Skip to main content
Log in

Citrate exudation induced by aluminum is independent of plasma membrane H+-ATPase activity and coupled with potassium efflux from cluster roots of phosphorus-deficient white lupin

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Exudation of organic acid anions is one of the mechanisms responsible for aluminum (Al) tolerance. The plasma membrane (PM) H+-ATPase is involved in the exudation of organic acid anions. However, the relationship between organic acid exudation and PM H+-ATPase under Al toxicity remains unclear. This study aims to investigate the correlation among Al-induced citrate exudation, PM H+-ATPase activity and counterions for citrate release from cluster roots of phosphorus-deficient (−P) white lupin.

Methods

Al and various pharmacological agents were applied to incubate the cluster roots of P-deficient white lupin; the citrate exudation rate, PM H+-ATPase activity and ion exudation of cluster roots were examined.

Results

Citrate exudation from cluster roots of P-deficient white lupin was induced by 50 μM Al treatment within 1.5 h, but no extra increase was found when the duration of Al treatment increased. The PM H+-ATPase activity of cluster roots was insensitive to Al treatment, irrespective of Al concentration and duration of Al treatment. Al treatment increased K+ efflux but not H+ efflux from cluster roots. After application of pharmacological agents to P-deficient cluster roots under Al treatment or not, vanadate decreased H+ efflux and increased K+ efflux, but had no inhibitory effect on citrate exudation; fusicoccin increased H+ efflux and citrate exudation, but decreased K+ efflux; tetraethylammonium (TEA) chloride, a K+-channel inhibitor, inhibited K+ efflux and increased H+ efflux.

Conclusions

These results indicate that citrate exudation induced by combined treatment with P-deficiency and Al is independent of PM H+-ATPase activity, and is coupled with K+ efflux, which may compensate H+ efflux for keeping the charge balance for Al-induced citrate exudation from cluster roots of P-deficient white lupin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahn SJ, Sivaguru M, Osawa H, Chung GC, Matsumoto H (2001) Aluminum inhibits the H+-ATPase activity by permanently altering the plasma membrane surface potentials in squash roots. Plant Physiol 126:1381–1390

    Article  PubMed  CAS  Google Scholar 

  • Ahn SJ, Rengel Z, Matsumoto H (2004) Aluminum-induced plasma membrane surface potential and H+-ATPase activity in near-isogenic wheat lines differing in tolerance to aluminum. New Phytol 162:71–79

    Article  CAS  Google Scholar 

  • Bose J, Babourina O, Shabala S, Rengel Z (2010a) Aluminum-dependent dynamics of ion transport in Arabidopsis: specificity of low pH and aluminum responses. Physiol Plant 139:401–412

    PubMed  CAS  Google Scholar 

  • Bose J, Babourina O, Shabala S, Rengel Z (2010b) Aluminium-induced ion transport in Arabidopsis: the relationship between Al tolerance and root ion flux. J Exp Bot 61:3163–3175

    Article  PubMed  CAS  Google Scholar 

  • Cheng L, Bucciarelli B, Shen J, Allan D, Vance CP (2011) Update on white lupin cluster root acclimation to phosphorus deficiency. Plant Physiol 156:1025–1032

    Article  PubMed  CAS  Google Scholar 

  • Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1091

    Article  PubMed  CAS  Google Scholar 

  • Gassmann W, Schroeder JI (1994) Inward-rectifying K+ channels in root hairs of wheat (a mechanism for aluminum-sensitive low-affinity K+ uptake and membrane-potential control). Plant Physiol 105:1399–1408

    PubMed  CAS  Google Scholar 

  • Hoekenga OA, Maron LG, Piñeros MA, Cançado GM, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:9738–9743

    Article  PubMed  CAS  Google Scholar 

  • Horst WJ, Wang Y, Eticha D (2010) The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Ann Bot 106:185–197

    Article  PubMed  CAS  Google Scholar 

  • Huang CF, Yamaji N, Chen Z, Ma JF (2012) A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice. Plant J 69:857–867

    Article  PubMed  CAS  Google Scholar 

  • Kidd PS, Llugany M, Poschenrieder C, Gunse B, Barcelo J (2001) The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52:1339–1352

    Article  PubMed  CAS  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Mol Biol 46:237–260

    Article  CAS  Google Scholar 

  • Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorus efficiency. Annu Rev Plant Biol 55:459–493

    Article  PubMed  CAS  Google Scholar 

  • Kochian LV, Piñeros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195

    Article  CAS  Google Scholar 

  • Kollmeier M, Dietrich P, Bauer CS, Horst WJ, Hedrich R (2001) Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex. A comparison between an aluminum-sensitive and aluminum-resistant cultivar. Plant Physiol 126:397–410

    Article  PubMed  CAS  Google Scholar 

  • Liao H, Wan HY, Shaff J, Wang XR, Yan XL, Kochian LV (2006) Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance: exudation of specific organic acids from different regions of the intact root system. Plant Physiol 141:674–684

    Article  PubMed  CAS  Google Scholar 

  • Ligaba A, Yamaguchi M, Shen H, Sakaki T, Yamamoto Y, Matsumoto H (2004) Phosphorus deficiency enhances plasma membrane H+-ATPase activity and citrate exudation in greater purple lupin (Lupinus pilosus). Funct Plant Biol 31:1075–1083

    Article  CAS  Google Scholar 

  • Liu K, Luan S (2001) Internal aluminum block of plant inward K+ channels. Plant Cell 13:1453–1465

    PubMed  CAS  Google Scholar 

  • Liu J, Samac DA, Bucciarelli B, Allan DL, Vance CP (2005) Signaling of phosphorus deficiency-induced gene expression in white lupin requires sugar and phloem transport. Plant J 41:257–268

    Article  PubMed  CAS  Google Scholar 

  • Ma JF (2000) Role of organic acids in detoxification of Al in higher plants. Plant Cell Physiol 44:383–390

    Article  Google Scholar 

  • Ma JF, Zheng SJ, Matsumoto H (1997) Specific secretion of citric acid induced by Al stress in Cassia tora L. Plant Cell Physiol 38:1019–1025

    Article  CAS  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    Article  PubMed  CAS  Google Scholar 

  • Magalhaes JV, Liu J, Guimarães CT, Lana UG, Alves VM, Wang YH, Schaffert RE, Hoekenga OA, Piñeros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1991) Mechanisms of adaptation of plants to acid soils. Plant Soil 134:1–20

    CAS  Google Scholar 

  • Matsumoto H (1988) Inhibition of proton transport activity of microsomal membrane vesicles of barley roots by aluminum. Soil Sci Plant Nut 34:499–506

    Article  CAS  Google Scholar 

  • Meng ZB, Chen LQ, Suo D, Li GX, Tang CX, Zheng SJ (2012) Nitric oxide is the shared signalling molecule in phosphorus- and iron-deficiency-induced formation of cluster roots in white lupin (Lupinus albus). Ann Bot 109:1055–1064

    Article  PubMed  CAS  Google Scholar 

  • Miyasaka SC, Buta JG, Howell RK, Foy CD (1991) Mechanism of aluminum tolerance in snapbean, root exudation of citric acid. Plant Physiol 96:737–743

    Article  PubMed  CAS  Google Scholar 

  • Murphy AS, Eisinger WR, Shaff JE, Kochian LV, Taiz L (1999) Early copper-induced leakage of K+ from Arabidopsis seedlings is mediated by ion channels and coupled to citrate efflux. Plant Physiol 121:1375–1382

    Article  PubMed  CAS  Google Scholar 

  • Neumann G, Martinoia E (2002) Cluster roots—an underground adaptation for survival in extreme environments. Trends Plant Sci 7:162–167

    Article  PubMed  CAS  Google Scholar 

  • Neumann G, Massonneau A, Martinoia E, Römheld V (1999) Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta 208:373–382

    Article  CAS  Google Scholar 

  • Ohno T, Koyama H, Hara T (2003) Characterization of citrate transport through the plasma membrane in a carrot mutant cell line with enhanced citrate excretion. Plant Cell Physiol 44:156–162

    Article  PubMed  CAS  Google Scholar 

  • Olivetti GP, Cumming JR, Etherton B (1995) Membrane-potential depolarization of root cap cells precedes aluminum tolerance in snapbean. Plant Physiol 109:123–129

    CAS  Google Scholar 

  • Osawa H, Matsumoto H (2002) Aluminium triggers malate-independent potassium release via ion channels from the root apex in wheat. Planta 215:405–412

    Article  PubMed  CAS  Google Scholar 

  • Pellet DM, Grunes DL, Kochian LV (1995) Organic acid exudation as an Al-tolerance mechanism in maize (Zea mays L.). Planta 196:788–795

    Article  CAS  Google Scholar 

  • Rangel AF, Rao IM, Braun HP, Horst WJ (2010) Aluminum resistance in common bean (Phaseolus vulgaris) involves induction and maintenance of citrate exudation from root apices. Physiol Plant 138:176–190

    Article  PubMed  CAS  Google Scholar 

  • Roelofs RFR, Rengel Z, Cawthray GR, Dixon KW, Lambers H (2001) Exudation of carboxylates in Australian Proteaceae: chemical composition. Plant Cell Environ 24:891–903

    Article  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995) Characteristic of Al-stimulated efflux of malate from the apices of Al-tolerant wheat roots. Planta 196:103–110

    Article  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Mol Biol 52:527–560

    Article  CAS  Google Scholar 

  • Ryan PR, Raman H, Gupta S, Horst WJ, Delhaize E (2009) A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol 149:340–351

    Article  PubMed  CAS  Google Scholar 

  • Shen R, Ma J, Kyo M, Iwashita T (2002) Compartmentation of aluminium in leaves of an Al-accumulator, Fagopyrum esculentum Moench. Planta 215:394–398

    Article  PubMed  CAS  Google Scholar 

  • Shen H, He LF, Sasaki T, Yamamoto Y, Zheng SJ, Ligaba A, Yan XL, Ahn SJ, Yamaguchi M, Sasakawa H, Matsumoto H (2005) Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Up-regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H+-ATPase. Plant Physiol 138:287–296

    Article  PubMed  CAS  Google Scholar 

  • Shen H, Chen J, Wang Z, Yang C, Sasaki T, Yamamoto Y, Matsumoto H, Yan X (2006) Root plasma membrane H+-ATPase is involved in the adaptation of soybean to phosphorus starvation. J Exp Bot 57:1353–1362

    Article  PubMed  CAS  Google Scholar 

  • Sondergaard TE, Schulz A, Palmgren MG (2004) Energization of transport processes in plants. Roles of the plasma membrane H+-ATPase. Plant Physiol 138:2475–2482

    Article  Google Scholar 

  • Tanoi K, Junko H, Kazutoshi S, Yoshitake H, Hiroki N, Tomoko MN (2005) Analysis of potassium uptake by rice roots treated with aluminum using a positron emitting nuclide, 38K. Soil Sci Plant Nut 51:715–717

    Article  CAS  Google Scholar 

  • Tomasi N, Kretzschmar T, Espen L, Weisskopf L, Fuglsang AT, Palmgren MG, Neumann G, Varanini Z, Pinton R, Martinoia E, Cesco S (2009) Plasma membrane H+-ATPase-dependent citrate exudation from cluster roots of phosphate-deficient white lupin. Plant Cell Environ 32:465–475

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Shen J, Zhang W, Zhang F, Neumann G (2007) Citrate exudation from white lupin induced by phosphorus deficiency differs from that induced by aluminum. New Phytol 176:581–589

    Article  PubMed  CAS  Google Scholar 

  • Wherrett T, Ryan PR, Delhaize E, Shabala S (2005) Effect of aluminium on membrane potential and ion fluxes at the apices of wheat roots. Funct Plant Biol 32:199–208

    Article  CAS  Google Scholar 

  • Yan F, Zhu Y, Müller C, Zörb C, Schubert S (2002) Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiol 129:50–63

    Article  PubMed  CAS  Google Scholar 

  • Yang ZM, Sivaguru M, Horst WJ, Matsumoto H (2000) Aluminium tolerance is achieved by exudation of citric acid from roots of soybean (Glycine max). Physiol Plant 110:72–77

    Article  CAS  Google Scholar 

  • Yang JL, Zheng SJ, He YF, Matsumoto H (2005) Aluminium resistance requires resistance to acid stress: a case study with spinach that exudes oxalate rapidly when exposed to Al stress. J Exp Bot 56:1197–1203

    Article  PubMed  CAS  Google Scholar 

  • Yang JL, Zhang L, Li YY, You JF, Wu P, Zheng SJ (2006) Citrate transporters play a critical role in aluminium-stimulated citrate efflux in rice bean (Vigna umbellata) roots. Ann Bot 97:579–584

    Article  PubMed  CAS  Google Scholar 

  • Yang JL, You JF, Li YY, Wu P, Zheng SJ (2007) Magnesium enhances aluminum-induced citrate secretion in rice bean roots (Vigna umbellata) by restoring plasma membrane H+-ATPase activity. Plant Cell Physiol 48:66–73

    Article  PubMed  CAS  Google Scholar 

  • Yang JL, Zhu XF, Peng YX, Zheng C, Ming F, Zheng SJ (2011) Aluminum regulates oxalate secretion and plasma membrane H+-ATPase activity independently in tomato roots. Planta 234:281–291

    Article  PubMed  CAS  Google Scholar 

  • Yokosho K, Yamaji N, Ma JF (2011) An Al-inducible MATE gene is involved in external detoxification of Al in rice. Plant J 68:1061–1069

    Article  PubMed  CAS  Google Scholar 

  • You JF, He YF, Yang JL, Zheng SJ (2005) A comparison of aluminum resistance among Polygonum species originating on strongly acidic and neutral soils. Plant Soil 276:143–151

    Article  CAS  Google Scholar 

  • Zeng H, Liu G, Kinoshita T, Zhang R, Zhu Y, Shen Q, Xu G (2012) Stimulation of phosphorus uptake by ammonium nutrition involves plasma membrane H+ ATPase in rice roots. Plant Soil 357:205–214

    Article  CAS  Google Scholar 

  • Zhang WH, Ryan PR, Tyerman SD (2004) Citrate-permeable channels in the plasma membrane of cluster roots of white lupin. Plant Physiol 136:3771–3783

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Liu G, Wu N, Gu M, Zeng H, Zhu Y, Xu G (2011) Adaptation of plasma membrane H+ ATPase and H+ pump to P deficiency in rice roots. Plant Soil 349:3–11

    Article  CAS  Google Scholar 

  • Zhao Z, Ma JF, Sato K, Takeda K (2003) Differential Al resistance and citrate secretion in barley (Hordeum vulgare L.). Planta 217:794–800

    Article  PubMed  CAS  Google Scholar 

  • Zheng SJ (2010) Crop production on acidic soils: overcoming aluminium toxicity and phosphorus deficiency. Ann Bot 106:183–184

    Article  PubMed  Google Scholar 

  • Zheng SJ, Ma JF, Matsumoto H (1998) High aluminum resistance in buckwheat. I. Al-induced specific secretion of oxalic acid from root tips. Plant Physiol 117:745–751

    Article  Google Scholar 

  • Zheng SJ, Yang JL, He YF, Yu XH, Zhang L, You JF, Shen RF, Matsumoto H (2005) Immobilization of aluminum with phosphorous in roots is associated with high aluminum resistance in buckwheat. Plant Physiol 138:297–303

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Yan F, Zörb C, Schubert S (2005) A link between citrate and proton release by proteoid roots of white lupin (Lupinus albus L.) grown under phosphorus-deficient conditions? Plant Cell Physiol 46:892–901

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Di T, Xu G, Chen X, Zeng H, Yan F, Shen Q (2009) Adaptation of plasma membrane H+-ATPase of rice roots to low pH as related to ammonium nutrition. Plant Cell Environ 32:1428–1440

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Program of New Century Excellent Talent in Universities (NCET-11-0672) and the National Natural Science Foundation of China (No. 30971864 and No. 31201679). We thank the two anonymous referees for their helpful comments and suggestions for revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiyong Zhu.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, H., Feng, X., Wang, B. et al. Citrate exudation induced by aluminum is independent of plasma membrane H+-ATPase activity and coupled with potassium efflux from cluster roots of phosphorus-deficient white lupin. Plant Soil 366, 389–400 (2013). https://doi.org/10.1007/s11104-012-1445-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1445-7

Keywords

Navigation