Skip to main content

Advertisement

Log in

Impact of postfire logging on soil bacterial and fungal communities and soil biogeochemistry in a mixed-conifer forest in central Oregon

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Postfire logging recoups the economic value of timber killed by wildfire, but whether such forest management activity supports or impedes forest recovery in stands differing in structure from historic conditions remains unclear. The aim of this study was to determine the impact of mechanical logging after wildfire on soil bacterial and fungal communities and other measures influencing soil productivity.

Methods

We compared soil bacterial and fungal communities and biogeochemical responses of 1) soils compacted, and 2) soils compacted and then subsoiled, to 3) soils receiving no mechanical disturbance, across seven stands, 1–3 years after postfire logging.

Results

Compaction decreased plant-available N on average by 27% compared to no mechanical disturbance, while subsoiling decreased plant-available P (Bray) on average by 26% compared to the compacted and non-mechanically disturbed treatments. Neither bacterial nor fungal richness significantly differed among treatments, yet distinct separation by year in both bacterial and fungal community composition corresponded with significant increases in available N and available P between the first and second postharvest year.

Conclusions

Results suggest that nutrients critical to soil productivity were reduced by mechanical applications used in timber harvesting, yet soil bacteria and fungi, essential to mediating decomposition and nutrient cycling, appeared resilient to mechanical disturbance. Results of this study contribute to the understanding about impacts of harvesting fire-killed trees and bear consideration along with the recovery potential of a site and the impending risk of future fire in stands with high densities of fire-killed trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarado P, Manjon JL (2009) Selection of enzymes for terminal restriction fragment length polymorphism analysis of fungal internally transcribed spacer sequences. Appl Environ Microbiol 75:4747–4752. doi:10.1128/AEM.00568-09

    PubMed  CAS  Google Scholar 

  • Attiwill PM, Adams MA (1993) Nutrient cycling in forests. New Phytol 124:561–582

    CAS  Google Scholar 

  • Avis PG, Dickie IA, Mueller GM (2006) A ‘dirty’ business: testing the limitations of terminal restriction fragment length polymorphism (TRFLP) analysis of soil fungi. Mol Ecol 15:873–882. doi:10.1111/j.1365-294X.2005.02842.x

    PubMed  CAS  Google Scholar 

  • Axelrood PE, Chow ML, Arnold CS, Lu K, McDermott JM, Davies J (2002a) Cultivation-dependent characterization of bacterial diversity from British Columbia forest soils subjected to disturbance. Can J Microbiol 48:643–654. doi:10.1139/W02-058

    PubMed  CAS  Google Scholar 

  • Axelrood PE, Chow ML, Radomski CC, McDermott JM, Davies J (2002b) Molecular characterization of bacterial diversity from British Columbia forest soils subjected to disturbance. Can J Microbiol 48:655–674. doi:10.1139/W02-059

    PubMed  CAS  Google Scholar 

  • Bárcenas-Moreno G, Bååth E (2009) Bacterial and fungal growth in soil heated at different temperatures to simulate a range of fire intensities. Soil Biol Biochem 41:2517–2526. doi:10.1016/j.soilbio.2009.09.010

    Google Scholar 

  • Bassett IE, Simcock RC, Mitchell ND (2005) Consequences of soil compaction for seedling establishment: implications for natural regeneration and restoration. Aust Ecol 30:827–833

    Google Scholar 

  • Battigelli JP, Spence JR, Langor DW, Berch SM (2004) Short-term impact of forest soil compaction and organic matter removal on soil mesofauna density and oribatid mite diversity. Can J For Res 34:1136–1149

    Google Scholar 

  • Beschta RL, Rhodes JJ, Kauffman JB, Gresswell RE, Minshall GW, Karr JR, Perry DA, Hauer FR, Frissell CA (2004) Postfire management on forested public lands of the western United States. Conserv Biol 18:957–967. doi:10.1111/j.1523-1739.2004.00495.x

    Google Scholar 

  • Boerner REJ, Giai C, Huang J, Miesel JR (2008) Initial effects of fire and mechanical thinning on soil enzyme activity and nitrogen transformations in eight North American forest ecosystems. Soil Biol Biochem 40:3076–3085. doi:10.1016/j.soilbio.2008.09.008

    CAS  Google Scholar 

  • Boerner REJ, Huang J, Hart SC (2009) Impacts of Fire and Fire Surrogate treatments on forest soil properties: a meta-analytical approach. Ecol Appl 19:338–358. doi:10.1890/07-1767.1

    PubMed  Google Scholar 

  • Bormann BT, Homann PS, Darbyshire RL, Morrissette BA (2008) Intense forest wildfire sharply reduces mineral soil C and N: the first direct evidence. Can J For Res 38:2771–2783. doi:10.1139/X08-136

    CAS  Google Scholar 

  • Brady NC, Weil RR (2002) The nature and property of soils, 13th edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Brant JB, Sulzman EW, Myrold DD (2006) Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation. Soil Biol Biochem 38:2219–2232. doi:10.1016/j.soilbio.2006.01.022

    CAS  Google Scholar 

  • Breland TA, Hansen S (1996) Nitrogen mineralization and microbial biomass as affected by soil compaction. Soil Biol Biochem 28:655–663. doi:10.1016/0038-0717(95)00154-9

    CAS  Google Scholar 

  • Bremner JM (1996) Nitrogen-total. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (eds) Methods of soil analysis. Part 3. Chemical methods—SSSA Book Series No. 5. Soil Science Society of America and American Society of Agronomy, Madison, pp 1085–1121

    Google Scholar 

  • Bundy LG, Meisinger JJ (1994) Nitrogen availability indices. In: Weaver RW, Angle JS, Bottomley PS (eds) Methods of soil analysis. Soil Science Society of America, Madison, pp 951–984

    Google Scholar 

  • Busse MD, Beattie SE, Powers RF, Sanchez FG, Tiarks AE (2006) Microbial community responses in forest mineral soil to compaction, organic matter removal, and vegetation control. Can J For Res 36:577–588. doi:10.1139/X05-294

    CAS  Google Scholar 

  • Caldwell BA, Griffiths RP, Sollins P (1999) Soil enzyme response to vegetation disturbance in two lowland Costa Rican soils. Soil Biol Biochem 31:1603–1608. doi:10.1016/S0038-0717(99)00067-X

    CAS  Google Scholar 

  • Carlson CA, Fox TR, Colbert SR, Kelting DL, Allen HL, Albaugh TJ (2006) Growth and survival of Pinus taeda in response to surface and subsurface tillage in the southeastern United States. For Ecol Manage 234:209–217. doi:10.1016/j.foreco.2006.07.002

    Google Scholar 

  • Chow ML, Radomski CC, McDermott JM, Davies J, Axelrood PE (2002) Molecular characterization of bacterial diversity in Lodgepole pine (Pinus contorta) rhizosphere soils from British Columbia forest soils differing in disturbance and geographic source. FEMS Microbiol Ecol 42:347–357. doi:10.1111/j.1574-6941.2002.tb01024.x

    PubMed  CAS  Google Scholar 

  • Cochrane MA, Laurance WF (2002) Fire as a large scale edge effect in Amazonian forests. J Trop Ecol 8:311–325

    Google Scholar 

  • Cochrane MA, Alencar A, Schulze MD, Souza CM Jr, Nepstad DC, Lefebvre P, Davidson EA (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284:1832–1835

    PubMed  CAS  Google Scholar 

  • Coleman DC (2008) From peds to paradoxes: linkages between soil biota and their influences on ecological processes. Soil Biol Biochem 40:271–289. doi:10.1016/j.soilbio.2007.08.005

    CAS  Google Scholar 

  • Concilio A, Ma S, Li Q, LeMoine J, Chen J, North M, Moorhead D, Jensen R (2005) Soil respiration response to prescribed burning and thinning in mixed-conifer and hardwood forests. Can J For Res 35:1581–1591. doi:10.1139/X05-091

    CAS  Google Scholar 

  • Courty P-E, Buée M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F, Turpault M-P, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42:679–698. doi:10.1016/j.soilbio.2009.12.006

    CAS  Google Scholar 

  • Craigg TL, Howes SW (2007) Assessing quality in volcanic ash soils. In: Page-Dumroese D, Miller R, Mital J, McDaniel P, Miller D (tech eds) Volcanic-ash-derived forest soils of the inland northwest: properties and implications for management and restoration. 9–10 November 2005, Coeur d’Alene, ID. Proceedings RMRS-P-44; Fort Collins, Colorado, USDA Forest Service, Rocky Mountain Research Station, pp 44–66

  • Cromack K Jr, Todd RL, Monk CD (1975) Patterns of basidiomycete nutrient accumulation in conifer and deciduous forest litter. Soil Biol Biochem 7:265–268

    CAS  Google Scholar 

  • Curran MP, Miller RE, Howes SW, Maynard DG, Terry TA, Heninger RL, Niemann T, van Rees K, Powers RF, Schoenholts SH (2005) Progress towards more uniform assessment and reporting of soil disturbance for operations, research, and sustainability protocols. For Ecol Manage 220:17–30. doi:10.1016/j.foreco.2005.08.002

    Google Scholar 

  • DeLuca TH, Aplet GH (2008) Charcoal and carbon storage in forest soils of the Rocky Mountain West. Front Ecol Environ 6(1):18–24. doi:10.1890/070070

    Google Scholar 

  • DeLuca TH, Zouhar KL (2000) Effects of selection harvest and prescribed fire on the soil nitrogen status of ponderosa pine forests. For Ecol Manage 138:263–271. doi:10.1016/S0378-1127(00)00401-1

    Google Scholar 

  • Dick RP, Myrold DD, Kerle EA (1988) Microbial biomass and soil enzyme activities in compacted and rehabilitated skid trail soils. Soil Sci Soc Am J 52:512–516. doi:10.2136/sssaj1988.522512x

    Google Scholar 

  • Dickie IA, FitzJohn RG (2007) Using terminal restriction fragment length polymorphism (T-RFLP) to identify mycorrhizal fungi: a methods review. Mycorrhiza 17:259–270. doi:10.1007/s00572-007-0129-2

    PubMed  CAS  Google Scholar 

  • Dickie IA, Xu B, Koide RT (2002) Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156:527–535. doi:10.1046/j.1469-8137.2002.00535.x

    CAS  Google Scholar 

  • Dighton J (2003) Fungi in ecosystem processes. Marcel Dekker, New York

    Google Scholar 

  • Donato DC, Fontaine JB, Campbell JL, Robinson WD, Kauffman JB, Law BE (2006) Post-wildfire logging hinders regeneration and increases fire risk. Science 311:352. doi:10.1126/science.1122855

    PubMed  CAS  Google Scholar 

  • Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17(19):7843–7853. doi:10.1093/nar/17.19.7843

    PubMed  CAS  Google Scholar 

  • Elliott ET, Anderson RV, Coleman DC, Cole CV (1980) Habitable pore space and microbial trophic interactions. Oikos 35:327–335

    Google Scholar 

  • Engebretson JJ, Moyer CL (2003) Fidelity of select restriction endonucleases in determining microbial diversity by terminal-restriction fragment length polymorphism. Appl Environ Microbiol 69(8):4823–4829. doi:10.1128/AEM.69.8.4823-4829.2003

    PubMed  CAS  Google Scholar 

  • Entry JA, Rose C, Cromack K Jr (1992) Microbial biomass and nutrient concentrations in hyphal mats of the ectomycorrhizal fungus Hysterangium setchellii in a coniferous forest soil. Soil Biol Biochem 24:447–453

    Google Scholar 

  • Fisher RF, Binkley D (2000) Ecology and management of forest soils, 3rd edn. Wiley, New York

    Google Scholar 

  • Fox RT (2000) Sustained productivity in intensively managed forest plantations. For Ecol Manage 138:187–202

    Google Scholar 

  • Frey B, Kremer J, Rüdt A, Sciacca S, Matthies D, Lüscher P (2009) Compaction of forest soils with heavy logging machinery affects soil bacterial community structure. Eur J Soil Biol 45:312–320. doi:10.1016/j.ejsobi.2009.05.006

    Google Scholar 

  • Froehlich HA, Miles DWR, Robbins RW (1985) Soil bulk density recovery on compacted skid trails in central Idaho. Soil Sci Soc Am J 49:1015–1017

    Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. doi:10.1111/j.1365-294X.1993.tb00005.x

    PubMed  CAS  Google Scholar 

  • Garland JL (1996) Patterns of potential C source utilization by rhizosphere communities. Soil Biol Biochem 28:223–230. doi:10.1016/0038-0717(95)00113-1

    CAS  Google Scholar 

  • Garland JL, Cook KL, Loader CA, Hungate BA (1997) The influence of microbial community structure and function on community level physiological profiles. In: Insam H, Rangger A (eds) Microbial communities. Springer, Heidelberg, pp 171–183

    Google Scholar 

  • Grigal DF (2000) Effects of extensive forest management on soil productivity. For Ecol Manage 138:167–185. doi:10.1016/S0378-1127(00)00395-9

    Google Scholar 

  • Hartmann M, Lee S, Hallam SJ, Mohn WW (2009) Bacterial, archaeal and eukaryal community structures throughout soil horizons of harvested and naturally disturbed forest stands. Environ Microbiol 11:3045–3062. doi:10.1111/j.1462-2920.2009.02008.x

    PubMed  Google Scholar 

  • Hassink J, Bouwman LA, Zwart KB, Brussaard L (1993) Relationships between habitable pore space, soil biota and mineralization rates in grassland soils. Soil Biol Biochem 25:47–55. doi:10.1016/0038-0717(93)90240-C

    Google Scholar 

  • Hebel CL, Smith JE, Cromack K Jr (2009) Invasive plant species and soil microbial response to wildfire burn severity in the Cascade Range of Oregon. Appl Soil Ecol 42:150–159. doi:10.1016/j.apsoil.2009.03.004

    Google Scholar 

  • Hinkelmann K, Kempthorne O (2008) Design and analysis of experiments, volume I: introduction to experimental design, 2nd edn. Wiley-Interscience, New York

    Google Scholar 

  • Högberg MN, Högberg P (2002) Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytol 154:791–795. doi:10.1046/j.1469-8137.2002.00417.x

    Google Scholar 

  • Institute SAS (2003) SAS system for Windows (computer software). SAS Institute, Cary, North Carolina

    Google Scholar 

  • Jones MD, Twieg BD, Ward V, Barker J, Durall DM, Simard SW (2010) Functional complementarity of Douglas-fir ectomycorrhizas for extracellular enzyme activity after wildfire or clearcut logging. Funct Ecol 24:1139–1151. doi:10.1111/j.1365-2435.2010.01699.x

    Google Scholar 

  • Kauffman JB, Uhl C (1990) Interactions of anthropogenic activities, fire, and rain forests in the Amazon Basin. In: Goldammer J (ed) Fire in the tropical biota. Springer, New York, pp 117–134

    Google Scholar 

  • Keeley JE (2009) Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int J Wildland Fire 18:116–126. doi:10.1071/WF07049

    Google Scholar 

  • Kennedy N, Egger KN (2010) Impact of wildfire intensity and logging on fungal and nitrogen-cycling bacterial communities in British Columbia forest soils. For Ecol Manage 260:787–794. doi:10.1016/j.foreco.2010.05.037

    Google Scholar 

  • Knicker H (2007) How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85:91–118. doi:10.1007/s10533-007-9104-4

    CAS  Google Scholar 

  • Kuo S (1996) Phosphorus. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (eds) Methods of soil analysis. Part 3. Chemical methods—SSSA Book Series No. 5. Soil Science Society of America and American Society of Agronomy, Madison, pp 869–919

    Google Scholar 

  • Law BE, Kelliher FM, Baldocchi DD, Anthoni PM, Irvine J, Moore D, van Tuyl S (2001) Spatial and temporal variation in respiration in a young ponderosa pine forest during a summer drought. Agric For Meteorol 110:27–43. doi:10.1016/S0168-1923(01)00279-9

    Google Scholar 

  • Li Q, Allen HL, Wilson CA (2003) Nitrogen mineralization dynamics following the establishment of a loblolly pine plantation. Can J For Res 33:364–374. doi:10.1139/X02-184

    CAS  Google Scholar 

  • Li Q, Allen HL, Wollum AG II (2004) Microbial biomass and bacterial functional diversity in forest soils: effects of organic matter removal, compaction, and vegetation control. Soil Biol Biochem 36:571–579

    CAS  Google Scholar 

  • Lilleskov EA, Hobbie EA, Horton TR (2010) Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecol. doi:10.1016/j.funeco.2010.09.008

  • Lindahl BD, de Boer W, Finlay RD (2010) Disruption of root carbon transport into forest humus stimulates fungal opportunists at the expense of mycorrhizal fungi. ISME J 4:872–881. doi:10.1038/ismej.2010.19

    PubMed  Google Scholar 

  • Lindenmayer D, Burton P, Franklin J (2008) Salvage logging and its ecological consequences. Island, Washington

    Google Scholar 

  • Lindo Z, Visser S (2003) Microbial biomass, nitrogen and phosphorus mineralization, and mesofauna in boreal conifer and deciduous forest floors following partial and clear-cut harvesting. Can J For Res 33:1610–1620. doi:10.1139/X03-080

    CAS  Google Scholar 

  • Liu W-T, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63(11):4516–4522

    PubMed  CAS  Google Scholar 

  • Lupwayi NZ, Arshad MA, Rice WA, Clayton GW (2001) Bacterial diversity in water-stable aggregates of soils under conventional and zero tillage management. Appl Soil Ecol 16:251–261

    Google Scholar 

  • Ma S, Chen J, North M, Erickson HE, Bresee M, Le Moine J (2004) Short-term effects of experimental burning and thinning on soil respiration in an old-growth, mixed-conifer forest. Environ Manage 33(Suppl 1):S148–S159. doi:10.1007/s00267-003-9125-2

    Google Scholar 

  • Magurran A (1988) Ecological diversity and its management. Princeton University Press, Princeton

    Google Scholar 

  • Marshall VG (2000) Impacts of forest harvesting on biological processes in northern forest soils. For Ecol Manage 133:43–60. doi:10.1016/S0378-1127(99)00297-2

    Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software, Gleneden Beach

    Google Scholar 

  • McIver JD, Starr L (2000) Environmental effects of postfire logging: Literature review and annotated bibliography. USDA Forest Service, Pacific Northwest Research Station, Gen Tech Rep PNW-GTR-486. Portland, Oregon, 72 p

  • Mitchell SR, Harmon ME, O’Connell KEB (2009) Forest fuel reduction alters fire severity and long-term carbon storage in three Pacific Northwest ecosystems. Ecol Appl 19(3):643–655. doi:10.1890/08-0501.1

    PubMed  Google Scholar 

  • Moldenke AR, Pajutee M, Ingham E (2000) The functional roles of forest soil arthropods: the soil is a lively place. In: Powers RF, Hauxwell DL, Nakamura GM (eds) Proceedings of the California Forest Soils Council Conference on Forest Soils Biology and Forest Management. USDA Forest Service, Pacific Southwest Research Station, Gen Tech Rep PSW-GTR-178, Berkeley, California, pp 7–22

  • Monleon VJ, Cromack K Jr, Landsberg JD (1997) Short- and long-term effects of prescribed underburning on nitrogen availability in ponderosa pine stands in central Oregon. Can J For Res 27:369–378

    Google Scholar 

  • Muyzer G, Teske A, Wirsen CO, Jannasch HW (1995) Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164:165–172. doi:10.1007/BF02529967

    PubMed  CAS  Google Scholar 

  • Myrold DD (1987) Relationship between microbial biomass nitrogen and a nitrogen availability index. Soil Sci Soc Am J 51:1047–1049. doi:10.2136/sssaj1987.5141047x

    Google Scholar 

  • Neary DG, Klopatek CC, DeBano LF, Ffolliott PF (1999) Fire effects on belowground sustainability: a review and synthesis. For Ecol Manage 122:51–71. doi:10.1016/S0378-1127(99)00032-8

    Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon and organic matter. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (eds) Methods of soil analysis. Part 3. Chemical methods—SSSA Book Series No. 5. Soil Science Society of America and American Society of Agronomy, Madison, pp 961–1010

    Google Scholar 

  • Otrosina WJ, Sung S-J, White LM (1996) Effects of subsoiling on lateral roots, sucrose metabolizing enzymes, and soil ergosterol in two Jeffrey pine stands. Tree Physiol 16:1009–1013. doi:10.1093/treephys/16.11-12.1009

    PubMed  CAS  Google Scholar 

  • Page-Dumroese DS, Jurgensen MF, Tiarks AE, Ponder F Jr, Sanchez FG, Fleming RL, Kranabetter JM, Powers RF, Stone DM, Elioff JD, Scott DA (2006) Soil physical property changes at the North American long-term soil productivity study sites: 1 and 5 years after compaction. Can J For Res 36:551–564. doi:10.1139/X05-273

    Google Scholar 

  • Paul EA, Clark FE (1996) Soil microbiology and biochemistry, 2nd edn. Academic, San Diego

    Google Scholar 

  • Perry DA, Amaranthus MP, Borchers JG, Borchers SL, Brainerd RE (1989) Bootstrapping in ecosystems. BioScience 39(4):230–237

    Google Scholar 

  • Perry DA, Oren R, Hart SC (2008) Forest ecosystems, 2nd edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Pietikäinen J, Fritze H (1995) Clear-cutting and prescribed burning in coniferous forest: comparison of effects on soil fungal and total microbial biomass, respiration activity and nitrification. Soil Biol Biochem 27(1):101–109. doi:10.1016/0038-0717(94)00125-K

    Google Scholar 

  • Poff R (1989) Compatibility of timber salvage operations with watershed values. In: Berg NH (Tech coord) Proceedings of the symposium on fire and watershed management: October 26–28, 1988, Sacramento, California. USDA Forest Service, Pacific Southwest Forest and Range Experiment Station, Berkeley, California, pp 137–140

  • Rab MA (2004) Recovery of soil physical properties from compaction and soil profile disturbance caused by logging of native forest in Victorian Central Highlands, Australia. For Ecol Manage 191:329–340

    Google Scholar 

  • Rhoades JD (1982) Cation exchange capacity. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2. Agron Monogr 9, Am Soc Agron, Madison, Wisconsin pp 149–157

  • Richards BN (1987) The microbiology of terrestrial ecosystems. Longman Scientific and Technical, Burnt Mill

    Google Scholar 

  • Rinehart TA (2004) AFLP analysis using GeneMapper® software and an Excel® macro that aligns and converts output to binary. Biotechniques 37:186–187

    PubMed  CAS  Google Scholar 

  • Robertson GP, Sollins P, Ellis BG, Lajtha K (1999) Exchangeable ions, pH, and cation exchange capacity. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, New York, pp 106–114

    Google Scholar 

  • Rothe A, Binkley D (2001) Nutritional interactions in mixed species forests: a synthesis. Can J For Res 31:1855–1870

    Google Scholar 

  • Rothe A, Cromack K Jr, Resh SC, Makineci E, Son Y (2002) Soil carbon and nitrogen changes under Douglas-fir with and without red alder. Soil Sci Soc Am J 66:1988–1995

    CAS  Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25:339–358. doi:10.1146/annurev.py.25.090187.002011

    Google Scholar 

  • Sessions J, Bettinger P, Buckman R, Newton M, Hamann J (2004) Hastening the return of complex forests following fire: the consequences of delay. J For 102:38–45

    Google Scholar 

  • Shestak CJ, Busse MD (2005) Compaction alters physical but not biological indices of soil health. Soil Sci Soc Am J 69:236–246

    CAS  Google Scholar 

  • Simard SW (2009) The foundational role of mycorrhizal networks in self-organization of interior Douglas-fir forests. For Ecol Manage 158:S95–S107

    Google Scholar 

  • Simpson M (2007) Forested plant associations of the Oregon East Cascades. In: USDA Forest Service, Pacific Northwest Region Tech Pap R6-NR-ECOL-TP-03-2007

  • Sinsabaugh RL, Klug MJ, Collins HP, Yeager PE, Petersen SO (1999) Characterizing soil microbial communities. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long term ecological research. Oxford University Press, New York, pp 318–348

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, New York

    Google Scholar 

  • Smith JE, McKay D, Brenner G, McIver J, Spatafora JW (2005) Early impacts of forest restoration treatments on the ectomycorrhizal fungal community and fine root biomass in a mixed conifer forest. J Appl Ecol 42:526–535. doi:10.1111/j.1365-2664.2005.01047.x

    Google Scholar 

  • Smith NR, Kishchuk BE, Mohn WW (2008) Effects of wildfire and harvest disturbances on forest soil bacterial communities. Appl Environ Microbiol 74(1):216–224. doi:10.1128/aem.01355-07

    PubMed  CAS  Google Scholar 

  • Stark N (1972) Nutrient cycling pathways and litter fungi. BioScience 22:355–360

    CAS  Google Scholar 

  • Steel RGD, Torrie JH, Dickey DA (1997) Principles and procedures of statistics: a biometrical approach, 3rd edn. WCB McGraw-Hill, Boston

    Google Scholar 

  • Sulzman EW, Brant JB, Bowden RD, Lajtha K (2005) Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest. Biogeochemistry 73:231–256. doi:10.1007/s10533-004-7314-6

    Google Scholar 

  • Tabatabai MA (1994) Soil enzymes. In: Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A (eds) Methods of soil analysis, Part 2. Microbiological and biochemical properties—SSSA Book Series No. 5. Soil Science Society of America, Madison, pp 775–833

    Google Scholar 

  • Talkner U, Jansen M, Beese FO (2009) Soil phosphorus status and turnover in central-European beech forest ecosystems with differing tree species diversity. Eur J Soil Sci 60:338–346

    CAS  Google Scholar 

  • Tan X, Chang SX, Kabzems R (2005) Effects of soil compaction and forest floor removal on soil microbial properties and N transformations in a boreal forest long-term soil productivity study. For Ecol Manage 217:158–170. doi:10.1016/j.foreco.2005.05.061

    Google Scholar 

  • Tan X, Chang SX, Kabzems R (2008) Soil compaction and forest floor removal reduced microbial biomass and enzyme activities in a boreal aspen forest soil. Biol Fert Soils 44:471–479. doi:10.1007/s00374-007-0229-3

    Google Scholar 

  • Taylor MD (2000) Determination of total phosphorus in soil using simple Kjeldahl digestion. Commun Soil Sci Plant Anal 31:2665–2670. doi:10.1080/00103620009370616

    CAS  Google Scholar 

  • Thompson JR, Spies TA, Ganio LM (2007) Reburn severity in managed and unmanaged vegetation in a large wildfire. Proc Natl Acad Sci USA 104(25):10743–10748. doi:10.1073/p

    PubMed  CAS  Google Scholar 

  • Tiessen H, Cueva E, Chacon P (1994) The role of soil organic matter in soil fertility. Nature 371:783–785

    CAS  Google Scholar 

  • Torbert HA, Wood CW (1992) Effects of soil compaction and water-filled pore space on soil microbial activity and N losses. Commun Soil Sci Plan 23:1321–1331. doi:10.1080/00103629209368668

    CAS  Google Scholar 

  • Treseder KK, Allen MF, Ruess RW, Pregitzer KS, Hendrick RL (2005) Lifespans of fungal rhizomorphs under nitrogen fertilization in a Pinyon-Juniper woodland. Plant Soil 270:249–255

    CAS  Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310. doi:10.1111/j.1461-0248.2007.01139.x

    PubMed  Google Scholar 

  • van der Linden AMA, Jeurissen LJJ, van Veen JA, Schippers B (1989) Turnover of soil microbial biomass as influenced by soil compaction. In: Hansen J, Henriksen K (eds) Nitrogen in organic wastes applied to soil. Academic, London, pp 25–36

    Google Scholar 

  • Velazquez-Martinez A, Perry DA (1997) Factors influencing the availability of nitrogen in thinned and unthinned Douglas-fir stands in the central Oregon Cascades. For Ecol Manage 93:195–203. doi:10.1016/S0378-1127(96)03953-9

    Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633. doi:10.1126/science.1094875

    PubMed  CAS  Google Scholar 

  • Waring RH, Savage T, Cromack K Jr, Rose C (1992) Thinning and nitrogen fertilization in a grand fir stand infested with western spruce budworm. Part IV: an ecosystem perspective. For Sci 38:275–286

    Google Scholar 

  • Warren JM, Brooks JR, Meinzer FC, Eberhart JL (2008) Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway. New Phytol 178:382–394

    PubMed  CAS  Google Scholar 

  • White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, London, pp 315–322

    Google Scholar 

  • Yarwood SA, Myrold DD, Högberg MN (2009) Termination of belowground C allocation by trees alters soil fungal and bacterial communities in a boreal forest. FEMS Microbiol Ecol 70:151–162. doi:10.1111/j.1574-6941.2009.00733.x

    PubMed  CAS  Google Scholar 

  • Yeager CM, Northup DE, Grow CC, Barns SM, Kuske CR (2005) Changes in nitrogen-fixing and ammonia-oxidizing bacterial communities in soil of a mixed conifer forest after wildfire. Appl Environ Microbiol 71(5):2713–2722. doi:10.1128/aem.71.5.2713-2722.2005

    PubMed  CAS  Google Scholar 

  • Yildiz O, Sarginci M, Eşen D, Cromack K Jr (2007) Effects of vegetation control on nutrient removal and Fagus orientalis, Lipsky regeneration in the western Black Sea Region of Turkey. For Ecol Manage 240:186–194

    Google Scholar 

  • Yildiz O, Eşen D, Karaoz OM, Sarginci M, Toprak B, Soysal Y (2010) Effects of different site preparation methods on soil carbon and nutrient removal from Eastern beech regeneration sites in Turkey’s Black Sea Region. Appl Soil Ecol 45:49–55

    Google Scholar 

Download references

Acknowledgements

This research was made possible with funding received from the Joint Fire Science Program; Oregon State University Department of Forest Science; the USDA Forest Service, Pacific Northwest Research Station; and the National Science Foundation Microbial Observatory (Grant No. 0348689). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Mention of trade or firm names does not constitute an endorsement by the U.S. Department of Agriculture. We thank Drs. Bernard Bormann, Peter Bottomley, Jim Kennedy, and Jonathan Martin for helpful comments on the manuscript. We thank Nicole Kurhanewicz, Zach Sutton, and William Austin for lab and field assistance. Special thanks to Liz Schwartz and Drs. Nicole DeCrappeo, Stephanie Boyle and Laurel Kluber for assistance with Biolog™ and T-RFLP results interpretation; Drs. Lisa Ganio (Quantitative Sciences Group), Greg Brenner (Pacific Analytics), Bruce McCune, and Dan Luoma for assistance with the study design and statistical analysis; Drs. George Weaver and Brian Knaus for assistance with graphics; Dr. Angeline Cromack for editing; and Brian Tandy, Terry Craigg, and others at the Deschutes National Forest for site information. Lastly, we dedicate this publication to the memory of Dr. Elizabeth Sulzman, an extraordinary scientist, educator, and mentor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane E. Smith.

Additional information

Responsible Editor: Hans Lambers.

Elizabeth W. Sulzman, deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jennings, T.N., Smith, J.E., Cromack, K. et al. Impact of postfire logging on soil bacterial and fungal communities and soil biogeochemistry in a mixed-conifer forest in central Oregon. Plant Soil 350, 393–411 (2012). https://doi.org/10.1007/s11104-011-0925-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0925-5

Keywords

Navigation