie D (2004) Heavy metals in mangroves: methodology, monitoring and management. ENVIS Forest Bull 4:52–62

    Google Scholar 

  • Schat H, Sharma SS, Vooijs R (1997) Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiol Plantarum 101:477–482

    Article  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exper Bot 53:1351–1362

    Article  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Brazil J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  • Silva CAR, Lacerda LD, Rezende CE (1990) Metal reservoir in a red mangrove forest. Biotropica 22:339–345

    Article  Google Scholar 

  • Sin SN, Chua H, Lo W, Ng LM (2001) Assessment of heavy metal cations in sediments of Shing Mun River, Hong Kong. Environ Int 26:297–301

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Dubey RS (2011) Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. J Plant Growth Regul 64:1–16

    Article  CAS  Google Scholar 

  • Sticher L, Mauchmani B, Metraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270

    Article  PubMed  CAS  Google Scholar 

  • Stroinski A, Kozlowska M (1997) Cadmium-induced oxidative stress in potato tuber. Acta Soc Bot Polon 66:189–195

    Article  CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  CAS  Google Scholar 

  • Szalai G, Horgosi S, Soós V, Majláth I, Balázs E, Janda T (2011) Salicylic acid treatment of pea seeds induces its de novo synthesis. J Plant Physiol 168(3):213–219

    Article  PubMed  CAS  Google Scholar 

  • Tam NFY, Wong YS (2000) Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environ Pollut 110:195–205

    Article  PubMed  CAS  Google Scholar 

  • Tewari RK, Kumar P, Sharma PN, Bisht SS (2002) Modulation of oxidative stress responsive enzymes by excess cobalt. Plant Sci 162:381–388

    Article  CAS  Google Scholar 

  • Turner JG, Ellis C, Devoto A (2002) The jasmonates signal pathway. Plant Cell 14:153–164

    Google Scholar 

  • Vangronsveld J, Clijsters H (1994) Toxic effects of metals. In: Farago ME (ed) Plants and the chemical elements. VCH Publishers, Weinheim

    Google Scholar 

  • Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162:465–472

    Article  PubMed  CAS  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annu Bot 100:681–697

    Article  CAS  Google Scholar 

  • Weisany W, Sohrabi Y, Heidari G, Siosemardeh A, Ghassemi-Golezani K (2012) Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics 5:60–67

    CAS  Google Scholar 

  • Yan Z, Tam NFY (2011) Temporal changes of polyphenols and enzyme activities in seedlings of Kandelia obovata under lead and manganese stresses. Mar Pollut Bull 63(5–12):438–444

    Article  PubMed  CAS  Google Scholar 

  • Yang YN, Qi M, Mei CS (2004) Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. Plant J 40:909–919

    Article  PubMed  CAS  Google Scholar 

  • Zhang FQ, Wang YS, Lou ZP, Dong JD (2007) Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67:44–50

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work described in this paper was jointly supported by National Nature Science Foundation of China (No. 41201525), SKLEC-2012RCDW02 and a grant from the Research Grant Council of the Hong Kong SAR, China (Project No. 160907).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nora Fung Yee Tam.

Additional information

Responsible Editor: Juan Barcelo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Z., Tam, N.F.Y. Effects of lead stress on anti-oxidative enzymes and stress-related hormones in seedlings of Excoecaria agallocha Linn. Plant Soil 367, 327–338 (2013). https://doi.org/10.1007/s11104-012-1467-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1467-1

Keywords

Navigation